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Abstract

RNA-protein interaction plays an important role in various cellular processes, such as protein 

synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections 

by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural 

Classification of Proteins (SCOP) databases an automatic procedure was designed to capture 

structurally solved RNA-binding protein domains in different subclasses. Subsequently, we 

applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-

regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein 

domains based on a comprehensive set of sequence and structural features. In this study, we 

compared prediction accuracy of three different state-of-the-art predictor methods. From our 

results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a 

useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the 

other hand, MCRLR by elucidating importance of features for their contribution in predictive 

accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights 

into the roles of sequences and structures in protein–RNA interactions.
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1. Introduction

Regulation of biological processes happens through association and dissociation of 

macromolecules, i.e., protein, RNA and DNA. Furthermore, functional components of cells 
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are frequently complex assemblies of macromolecules. At the molecular level, RNA-protein 

complexes play an important role in various cellular processes, such as protein synthesis, 

gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by 

RNA viruses. Therefore, it is important to understand the principle of RNA-protein 

interactions and prediction of RNA-binding proteins is essential in identifying the cellular 

processes in which RNA-protein complexes are involved.

It is commonly accepted that RNA recognition by proteins is mainly mediated by specific 

kinds of RNA-binding domains (RBDs) (Morozova et al., 2006; Shulman-Peleg et al., 

2008). The RBDs can be classified into different subclasses based on their basic binding 

motifs, e.g., the KH domain, the double-stranded RNA-binding domain (dsRBD), and the 

zinc finger motif (Chen and Varani, 2005). Although in recent years, new RBDs have been 

identified (Parker and Barford, 2006), an increasing amount of evidence on non-coding 

RNAs suggest that new RBDs will be identified (Lingel and Sattler, 2005).

In order to recognize the RNA functional importance in close relationship with protein in its 

activities, computational studies of RNA-protein complexes have been significantly 

increased (Ellis et al., 2007; Jones et al., 2001). Recently, a variety of approaches have been 

proposed to study RNA-protein interactions (Lunde et al., 2007). Although some interesting 

results have been obtained, the precise details of the RNA-protein interaction are far from 

being fully understood. For this reason, it is strongly recommended to develop reliable 

computational methods to accurately predict RNA-binding proteins and analyze important 

features in RNA-protein interaction.

Homology-based methods are the most common method to identify the class of unknown 

proteins at sequence or structure level. These methods are limited by the absence of 

experimentally annotated homologous proteins in protein databases. Hence it is strongly 

encouraged to develop computational tools to identify RNA-binding proteins (RBPs) using 

sequence- and structure-derived features. Most of previous investigations, predict RBPs 

using sequence- derived features (Han et al., 2004; Shao et al., 2009; Yu et al., 2006). In 

addition to sequence-based methods, up to now, only one investigation by Shazman and 

Mandel-Gutfreund (2008) developed a structural-based method to predict RBPs. Shazman 

and Mandel-Gutfreund developed a multiSVM-based method using four subgroups of 

features including: (i) Largest patch parameters (such as patch size and patch surface 

accessibility), (ii) Protein parameters (such as molecular weight) (iii) Cleft/patch parameters 

(such as the overlap between the largest, second largest, and third largest clefts, and largest 

patch), and (iv) Parameters related to other surface patches (such as number of residues in 

the lysine out patch and in the negative patch), to describe the global composition of each 

protein. Using the jackknife test, they reported a 75.61% accuracy of prediction for three 

subclasses of RBPs; tRNA-, rRNA-, and mRNA-binding proteins. In comparison with our 

work, it is limit to three classes of RBPs, and they have done a non-accurate manually data 

collection. Despite the availability of several methods, identification of RBPs using 

sequence information with high accuracy is still a major challenge.

Here we present a comprehensive performance evaluation of some state of the art predictor 

methods on an important problem, i.e., classifying RBDs using sequence- and structure-
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derived information. Combining a diverse set of features, we developed three different 

methods including; tuned multi-class SVM (TMCSVM), Random Forest (RF), and Multi-

class ℓ1/ℓq -regularized logistic regression (MCRLR). By applying these methods, we have 

shown that we can classify RBDs based on their RNA target (7S, double-stranded, tRNA, 

rRNA, or mRNA). In all of five different subclasses of RBPs, no exclusive RNA-binding 

motif is present. However, in such cases in addition to successful classifying RBPs, we 

discovered dissimilar sequence and structural features.

2. Materials and methods

2.1. Automatic dataset harvesting

Based on the fact that most of similar works on prediction of RNA-binding proteins, 

manually collected and annotated datasets, in this work, in order to do a more accurate and 

automated data harvesting we constructed a dataset of non-redundant RNA-binding protein 

domains using two main datasets including: (i) Gene Ontology Annotated (GOA) database, 

available at http://www.ebi.ac.uk/GOA/, which cover ~2.5 million reports of associated 

protein chains with Gene Ontology (GO) terms, and (ii) 40% non-redundant set of Structural 

Classification of Proteins (SCOP) 1.75 from ASTRAL website. Based on GO classification, 

RNA binding root involves 28 leaves. Our first step of automatic procedure was one by one 

search for RNA binding subclasses GO IDs in GOA database to find associated protein 

chains to each subclass of RNA binding GO IDs. Briefly, GO is a major bioinformatics tool 

for the unification of biology. More specifically, one of the aims is annotation of genes and 

gene products. GO contains three ontologies that describe the molecular functions, 

biological processes, and cellular components of proteins (Ashburner et al., 2000). For more 

details and comprehensive discussion we refer to the paper (Chou and Shen, 2006), as well 

as the discussions as elaborated in (Chou and Shen, 2008). The second step was search 

across SCOP 1.75 to capture non-redundant RNA binding protein domains in different 

subclasses (Fig. 1). We eliminated protein domains, which associated to more than one RNA 

binding subclass.

2.2 Feature generation

In this study a combination of sequence- and structure-derived features were used for 

prediction of RNA-binding protein domains. Our representation of the protein sequence in 

this study is a general form of Chou’s pseudo amino acid composition (Chou, 2011). Indeed, 

to avoid losing many important information hidden in protein sequences, the pseudo amino 

acid composition (PseAAC) was proposed (Chou, 2001; Chou, 2005) to replace the simple 

amino acid composition (AAC) for representing the sample of a protein. For a summary 

about its recent development and applications, see a comprehensive review (Chou, 2009). 

Ever since the concept of PseAAC was proposes by Chou in 2001, its has rapidly penetrated 

into almost all the fields of protein attribute prediction (Chen et al., 2009; Ding et al., 2009; 

Esmaeili et al., 2010; Georgiou et al., 2009; Guo et al., 2011; Hayat and Khan, 2012; Hu et 

al., 2011; Li et al., 2012; Lin, 2008; Liu et al., 2012; Mei, 2012; Mohabatkar, 2010; 

Mohabatkar et al., 2011; Nanni et al., 2012; Qin et al., 2012; Qiu et al., 2009; Qiu et al., 

2011; Yu et al., 2010; Zhang and Fang, 2008; Zhao et al., 2012; Zou et al., 2011). According 
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to Eq.6 of a recent comprehensive review (Chou, 2011), the form of PseAAC can be 

generated and formulated as

(1)

where T is a transpose operator, while the subscribe Ω is an integer and its value as well as 

the components ψ1, ψ2, … will be defined by a series of feature extractions as elaborated 

below.

In addition to sequence-derived features, structure-derived features were generated in this 

study. Totally, 267 different sequence- and structure-derived features were generated using 

several information sources, which can be classified into six major subgroups including:

1. Sequence-derived features including: (i) composition of all 20 amino acids (20 

features), (ii) composition of amino acids in 9 different physicochemical groups 

including tiny, small, aliphatic, aromatic, polar, non-polar, charged, acidic, and 

basic amino acids groups (9 features), (iii) pI, the isoelectric point (1 feature), (iv) 

molecular weight (1 feature), and (v) number of residues and number of atoms (2 

features). This subgroup of features was generated using seqinr package (version 

3.0–3) in R environment.

2. Secondary structure features including: (i) composition of all 20 amino acids and 

composition of amino acids in physicochemical groups, within three different 

secondary structures, i.e., helix, sheet and random coil (87 features), and (ii) 

composition of 6 different secondary structures, i.e., H (α-helix), G (310 helix), E 

(extended β-strand), B (isolated β-bridge), T (turn), and S (bend) (6 features). 

Secondary structure parameters in each protein domain were computed using the 

output of the program DSSP (Kabsch and Sander, 1983). In order to calculate 

secondary structures structures in three different secondary structures, the six 

structures were reduced into three classes (H,G → H, E → E, all other states to C).

3. Solvent accessibility features including: composition of all 20 amino acids and 

composition of amino acids in physiochemical groups, within three different 

solvent accessibility states, i.e., buried, intermediate, and exposed (87 features). 

Based on the standard ranges of solvent accessibility values (SAV), three kinds of 

solvent accessibility states are defined. Buried state, B, is endowed to residues 

having 0≤SAV≤0.16, intermediate state, I, to residues having 0.16<SAV≤0.36, and 

exposed state, E, to residues having 0.36<SAV≤1. Solvent accessibility values of 

residues were computed using ASAView program (Ahmad et al., 2004).

4. Hydrogen bonds features: The hydrogen bond from the backbone CO (i) to the 

backbone NH (i+N), is expressed by the symbol H-bond (i, i+N). In this study we 

computed frequencies of H-bond (i, i+N) for N=-5,-4,-3, …, 3, 4, 5. Furthermore, 

total hydrogen bonds, parallel- and antiparallel hydrogen bonds were computed. 

The values of these features were divided by length of protein domains. The output 

of the program DSSP (Kabsch and Sander, 1993) was used to generate these 

features (13 features).
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5. Electrostatic properties features: eight electrostatic properties features including net 

molecular charge, net molecular charge per atom, overall molecular dipole moment 

in debyes, net molecular dipole moment per atom, number of positively charged 

residues, and number of negatively charged residues were calculated using the 

Protein Dipole Moments Server (http://bip.weizmann.ac.il/dipol/).

6. Patch features: main, second and third patch sizes, main patch’s molecular weight, 

composition of all 20 amino acids and composition of amino acids in physico-

chemical groups, within the main patch were calculated (33 features). In order to 

extract all continuous positive patches on the proteins surface the PatchFinder 

algorithm (Stawiski et al., 2003) was used. The patches were sorted based on the 

number of grid points contained within the patch, and the largest three patches were 

selected.

2.3. Predictor methods

In this study, we used three different predictor methods including tuned multi-class SVM 

(TMCSVM), Random Forest (RF), and multi-class regularized logistic regression (MCRLR) 

to classify RBDs to three and five subclasses. The jackknife test was used to training and 

testing on databases. Through the jackknife test, one case is removed from the database and 

training is done using the remaining cases; then testing is done using the removed case. This 

procedure is repeated until all cases are tested. Although this method is time-consuming, it is 

more useful for the small databases such as ours. In addition to jackknife we also used self-

consistency test to evaluate the prediction results. Both of jackknife and self-consistency are 

thought to be the most rigorous and objective methods for evaluation of prediction.

Among the independent dataset test, sub-sampling (e.g., 5 or 10-fold cross-validation) test, 

and jackknife test, which are often used for examining the accuracy of a statistical prediction 

method (Chou and Zhang, 1995), the jackknife test was deemed the least arbitrary that can 

always yield a unique result for a given benchmark dataset, as elucidated in (Chou and Shen, 

2008) and demonstrated by Eqs.28–32 of (Chou, 2011). Therefore, the jackknife test has 

been widely recognized and increasingly used by investigators to test the power of various 

prediction methods (see, e.g., (Chen et al., 2009; Chou et al., 2011; Chou et al., 2012; Ding 

et al., 2009; Esmaeili et al., 2010; Georgiou et al., 2009; Gu et al., 2010; Jiang et al., 2008; 

Lin, 2008; Li and Li, 2008; Lin et al., 2008; Lin and Wang, 2011; Li et al., 2012; Mei, 2012; 

Mohabatkar, 2010; Mohabatkar et al., 2011; Qiu et al., 2010; Wu et al., 2011; Wu et al., 

2012; Xiao et al., 2011a; Xiao et al., 2011b; Xiao et al., 2012; Yu et al., 2010; Zeng et al., 

2009; Zhang and Fang, 2008; Zhang et al., 2008; Zhou et al., 2007).

2.3.1. Tuned multi-class support vector machine—Basically, support vector 

machine (SVM) is a kind of learning machines based on statistical learning theory. They 

have three remarkable characteristics including: the absence of minima, the sparseness of the 

solution, and implementation using the kernel Adatron algorithm. The kernel Adatron maps 

inputs to a high-dimensional feature space, and then optimally separates data into their 

respective classes by isolating those inputs which fall close to the data boundaries. 

Therefore, the kernel Adatron is especially effective in separating sets of data which share 

complex boundaries. Because of seeking a global optimized solution and avoiding over-
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fitting in the SVM training process, dealing with a large number of features is possible. 

SVMs can only be used for classification, not for function approximation. The theory and 

algorithms of SVMs can be found in Vapnik (1995, 1998).

In this study, we applied the tune function using e1071-package of R environment (version 

2.11-1) to develop our multi-class SVM based method. Multi-class SVM in e1071 uses the 

“one-against-one” strategy, i.e., binary classification between all pairs, followed by voting. 

On the other hand, the tune function uses Grid Search to find the best functions. Using the 

tune function through jackknife procedure, it provides as many simulations as the number of 

cases in databases to select optimum structure each time.

2.3.2. Random Forest—Random forest (RF) was developed by Breiman in 2001 

(Vapnik, 1998). The RF classification extends the concept of decision trees and has been 

successfully used in various biological problems (Dudoit et al., 2002; Statnikov et al., 2008; 

Jia and Hu, 2011; Kandaswamy et al., 2011; Lin et al., 2011; Pugalenthi et al., 2012; Qiu 

and Wang, 2011; Shameer et al., 2011). RF is a collection of decision trees instead of one 

tree, where each tree is trained using a bootstrap sample from the training dataset. The trees 

are then grown using a randomly selected subset of predictors at each node. After 

constructing all trees, a new object can then be classified based on the class label with the 

most votes, where every vote is decided by every tree in the forest. Finally, predictive 

performance is estimated using the observations left out of the bootstrap sample, termed the 

out-of-bag (OOB) observations. An appeal of RF is that the forest of trees contains a large 

amount of information about the relationship between the variables and observations. This 

information can be used for prediction, clustering, imputing missing data, and detecting 

outliers. The RF algorithm was implemented by the randomForest (version 4.6-2) R package 

(Liaw, 2002). We used tune randomForest (tuneRF) function. The number of trees and 

stepFactor were set to 1000 and 2, respectively. However, there are default values for 

different features, which are provided by the program and we used in this work.

2.3.3. Multi-class ℓ1/ℓq-regularized logistic regression—A multi-class ℓ1/ℓq-

regularized logistic regression model that we used in this study is a generalization of the ℓ1-

regularization logistic regression. Development of such strong theoretical guarantees, and 

great empirical success method is from recent studies in areas such as machine learning, 

statistics, and applied mathematics (Bach, 2008; Duchi and Singer, 2009; Kowalski, 2009; 

Negahban et al., 2009; Yuan and Lin, 2006).

The multi-class ℓ1/ℓq-regularized logistic regression is an expression of the form

(2)

where  indicates vector of size 1 × n, n is number of features for i-th protein domain of the 

ℓ-th RBDs subclass, wiℓ is the weight for , yiℓ is the response of aiℓ, and cℓ is the intercept 

for the ℓ-th RBDs subclass. To construct multi-class ℓ1/ℓq-regularized logistic regression we 

used mcLogisticR function of SLEP package (version 4.0) which is written in Matlab. In 
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this function, the elements in y are required to be m × k matrix including elements of 1 or −1 

(m is the number of protein domains and k is the number of RBDs subclasses).

3. Results

3.1. Construction of dataset

Constructed dataset cover 7 out of 28 RNA binding subclasses with at least one protein 

domain member, including 7S RNA binding (10 protein domains), double-stranded RNA 

binding (16 protein domains), mRNA binding (11 protein domains), rRNA binding (29 

protein domains), tRNA binding (16 protein domains), translational factor activity RNA 

binding (2 protein domains), and single-stranded RNA binding (1 protein domain). The 

RBDs of our dataset are summarized in Table 1. In construction of our methods we 

eliminated subclasses with less than 10 protein domain. In addition we constructed methods 

for prediction of five subclasses (i.e. tRNA-, rRNA-, mRNA-, 7S-, and double-stranded 

binding domain subclasses) and three subclasses (i.e. tRNA-, rRNA-, and mRNA-binding 

domain subclasses).

3.2. ANOVA analysis for feature selection

In order to consider the effect of number of features on performance of methods, ANOVA 

was used to select significantly different features between three and five RNA-binding 

protein domain subclasses. Table 2 and Table 3 have shown 10 top features with the lowest 

p-values. From ANOVA results, RNA binding subclasses show an obvious difference in 

sequence- and structure-based features. Figure 2 shows difference of shape, size of RBDs, 

size of main patch and frequency of two important charged amino acids, i.e., Arg and Lys, in 

five different RBD subclasses. In addition reduced models were constructed using selected 

features with significant level of <.05, which were 45 and 102 features in three and five 

subclasses, respectively.

3.3. Tuned multi-class support vector machine analysis

We used a tune function to select optimized structure of TMCSVM through jackknife and 

self-consistency tests. The most important parameter of TMCSVM topology is kernel 

function which was searched for the best one among four different kernel functions, i.e., 

linear, polynomial, radial, and sigmoid. Table 8 and 9 show the highest performance 

obtained by TMCSVM in overall. TMCSVM and reduced-TMCSVM show the highest rate 

of 79.31% in prediction of rRNA BDs subclass in comparison with the other methods in five 

subclasses prediction and also SVM shows the highest rate of 50% for prediction of tRNA 

BD subclass in three subclasses prediction. Our results confirm that although TMCSVM is a 

machine learning method, dealing with a large number of features is possible because of 

seeking a global optimized solution and avoiding over-fitting in the SVM training process. 

However, obtained results in three subclasses prediction, emphasize that this ability is 

diminished to limited range of features/samples ratio.

3.4. Random Forest analysis

R randomForest package was used to construct RF for prediction of RBD subclasses. In 

order to optimize performance of RF, we defined cutoffs based on distribution of RBDs in 
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subclasses, i.e., number of RBDs in each subclass divided by total number of RBDs. 

Obtained results reveal that although RF can predict all of RBDs correctly through self-

consistency, performance of jackknife test drastically reduced (Table 8 and 9). However, 

reduced-RF shows the highest rate in prediction of 7S RBDs subclass (70%), and mRNA 

RBDs subclass (81.82%) in comparison with the other methods in five subclasses 

prediction. In addition, RF and reduced-RF show the highest rate of 81.82% for prediction 

of mRNA BD subclass in three subclasses prediction. Furthermore, from obtained results, it 

is obvious that number of features in RF training is an important issue and it is independent 

of number of subclasses. Indeed, RF is over-fitting prone when we train it using large 

number of features.

3.5. Multi-class ℓ1/ℓq-regularized logistic regression

We ran a MCRLR method on the dataset in five and three subclasses using jackknife and 

self-consistency. MCRLR provides useful information about preferred and avoided features 

in each one of RNA binding subclasses. tRNA BD subclasses shows some preferred and 

avoided with higher average values in comparison with the other subclasses in three- and 

five subclasses through jackknife and self-consistency procedures (Tables 4–7). Our results 

confirm previous reported unique properties of tRNA BPs by Shazman and Mandel-

Gutfreund (2008).

The results of jackknife and self-consistency tests, which shown in Table 8 and 9, are 

obtained according to the output of the model. High performance measures of MCRLR 

model through self-consistency confirm usefulness of defined features in prediction of RBPs 

subclasses. Results of jackknife tests show that performance of reduced-MCRLR drastically 

decreased especially in three subclasses prediction using selected features. Rationale for 

decrease of MCRLR performance is restriction of shrinkage ability using limited number of 

features (N=45 for prediction of three subclasses). Indeed, ℓ1/ ℓq-regularized constrains the 

total weight allocated to a set of features, with the end result that some features received 

zero weight. Additionally, MCRLR shows the highest rate in prediction of double-stranded 

RBDs in comparison with the other methods.

4. Discussion

Knowledge regarding how bio-macromolecules interact with each other is essential in the 

understanding of cellular processes. In this study, we investigated interaction of protein and 

RNA as an important interaction in various cellular processes.

According to a recent comprehensive review (Chou, 2011), to establish a really useful 

predictor for a protein system, we need to consider: construct a valid benchmark dataset, 

formulate the protein samples with an effective mathematical expression, develop a 

powerful algorithm to operate the prediction, evaluate the anticipated accuracy of the 

predictor, and establish a user-friendly web-server, respectively.

From previous reports, it is mentioned that the aminoacyl tRNA synthetases, and bacterial 

factors, which mimic tRNA BPs have highly negatively charged surface (Tworowski et al., 

2005; Nakamura and Ito, 2003). But there is no more information about variation in feature 
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distribution in different RBPs. In this study, in addition to multi-class classification of RBDs 

we tried to do feature selection. In addition to comparable prediction accuracy with 

TMCSVM, a clear variety of feature distributions was elucidated by using MCRLR. For 

example, our results demonstrate exciting diversity in distribution of Lys and Arg, two 

important charged amino acids in interaction and catalytic reaction, in different RBDs 

subclasses. From our data in tRNA BD subclass, Lys is preferred in sequence and Arg is 

preferred in intermediate regions with high scores (Tables 4–7). In mRNA BDs subclass, 

Arg is preferred in sequence, and in double-stranded RBD subclass, Lys is preferred in main 

domain while Arg is avoided in main domain. In addition, in rRNA BD subclass, Lys is 

avoided in sequence and it seems that Arg is preferred to be on surface as it has been 

determined with negative value of being in intermediate regions. In 7S RBD subclass, Arg 

and Lys have not been selected among top preferred or avoided residues. From our results 

we can understand that Lys and Arg in tRNA BDs, Arg in mRNA BDs, Lys in double-

stranded RBDs, and exposed Arg in rRNA BDs are possibly important in RNA-protein 

interaction and catalytic reaction of RBDs. Figure 2 illustrates distribution of Arg and Lys in 

main patches of different RBDs subclasses.

These results emphasize that the tRNA BDs have unique local and global properties that can 

be utilized for identifying novel proteins possibly involved in tRNA processing. Moreover, 

it is worth to mention that the size of secondary patch show positive average value in tRNA 

BDs subclasses and it means secondary patch may have specific properties as mentioned by 

Shazman and Mandel-Gutfreund (2008). Growth of 3D solved protein databases will be 

helpful to discover more details about RBDs.

In this study we developed a first of its kind in silico approach for analysis and prediction of 

RBDs subclasses in three and five subclasses using RF, TMCSVM and MCRLR. In overall, 

TMCSVM outperforms the other methods, although tuning of SVM is time consuming. On 

the other hand, MCRLR show some advantages including fast training, report of more 

important features for RBD prediction, and detection of avoided and preferred features in 

each subclass.

In addition, RF shows the worst accuracy among three predictor methods which means RF is 

prone to over-fitting especially when large numbers of features are fed into it. In conclusion, 

we used two types of predictor methods including: (1) MCRLR as a statistical method and 

(2) RF and TMCSVM as machine learning methods. Statistical methods are commonly 

accepted and popularity of these models may be attributed to the interpretability of model 

parameters and ease of use, although they suffer from their specific limitations. For 

example, statistical methods use linear combinations of independent variables and, therefore, 

are not the best adept at modeling grossly nonlinear complex interactions as has been 

demonstrated in biological systems. On the other hand, machine learning methods are rich 

and flexible nonlinear systems that show robust performance in dealing with noisy or 

incomplete data and have the ability to generalize from the input data. They may be better 

suited than other modeling systems to predict outcomes when the relationships between the 

variables are complex, multidimensional, and nonlinear as found in complex biological 

systems. Although machine learning methods can give high prediction accuracy, some 

problem may be raised in their training. For example in this study we showed that RF as a 
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well-known machine learning method is not well suited for our problem and is prone to 

over-fitting. “black box” nature, and the empirical nature of model development are other 

disadvantages of machine learning methods (Tu, 1996).

5. Conclusion

A great challenge in classifying ligand binding proteins (such as RBDs) is to be able to 

identify to which ligand it will bind. For this purpose, we applied three different predictor 

methods to classify RNA-binding domains using a large number of sequence and structural 

features, which was trained on three and five different subclasses of known RBDs classified 

according to their RNA target. From our results TMCSVM shows the highest prediction 

accuracy in compare with other methods. Overall, the results we obtained are encouraging, 

reinforcing the idea that combination of sequence and structural properties of protein 

domains can give clues to the protein’s interacting partner.

It is important to note that subclassification of the RBDs to three and five subclasses using 

our multiclass approach is only possible –given the prior knowledge that the protein domain 

binds RNA. Indeed we have to mention that requiring known protein domains as RNA 

binding is a limitation of such predictor models.

Finally, our results showed that, in addition to multi class prediction, biological diversity of 

RBD’s subclasses would be interpretable using state-of-the-art methods like ℓ1/ℓq-

regularized logistic regression.

Since user friendly and publicly accessible web-servers represent the future direction for 

developing practically more useful predictors (Chou and Shen, 2009), we shall make efforts 

in our future work to provide a web-server for the method presented in this paper.
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Highlights

1. Multi-class prediction of RNA-binding protein domains.

2. We compared prediction accuracy of three different state-of-the-art predictor 

methods.

3. In addition to successful classifying RBPs, we discovered dissimilar sequence 

and structural features using ℓ1/ℓq-regularized logistic regression.

4. Our method could be applied to identify novel RNA-binding proteins with 

unique folds.
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Figure 1. 
The proposed automatic procedure for dataset harvesting
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Figure 2. 
Diversity of features between five different RBDs. (A) sample of 7S RBDs (d1914a1), (B) 

sample of rRNA RBDs (d2v3ka1), (C) sample of double_stranded RBPs (d1ekza_), (D) 

sample of mRNA RBDs (d1afwa1), and (E) sample of tRNA RBDs (d1a6fa_). The gray 

region represents the main patch, blue represents Arg amino acids, and green represents Lys 

amino acids.
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