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Abstract

Background—Reported odds ratios and population attributable fractions (PAF) for late-onset

Alzheimer’s disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM,

MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the

combined PAF for these LOAD risk alleles and the utility of these combined markers for case-

control prediction. Here we evaluate these loci in a large population-based sample to estimate PAF

and explore the effects of additive and non-additive interactions on LOAD status prediction

performance.

Methods—2,419 samples from the Cache County Memory Study were genotyped for APOE and

nine LOAD risk loci from AlzGene.org. We used logistic regression and ROC analysis to assess

the LOAD status prediction performance of these loci using additive and non-additive models, and

compared ORs and PAFs between AlzGene.org and Cache County.

Results—Odds ratios were comparable between Cache County and AlzGene.org when identical

SNPs were genotyped. PAFs from AlzGene.org ranged from 2.25–37%; those from Cache County

ranged from 0.05–20%. Including non-APOE alleles significantly improved LOAD status

prediction performance (AUC = 0.80) over APOE alone (AUC = 0.78) when not constrained to an

© 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

Corresponding Author: John S. K. Kauwe, 675 WIDB, Provo, UT 84602, Phone: 801-422-2993, kauwe@byu.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Financial Disclosures
No authors report biomedical financial interests or potential conflicts of interest.

NIH Public Access
Author Manuscript
Biol Psychiatry. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Biol Psychiatry. 2014 May 1; 75(9): 732–737. doi:10.1016/j.biopsych.2013.07.008.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://AlzGene.org
http://AlzGene.org
http://AlzGene.org
http://AlzGene.org


additive relationship (p < 0.03). We identified potential allelic interactions (p-values uncorrected):

CD33-MS4A4E (Synergy Factor = 5.31; p < 0.003) and CLU-MS4A4E (SF = 3.81; p < 0.016).

Conclusions—While non-additive interactions between loci significantly improve diagnostic

ability, the improvement does not reach the desired sensitivity or specificity for clinical use.

Nevertheless, these results suggest that understanding gene-gene interactions may be important in

resolving Alzheimer’s disease etiology.

Keywords

Alzheimer’s disease; epistasis; genetic interactions; population attributable fraction; odds ratio;
risk

Introduction

Researchers have implicated several genes associated with late-onset Alzheimer’s disease

(LOAD) including APOE. APOE ε4 increases LOAD risk and APOE ε2 reduces risk (1–4).

According to AlzGene.org (5), nine additional genes significantly affect LOAD risk; BIN1

(rs744373), ABCA7 (rs3764650), CR1 (rs3818361), MS4A4E (rs670139), and CD2AP

(rs9349407) are associated with increased risk for LOAD while PICALM (rs3851179),

MS4A6A (rs610932), CD33 (rs3865444), and CLU (rs11136000) are associated with

decreased risk (6–10). Only one study to date has examined the contribution of these nine

risk alleles to LOAD status prediction (11). Verhaaren et al. calculated an additive genetic

risk score and compared LOAD status prediction performance of age, gender, and APOE ε4

genotype using logistic regression with and without the additive genetic risk score. The

genetic risk score did not improve prediction performance significantly, suggesting that the

nine alleles may not be diagnostically useful when constrained to an additive relationship.

The assumption of additive relationships between risk loci is common but is likely to be an

oversimplification of the underlying biology for LOAD and other complex diseases (12–14).

In fact, there may be underlying gene-gene interactions not examined in the Verhaaren et al.

study or others that improve LOAD status prediction performance.

Some of the population attributable fractions for these nine loci have been reported

individually and in different combinations (6, 8, 9); however, no study to date has reported

the combined population attributable fraction for all nine risk alleles. Furthermore,

previously reported odds ratios and population attributable fractions are from clinically

ascertained samples rather than a population-based sample (6–10). The latter may provide a

more reliable measure of population risk because clinically ascertained samples select for

disease, enriching risk alleles in the sample.

In this study we estimated the allelic odds ratios and population attributable fractions for

APOE ε2, APOE ε4, and the nine non-APOE LOAD risk alleles in a large population-based

sample. We also extended the genetic risk score used by Verhaaren et al. by testing whether

the nine non-APOE alleles contribute significantly to LOAD status prediction when

interactions between loci are not constrained to additive relationships.
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Methods and Materials

Sample Collection

The Cache County Study on Memory Health and Aging was initiated in 1994 (15). This

cohort of 5,092 individuals represented approximately 90% of the Cache County population

aged 65 and older. Specific details about data collection, obtaining consent, and phenotyping

individuals in the Cache County population have been reported previously (15). Briefly,

case-control status was determined in four triennial waves of data collection in a multi-stage

dementia screening and assessment protocol. The first stage of screening consisted of

administration of the Modified Mini-Mental State Exam-Revised (3MS-R) (16). Screen

positive individuals and a randomly selected 19% designated subsample were invited to

complete subsequent stages of evaluation consisting of an informant interview and the next

stage, a clinical assessment including neuropsychological testing. The clinical assessment

results were reviewed by a geropsychiatrist and neuropsychologist and preliminary

diagnoses of dementia or other cognitive disorders were assigned. Those carrying a

diagnosis of dementia or its prodrome were invited to complete standard laboratory tests for

dementia, an MRI scan, and a geropsychiatrist examination. Final case-control status was

determined by an expert panel of clinicians including study geropsychiatrists,

neuropsychologists, a neurologist and cognitive neuroscientist. Diagnoses of AD followed

NINCDS-ADRDA criteria (17), and cases included Possible or Probable AD. Controls were

identified as those who were diagnosed with no dementia (per clinical assessment) or whose

cognitive test result was negative at each preceding screening stage. Persons with

incomplete screening results (i.e., those who were screen positive at one stage, but did not

complete the subsequent stage), or missing genotype data were excluded from the analyses,

leaving 2093 participants without dementia (controls) and 326 persons with LOAD (cases).

All study procedures were approved by the Institutional Review Boards of Utah State, Duke

and the Johns Hopkins University.

DNA from the 2,419 Cache County study participants was genotyped for the nine non-

APOE LOAD risk alleles in the AlzGene.org “ALZGENE TOP RESULTS” list (18) using

TaqMan Assays (Table 1). Genotyping failed for rs3764650 (ABCA7) and rs3818361 (CR1)

so we selected rs3752246 and rs6656401 to represent the effects reported by ABCA7 and

CR1 for AD risk, respectively. The CR1 SNPs are in high linkage disequilibrium (D’ =

0.995, R2 = 0.84) while both ABCA7 SNPs are within 10 kilobases of each other and

rs3752246 was reported as significant by Naj et al. (9) APOE ε2 and APOE ε4 were

previously genotyped as part of the Cache County study (15).

Statistical Analyses

All statistical analyses were performed in R (19). We used logistic regression and receiver

operating characteristic (ROC) curve analysis to assess case-control predictive performance

of the nine non-APOE alleles. Specifically, we tested whether the non-APOE alleles

significantly improved LOAD status prediction performance over models excluding the non-

APOE alleles. Two types of models were generated: additive risk profiles and genotype

models to test potential additive and non-additive relationships, respectively. To assess

efficacy of each model, we measured LOAD status prediction performance using the area
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under the curve (AUC) of the ROC curves. All models were adjusted for age and gender. A

separate model using only age and gender was also generated to establish reference values.

We calculated three additive risk scores for participants in the Cache County Study to

measure LOAD status prediction performance for the nine non-APOE LOAD risk alleles.

Specifically, the following risk profiles were calculated: (1) APOE alone; (2) the nine

LOAD risk alleles with APOE; and (3) the nine LOAD risk alleles without APOE. The risk

allele (whether the major or the minor allele) and associated beta coefficient were used for

each locus. We calculated additive risk scores as the sum of the risk across all alleles

(equation 1), where β equals a previously calculated risk allele beta coefficient from odds

ratios (β = ln(odds ratio)) reported by AlzGene.org (accessed February 2012), and N equals

the subject’s number of risk alleles. APOE ε2 and APOE ε4 were coded jointly into a single

class variable as 22, 23, 24, 33, 34, and 44.

We also tested genotype models using genotype data in place of the risk profile score. We

generated the following genotype models: (1) APOE alone; (2) the nine LOAD risk alleles

with APOE; and (3) an optimized model. Using genotypes does not constrain the model to

an additive relationship, allowing for other genetic models within each locus. The optimized

model was generated using a stepwise regression method to test if interactions between loci

contribute to LOAD status prediction and was selected using Akaike’s information criterion

(AIC). To test for and avoid overfitting, we included three random variables while

generating the optimized model. These variables were generated randomly with respect to

all genotype and phenotype data in our study and were included to provide evidence that the

selected variables provide meaningful information (20). While the absence of all random

variables in the model does not guarantee the model was not overfit, it does suggest the

included variables provide useful diagnostic information.

Synergy factors—a statistic that measures the strength of allelic interactions in case-controls

studies (13, 21)—were calculated for any statistically significant allelic interactions using

logistic regression. All synergy factors were adjusted for age, gender, and APOE ε4 by

including only the main effects of the interacting alleles, the interaction term between the

alleles, age, gender, and the number APOE ε4 alleles (Status = allele1*allele2 + age +

gender + APOE4num). Synergy factor confidence intervals were calculated using the

interaction term coefficient ±1.96 * standard error of the parameter estimate of the

interaction term.

Odds ratios and population attributable fractions were also calculated. Odds ratios here

estimate the relative risk of Alzheimer’s disease given allelic exposure while population
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attributable fractions estimate the proportional decrease in LOAD cases that would occur if

the risk factor were removed from the population. Odds ratios were calculated only for the

Cache County subjects but population attributable fractions were calculated for both Cache

County subjects and the pooled AlzGene samples using published odds ratios and minor

allele frequencies from AlzGene.org. We calculated population attributable fractions using

equation 2 (9, 22), where p equals the allele frequency and OR is the odds ratio. A combined

population attributable fraction was calculated for all risk factors and just the nine non-

APOE risk factors using equation 3 (9, 22, 23) to estimate the proportional decrease in

LOAD cases if all included risk factors were removed from the population. In this equation

PAFj represents previously calculated PAFs from equation 2 and n is the number of loci

included in the combined PAF. For better interpretation and comparison to previous studies,

the risk allele for each locus (whether the major or the minor allele) was used to calculate

population attributable fractions but the minor allele was used for odds ratios.

Results

Sample Demographics

The sample consisted of 1406 females and 1013 males. The mean age and standard

deviation were 75.13 and 7.29 years, respectively. Mean age was significantly different

between cases and controls (p < 2.2e-16), as were the proportion of males in each group (p <

0.04; Supplement: Table S1). Similarly, mean age was significantly different between

participants included in the study and those excluded for reasons previously mentioned (p <

2.2e-16; Supplement: Table S2). The proportion of males, however, was not significantly

different between included and excluded participants (p < 0.29).

Odds Ratios

Odds ratios calculated for the Cache County data were generally comparable in direction

and magnitude to odds ratios from AlzGene.org when identical SNPs were genotyped.

ABCA7 and CR1 varied, but a different SNP was genotyped for ABCA7 and the 95%

confidence intervals for CR1 overlap between AlzGene.org and Cache County results (Table

1). Odds ratios from meta-analyses on AlzGene.org for ABCA7 and CR1 are 1.23 (95% CI

1.18 – 1.28) and 1.19 (95% CI 1.09 – 1.30), respectively, while from the Cache County data
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were 0.94 (95% CI 0.76 – 1.17) and 0.92 (95% CI 0.74 – 1.13), respectively. No alleles

deviated significantly from Hardy Weinberg equilibrium.

Population Attributable Fraction

Population attributable fractions as calculated from AlzGene.org data ranged from 2.25% to

37% while those from Cache County ranged from 0.05% to 20% (Table 1). The highest risks

were attributed to APOE ε4 (AlzGene = 37%; Cache = 20%) and lack of the APOE ε2

(AlzGene = 36%; Cache = 10%) whereas the next highest risk was attributed to PICALM

(AlzGene = 8.19%; Cache = 9.69%). The smallest risk for AlzGene.org was from ABCA7

(2.2%) while the smallest for the Cache County data were CD33 and MS4A4E (0.05%).

Combined population attributable fractions for all LOAD risk alleles (including APOE) were

75% and 51% for AlzGene.org and Cache County, respectively. Using only the nine non-

APOE alleles were 38% and 32% for AlzGene.org and Cache County, respectively.

LOAD Status Prediction Performance

The non-APOE alleles combined with APOE (AUC = 0.782) did not improve LOAD status

prediction performance over APOE alone (AUC = 0.783) when constrained to an additive

model (Supplement: Figure S1), as previously reported (11); nor did the non-APOE alleles

without APOE (AUC = 0.728) significantly improve LOAD status prediction performance

over age and gender alone (AUC = 0.727; p < 0.2372). The model using all genotype data

(full genotype model) when not constrained to an additive relationship (AUC = 0.796),

however, did improve LOAD status prediction performance significantly over APOE alone

(AUC = 0.783; p < 0.03; Figure 1). Moreover, the optimized model allowing for interactions

between loci (AUC = 0.82) improves significantly over the full genotype model (p <

8.39e-07). All three genotype models improve prediction performance significantly over age

and gender alone. None of the random variables previously mentioned were selected for the

optimized model. Selected variables and interactions for the optimized model are as follows:

rs3752246, rs6656401, rs11136000, rs610932, rs3865444, rs670139, Age, APOE.factor,

rs3865444:rs670139, rs11136000:rs670139, rs3752246:APOE.factor, rs3752246:rs610932,

and rs670139:Age.

Locus Interactions

Investigating the optimized genotype model revealed two statistically significant alleles and

two significant allelic interactions, though the p-values were not corrected for multiple

testing. Genotypes A/G (p < 0.02) and G/G (p < 0.03) in rs6656401 (CR1) were significant

individually. The significant interactions were between the rs3865444 C/C (CLU) genotype

and the rs670139 G/G (MS4A4E) genotype (p < 0.016; SF 3.81, 95% CI 1.28 – 11.32) and

the rs11136000 C/C (CD33) genotype and the rs670139 G/G (MS4A4E) genotype (p <

0.003; SF 5.31, 95% CI 1.79 – 15.77).

Discussion

Recent research has identified several alleles that may prove useful in resolving Alzheimer’s

etiology (6–10), but until now there had not been an assessment of their population

attributable fraction in a large, population-based sample. Similarly, deeper interrogation of
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the diagnostic utility of the Alzheimer’s disease candidate genes is needed. Verhaaren et al.

explored the diagnostic utility based on an additive relationship, which we replicated in this

work, but they did not test locus interactions—a major aim of this research. During this

process we also estimated allelic odds ratios and population attributable fractions.

The data reported in this study are generalizable to other U.S. populations of northern

European descent. The Cache County population has been included in the Centre d’Etude du

Polymorphisme Humain (CEPH) families that are used to represent the European sample in

the HapMap project (24, 25). Utah’s early pioneers were mostly unrelated and originated

from various European locations (26–28), which is necessary for generalizability. The

AlgGene.org data—a meta-analysis—varies between loci but is largely Caucasian-based as

well. Many of the loci include populations of African, Asian, and Hispanic decent but the

sample sizes for these populations are much smaller than the Caucasian populations.

Odds Ratios

We compared Cache County odds ratios to those reported in the meta-analyses on

AlzGene.org and found them comparable. Minor differences were observed in ABCA7 and

CR1 where we genotyped SNPs that are not listed on AlzGene.org. Specifically, minor

alleles for both ABCA7 and CR1 were considered risk alleles (odds ratio > 1) according to

data on AlzGene.org while odds ratios in the Cache County data suggest decreased risk,

although the confidence intervals from both studies are broad and overlap each other so they

may not be significantly different. Possible causes include: (1) differences in sample

ascertainment between clinical and population studies (e.g. the cases in clinically ascertained

samples are generally younger than those in the Cache County Sample; see AlzGene.org,

Supplement: Table S1); and (2) allelic odds ratios are not adjusted for age, gender, and other

loci—nor are they adjusted for undiscovered or uncharacterized allelic interactions (13, 29–

31).

Clinical and population studies differ in sample ascertainment. Clinically ascertained cases

and controls are selected to minimize confounding variables and maximize contrast between

the true underlying causes by minimizing known differences between the two groups except

for the phenotype of interest. Population-based studies, however, are designed to represent

true population characteristics such as allele frequencies, odds ratios, and population

attributable fractions, as reported here. While population-based studies are ideal for

reporting population characteristics, small sample sizes for cases may reduce the accuracy of

OR and PAF estimates. Because of the natural differences between clinically ascertained

case-control and population-based studies, it is important to leverage the strengths of each of

them.

The complex nature of Alzheimer’s disease inheritance, however, suggests that variations

between studies may be exist because allelic odds ratios are not adjusted for age, gender, and

other loci—nor are they adjusted for undiscovered and uncharacterized allelic interactions.

Each of these factors plays a significant role in Alzheimer’s etiology and not adjusting for

them introduces error into odds ratio estimates. Allelic interactions also likely contribute to

the “missing heritability” in Alzheimer’s disease. No single genetic locus characterizes

Alzheimer’s etiology. APOE alone is highly predictive, but the genetic loci included here
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also appear to influence Alzheimer’s susceptibility, as reported in this study and others (6–

10). Furthermore the effects of APOE vary between ethnic groups (32–36). Failure to

replicate established genome-wide association study findings in some populations (13, 37)

further suggests the possible influence of environmental factors, gene-environment, and

gene-gene interactions.

Population Attributable Fractions

Cache County population attributable fractions varied in magnitude when compared to those

calculated from AlzGene.org data. Combined population attributable fractions were lower in

Cache County. As expected APOE ε4 and APOE ε2 have strong population effects whereas

the remaining alleles have minimal individual effects. Based on AlzGene.org data,

combined population attributable fractions suggest the combined effect of the nine non-

APOE alleles is approximately equal to APOE ε2 or APOE ε4 alone; however, the

combined non-APOE alleles appear to have a larger effect than either APOE allele in the

Cache County data. The Cache County values are of value because they are population-

based and better represent risks within populations—the purpose of the PAF statistic.

Despite being more conservative than other estimates (combined), however, the population

attributable fractions reported in this study may still be inflated because they are based on

the unadjusted allelic odds ratios and because the exposure frequency for the genotyped

SNPs may vary from the functional variants they represent. They may also be biased as a

consequence of potentially inaccurate odds ratios due to the small sample size for cases, as

mentioned previously. Future estimates are also likely to change as allelic interactions are

discovered and incorporated into the calculations.

Diagnostic Utility

Verhaaren et al. demonstrated that the nine non-APOE genes do not improve LOAD status

prediction performance when constrained to an additive relationship, which we confirmed in

this study. When unconstrained, however, the top nine alleles improved LOAD status

prediction performance significantly, demonstrating these alleles may provide more

information as we better understand their epistatic relationships. The optimized model

further improved LOAD status prediction performance and revealed CLU-MS4A4E and

CD33-MS4A4E interactions that may prove valuable in Alzheimer’s research. Synergy

factors for both interactions suggest that being homozygous for both alleles in either

interaction increases risk. Yet, although these data suggest the additional LOAD risk alleles

significantly improve LOAD status prediction performance, the improvement is marginal

and does not reach the desired sensitivity or specificity for clinical use.

The optimized model clearly improves LOAD status prediction performance over the full

genotype model and over APOE alone, suggesting allelic interactions may be useful for

diagnostic purposes; however, the p-values were not corrected for multiple testing. As such,

these interactions need to be tested in an independent data set. It is also possible the

optimized model is overfit; however, the random variables included in the model selection

process were not selected for the final model, lending evidence that the final variables

included provide non-random information. The revealed interactions also have strong

synergy factors suggesting they may be important. Furthermore, the genotype model with all
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alleles improves LOAD status prediction performance over APOE alone, lending support for

underlying relationships amongst the factors included in the model.

Implications and Future Directions

The results presented here offer evidence that gene-gene interactions play a role in

Alzheimer’s susceptibility; however, the reported interactions, do not appear to improve

LOAD status prediction performance by an amount that is relevant in a clinical diagnostic

setting. These results do suggest that to fully understand the genetic basis of Alzheimer’s

disease risk we must improve our efforts to characterize gene-gene and gene-environment

interactions.

Additionally, environmental factors have not received as much attention as genetic factors in

Alzheimer’s research and should be thoroughly investigated (12). Although the CLU-

MS4A4E and CD33-MS4A4E interactions appear to have strong effects in the Cache County

study, there may be unmeasured environmental factors that increase the effect of these

interactions in the Cache County population. Other research has shown that only 30% of

Alzheimer’s disease is explained by known genes, demonstrating that environmental effects

and gene by environment interactions will be essential in future studies (38).

The CLU-MS4A4E and CD33-MS4A4E interactions have not been previously reported

leaving the biological foundation in question. Using IPA (Ingenuity® Systems,

www.ingenuity.com), we explored possible interactions between each pair and found that,

while no information is available for MS4A4E specifically, both CLU and CD33 interact

indirectly with MS4A2 (Supplement: Figure S2). According to IPA, both thioacetamide and

TGFB1 act indirectly on both CLU and MS4A2 (Supplement: Figure S2A). CLU also binds

to BCL2L1, which is acted upon by MS4A2. Likewise, CD33 acts on PTPN6, which binds to

MS4A2 and CD33 binds to CBL, which then acts on MS4A2 (Supplement: Figure S2B).

Both MS4A4E and MS4A2 are members of the membrane-spanning 4-domain gene family.

A complete IPA legend is available in Ingenuity’s website (http://ingenuity.force.com/ipa/

articles/Feature_Description/Legend).

Overall, the results presented in this paper suggest that gene-gene interactions (epistasis)

may play an important role in Alzheimer’s etiology. While discovering and characterizing

epistatic interactions is a non-trivial task, researchers and consortiums must heed the

plentiful evidence that Alzheimer’s is driven by complex gene-gene and gene-environment

interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Non-APOE LOAD risk loci contributions to LOAD status prediction performance
Three logistic regression models based on age, gender, and genetic information for APOE

and the non-APOE LOAD risk loci illustrate the contribution of the non-APOE LOAD risk

loci in LOAD status prediction performance. The models are as follows: APOE alone (Only

APOE), all loci (Full genotype), and the optimized model (Optimal genotype). A fourth

model using only age and gender (Age/Gender) was also generated as a baseline. The

optimized model was optimized using Akaike’s Information Criterion (AIC). Comparing the

full genotype model to APOE alone demonstrates that the LOAD risk loci contribute

significantly to LOAD status prediction performance (p < 0.03) while the optimized model

improves significantly over the full genotype model (p < 8.39e-07). Area under the curve

(AUC) is listed in parentheses within the legend.
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