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Abstract
Therapy-related leukemia (t-MDS/AML) is a well known complication of conventional
chemoradiotherapy used to treat a variety of primary malignancies including Hodgkin lymphoma
(HL) and non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), sarcoma, and
ovarian and testicular cancer. The median time to development of t-MDS/AML is 3 to 5 years,
with the risk decreasing markedly after the first decade. t-MDS/AML is the major cause of non-
relapse mortality after autologous hematopoietic cell transplantation (HCT) for HL or NHL. The
magnitude of risk of t-MDS/AML is higher, and the latency is shorter after HCT, compared to
conventional therapy. Two types of t-MDS/AML are recognized depending on the causative
therapeutic exposure: an alkylating agent/radiation-related type and a topoisomerase II inhibitor-
related type. Interindividual variability in the risk for development of t-MDS/AML suggests a role
for genetic variation in susceptibility to genotoxic exposures. Treatment of t-MDS/AML with
conventional therapy is associated with a uniformly poor prognosis, with a median survival of 6
months. Because of the poor response to conventional chemotherapy, allogeneic HCT is
recommended. Current research is focused on developing risk prediction and risk reduction
strategies.

Epidemiology
Therapy-related leukemia (myelodysplasia and acute myeloid leukemia – t-MDS/AML) is a
well known complication of conventional chemoradiotherapy for Hodgkin lymphoma (HL)
and non-Hodgkin lymphoma (NHL),1-3 acute lymphoblastic leukemia (ALL), sarcoma, and
ovarian and testicular cancer.4-9 The incidence of t-MDS/AML following conventional
therapy ranges from 0.8% to 6.3% at 20 years. The median time to development of t-MDS/
AML is 3 to 5 years, with the risk decreasing markedly after the first decade. t-MDS/AML
is the major cause of non-relapse mortality after autologous hematopoietic cell
transplantation (HCT)10-19 for HL or NHL. The incidence of t-MDS/AML ranges from
1.1% to 24.3% at 5 years after autologous HCT. The median time to development of t-MDS/
AML is 12 to 24 months after HCT. The magnitude of risk of t-MDS/AML is higher, and
the latency is shorter after HCT, compared to conventional therapy.

Factors associated with an increased risk of t-MDS/AML include exposure to alkylating
agents, topoisomerase II inhibitors, and radiation therapy,12,19-23 and older age at
treatment.10,16 Among autologous HCT recipients, method of stem cell mobilization (use of
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peripheral blood stem cells and priming with etoposide for stem cell mobilization)10,12 and
transplantation conditioning with TBI22 are associated with an increased risk of t-MDS/
AML.

Two types of t-MDS/AML are recognized in the World Health Organization classification
depending on the causative therapeutic exposure: an alkylating agent/radiation-related type
and a topoisomerase II inhibitor-related type.24 Alkylating agent-related t-MDS/AML
usually appears 4 to 7 years after exposure to the mutagenic agent. Approximately two-
thirds of patients present with MDS and the remainder with AML with myelodysplastic
features.25,26 Patients frequently present with cytopenias. Multilineage dysplasia is often
present. There is a high incidence of abnormalities involving chromosomes 5 (−5/del(5q))
and 7 (−7/del(7q)). In contrast to alkylating agent-related t-MDS/AML, AML secondary to
topoisomerase II inhibitors often does not have a preceding myelodysplastic phase, and
presents as overt acute leukemia, often with a prominent monocytic component.27,28 The
latency period between the initiation of treatment with topoisomerase II inhibitors and the
onset of leukemia is brief, with a median of 2 to 3 years.28 Typically, the t-AML arising in
such situations is associated with balanced translocations involving chromosome bands
11q23 or 21q22.28

Genetic susceptibility
Literature clearly supports the role of chemotherapy and radiation in the development of t-
MDS/AML29 but interindividual variability suggests a role for genetic variation in
susceptibility to these genotoxic exposures. The risk of t-MDS/AML could potentially be
modified by mutations in high-penetrance genes that lead to serious genetic diseases e.g., Li-
Fraumeni syndrome,30 and Fanconi anemia.31-34 However, the attributable risk is expected
to be very small because of their extremely low prevalence. The interindividual variability in
risk of t-MDS/AML is more likely related to common polymorphisms in low-penetrance
genes that are responsible for drug metabolism, transport and DNA repair. Genetic variation
contributes 20% to 95% of the variability in cytotoxic drug disposition.35 Polymorphisms in
genes involved in drug metabolism and transport are relevant in determining disease-free
survival and drug toxicity.36 Variation in DNA repair plays a role in susceptibility to de
novo cancer,37-41 and likely modifies t-MDS/AML risk after exposure to DNA-damaging
agents, such as radiation. Interaction of therapeutic exposures with underlying genetic
characteristics that alter drug metabolism, transport or DNA repair may be associated with
an increased risk of t-MDS/AML.

Drug Metabolism
Metabolism of genotoxic agents occurs in two phases. Phase I involves activation of
substrates into highly reactive electrophilic intermediates that can damage DNA – a reaction
principally performed by the cytochrome p450 (CYP) family of enzymes. Phase II enzymes
(conjugation) function to inactivate genotoxic substrates. The phase II proteins comprise the
glutathione S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). The
balance between the two sets of enzymes is critical to the cellular response to xenobiotics;
e.g., high activity of phase I enzyme and low activity of a phase II enzyme can result in
DNA damage from the excess of harmful substrates. The xenobiotic substrates of CYP
proteins include cyclophosphamide, ifosfamide, thiotepa, doxorubicin, and dacarbazine.42

The CYPs transfer singlet oxygen onto their substrates creating highly reactive intermediates
which, unless detoxified by phase II enzymes, have a strong ability to damage DNA.43 The
expression of these enzymes is highly variable among individuals because of several
functionally relevant genetic polymorphisms. GSTs detoxify reactive electrophiles via
conjugation to reduced glutathione, preventing damage to DNA. Polymorphisms exist in
cytosolic subfamilies: μ [M], π [P), θ [T], and others. GSTs detoxify doxorubicin, lomustine,
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busulfan, chlorambucil, cisplatin, cyclophosphamide, melphalan, etc.44 Quinone
oxidoreductase NQO1 uses the cofactors NADH and NADPH to catalyze the electron
reduction of its substrates, produces less reactive hydroquinones, and therefore prevents
generation of reactive oxygen species and free radicals which may subsequently lead to
oxidative damage of cellular components. Individuals with at least one GSTP1 codon 105
Val allele were shown to be significantly over-represented in t-MDS/AML cases compared
with de novo AML cases (OR=1.8, 95%CI, 1.1-2.9). Also, relative to de novo AML, the
GSTP1 codon 105 allele occurred more often among t-MDS/AML patients with prior
exposure to chemotherapy (OR=2.7, 95%CI, 1.4-5.1), particularly among those with prior
exposure to known GSTP1 substrates (OR=4.3, 95%CI, 1.4-13.2) and not among t-MDS/
AML patients with exposure to radiation alone.45 An NQO1 polymorphism has been shown
to be significantly associated with the risk of t-MDS/AML.46 In addition, individuals with
the CYP3A4-W genotype may be at increased risk of t-MDS/AML, by increasing the
production of reactive intermediates that might damage DNA.47 A polymorphism profile
consisting of CYP1A1*2A, del(GSTT1), and NQO1*2 has been shown to modify the risk of
t-AML/MDS. Absence of all three polymorphisms decreased the risk of t-AML/MDS; on
the other hand, enhanced risk of t-AML/MDS was seen in the presence of only NQO1*2 or
all three polymorphisms.48

Drug transport
P-glycoprotein (encoded by MDR1) traps hydrophobic drugs in the plasma membrane of
cells and effluxes them using an ATP-dependent process; many chemotherapeutic drugs are
substrates of this protein. A number of polymorphisms exist in the MDR1 gene, some
proposed to be functional and evaluated as risk factors for t-MDS/AML.49

DNA repair
DNA repair mechanisms protect somatic cells from mutations in tumor suppressor genes
and oncogenes that can lead to cancer initiation and progression. An individual’s DNA
repair capacity appears to be genetically determined.50 A number of DNA repair genes
contain polymorphic variants, resulting in large inter-individual variations in DNA repair
capacity.50 Even subtle differences in an individual’s DNA repair capacity may be important
in the presence of high-intensity genotoxic insults, such as chemotherapy or radiotherapy.
Individuals with altered DNA repair mechanisms are likely susceptible to the development
of genetic instability that drives the process of carcinogenesis. Over 80 DNA repair genes
have been screened and demonstrate evidence of extensive polymorphic variation.50

The major repair pathways include mismatch repair, base excision repair, nucleotide
excision repair, and DNA double-strand break repair and are described here, along with
examples for studies addressing their involvement in the development of t-MDS/AML.

Mismatch repair (MMR) functions to correct mismatched DNA base pairs that arise as a
result of misincorporation errors that have avoided polymerase proofreading during DNA
replication.51 Defects in the MMR pathway result in genetic instability or a mutator
phenotype, manifested by an elevated rate of spontaneous mutations characterized as
multiple replication errors in simple repetitive DNA sequences (microsatellites) –
functionally identified as microsatellite instability (MSI). Approximately 50% of t-MDS/
AML patients have MSI, associated with methylation of the MMR family member
MLH152,53, low expression of MSH254, or polymorphisms in MSH255-58. The appearance
of MMR-deficient, drug-resistant clones during genotoxic treatment for a primary cancer
could be a vital factor in t-MDS/AML susceptibility, particularly because the mutator
phenotype would be expected to accelerate the accumulation of further mutations and
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eventually SMN initiation. In addition, loss of MMR may result in deregulation of
homologous recombination repair and consequent chromosomal instability.59

Double-Strand Breaks (DSBs) in DNA may lead to loss of genetic material, resulting in
chromosomal aberrations. High levels of DSBs arise following ionizing radiation and
chemotherapy exposures. Cellular pathways available to repair DSBs include homologous
recombination (HR), non-homologous end-joining (NHEJ), and single-strand annealing.60

HR uses the second, intact copy of the chromosome as a template to copy the information
lost at the DSB site on the damaged chromosome – a high-fidelity process. RAD51 is one of
the central proteins in the HR pathway, functioning to bind to DNA and promote ATP-
dependent homologous pairing and strand transfer reactions.61,62 RAD51-G-135C
polymorphism is significantly over-represented in patients with t-MDS/AML compared with
controls (C allele: OR=2.7).63 XRCC3 also functions in the HR DSB repair pathway by
directly interacting with, and stabilizing RAD51.64 XRCC3, a paralog of RAD51, is also
essential for genetic stability.65,66 A polymorphism at codon 241 in the XRCC3 gene results
in a Thr Met amino acid substitution.67 The variant XRCC3-241Met allele has been
associated with a higher level of DNA adducts compared with cells with the wild type allele,
implying aberrant repair68 and has also been associated with increased levels of
chromosome deletions in lymphocytes after exposure to radiation.69 Although XRCC3-
Thr241Met was not associated with t-MDS/AML (OR=1.4, 95%CI, 0.7-2.9), a synergistic
effect resulting in an 8-fold increased risk of t-MDS/AML was observed in the presence of
XRCC3-241Met and RAD51-135C allele in patients with t-MDS/AML compared with
controls.63 NHEJ pathway joins broken DNA ends containing very little homology. This
process is not always precise and can result in small regions of non-template nucleotides
around the site of the DNA break, potentially relevant in MLL-translocation associated with
t-MDS/AML.

Base Excision Repair (BER) pathway corrects individually damaged bases occurring as a
result of ionizing radiation and exogenous xenobiotic exposure. The XRCC1 protein plays a
central role in the BER pathway and also in the repair of single strand breaks, by acting as a
scaffold and recruiting other DNA repair proteins.70,71 The protein also has a BRCA1 C-
terminus (BRCT) domain – a characteristic of proteins involved in DNA damage
recognition and response. The presence of variant XRCC1-399Gln has been shown to be
protective for t-MDS/AML.72

Nucleotide Excision Repair (NER) removes structurally unrelated bulky damage induced by
radiation and chemotherapy. The NER pathway is linked to transcription, and components
of the pathway comprise the basal transcription factor IIH complex (TFIIH), which is
required for transcription initiation by RNA polymerase II. One of the genes involved in the
NER pathway (ERCC2) is a member of the TFIIH complex. The polymorphic Gln variant
(ERCC2 Lys751Gln) is associated with t-MDS/AML.73

Pathogenesis
t-MDS/AML is a clonal hematologic disorder that is the consequence of an acquired somatic
mutation induced by cytotoxic therapy in hematopoietic stem and progenitor cells, which
confers a proliferative and/or survival advantage. t-MDS/AML after autologous HCT
appears to result from genetic damage to the stem and/or progenitor cell from cytotoxic
treatment, which may be potentiated by the transplant process itself through several
mechanisms, including hematopoietic cell mobilization, collection, and storage,
myeloablative chemotherapy and radiation, and the stress of engraftment and hematopoietic
regeneration on the hematopoietic precursors.13,74,75 Alkylating agents kill cancer cells by
transferring alkyl groups to cellular molecules. Alkylation results in inaccurate base pairing
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during replication and single- and double-strand breaks in the double helix as the alkylated
bases are repaired.76 Topoisomerase II inhibitors stabilize the enzyme–DNA covalent
intermediate, decrease the re-ligation rate, and cause chromosomal breakage.47,77 Repair of
chromosomal damage results in chromosomal translocations, leading to
leukemogenesis.47,78,79 Most of the translocations disrupt a breakpoint cluster region
between exons 5 and 11 of the band 11q23 and fuse mixed lineage leukemia (MLL) with a
partner gene.80-82 Translocations to 11q23 predominate following exposure to
epipodophyllotoxins, whereas translocations to 21q22, inv(16), t(15,17), and t(9,22) most
often occur following anthracyclines.83

The p53 gene has a critical role in DNA damage response signaling, affecting cell cycle, cell
death, and DNA repair pathways. Abnormal p53 activity could lead to reduced ability to
repair DNA damage, resulting in genomic instability and increased susceptibility to
leukemogenesis. In patients with de novo MDS and AML, p53 mutations are seen in fewer
than 10% of patients. However, p53 mutations have been identified in 27% to 50%56,84,85 of
the t-MDS/AML patients. These mutations are nongermline, restricted to the leukemic cells,
and are more common after exposure to alkylating agents, with t-MDS/AML characterized
by chromosome 5 and/or 7 losses. Ellis et al examined the association between t-MDS/AML
and 2 common functional p53-pathway variants – the MDM2 SNP309 and the TP53 codon
72 polymorphism.86 Neither polymorphism demonstrated a significant association.
However, an interactive effect was detected such that MDM2 TT TP53 Arg/Arg double
homozygotes, and individuals carrying both a MDM2 G allele and a TP53 Pro allele were at
increased risk of chemotherapy-related t-MDS/AML. TP53 modulates DNA repair and
apoptosis upon DNA damage. A common germline polymorphism of TP53, P72R, produces
a Proline to Arginine change that enhances apoptotic activity 15-fold. Ding et al
demonstrated a significant interaction between P72R and C677T, a coding SNP in MTHFR.
The homozygous T allele of C677T conferred and increased risk (p <0.001) when combined
with the Pro carrier of P72R (conferring decreased apoptotic activity) compared to its
combination with homozygous Arg.87

Telomeres are noncoding regions of DNA that provide a cap at the ends of chromosomes
and prevent dicentric fusion and other chromosomal aberrations.88 Each somatic cell
division is associated with a loss of telomere length. Cumulative telomere shortening can
impose a limit on cell divisions and lead to cell senescence. Telomere shortening is also
associated with genetic instability.89 In hematopoietic tissues, there is progressive
shortening of telomere length through life, with considerable variability between age-
matched individuals.90 Following genotoxic exposure, the increased replicative demand on
hematopoietic cells associated with hematopoietic regeneration can lead to accelerated
telomere shortening. Telomere shortening could contribute to development of t-MDS/AML
by limiting hematopoietic proliferation and regenerative capacity and inducing genetic
instability. Telomere length in serial peripheral blood samples from patients with t-MDS/
AML after autologous HCT for lymphoma and matched lymphoma controls showed a sharp
decline after day 100, but prior to development of t-MDS/AML.91 In contrast, controls
showed no significant changes in telomere length after day 100. These findings suggest that
t-MDS/AML development is likely preceded by altered telomere dynamics in hematopoietic
cells. Accelerated telomere loss in patients developing t-MDS/AML could reflect increased
clonal proliferation and/or altered telomere regulation in pre-malignant cells.

Outcome
Treatment of t-MDS/AML with conventional therapy is associated with a uniformly poor
prognosis, with a median survival of 6 months. Because of the poor response to
conventional chemotherapy, allogeneic HCT has been attempted.92-101 The BU/CY
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conditioning regimen is associated with the best 5-year relapse free survival (43%) and
lowest nonrelapse mortality (28%). Relapse rates are lower with unrelated donor transplants.
Relapse probability and relapse-free survival correlate significantly with disease stage and
karyotype. An optimized cytogenetic classification (adverse cytogenetics: abnormal 7 or
complex; favorable cytogenetics: 5q– or 20q– or Y– or normal; intermediate: all others) is
the strongest prognostic factor for overall survival through its impact on the risk of
relapse.99 After accounting for cytogenetics, patients with t-MDS/AML have an equivalent
outcome to those with de novo disease.100 A prediction model of survival after allogeneic
HCT for t-MDS/AML has used the following 4 risk factors: i) age older than 35 years; ii)
poor-risk cytogenetics; iii) t-AML not in remission or advanced t-MDS; iv) donor other than
an HLA-identical sibling or a partially or well-matched unrelated donor. Five-year survival
for subjects with none, 1, 2, 3, or 4 of these risk factors was 50%, 26%, 21%, 10%, and 4%,
respectively.102

Risk Prediction and Risk Reduction Strategies
Because of the poor prognosis associated with t-MDS/AML, identification of early
biomarkers would allow the timely use of appropriate measures to treat the disorder, such as
reduced intensity conditioning (RIC), rather than waiting for the t-MDS/AML to present in
the clinically overt form, when the disease burden would require higher-intensity therapy,
with a greater risk of resultant morbidity. Several studies have attempted to correlate
identification of genetically abnormal clones with subsequent risk of t-MDS/AML.
Abnormal clones are frequently detected on cytogenetic analysis after autologous HCT for
lymphoma and 30% to 50% of these patients develop overt t-MDS/AML.13,14,21 Evaluation
by FISH enhances sensitivity of detection of chromosomal abnormalities; significant levels
of clonally abnormal cells were detected by FISH prior to high-dose therapy in 20 of 20
patients who developed t-MDS/AML, but only in 3 of 24 patients who did not.103 Clonal
hematopoiesis at the time of transplant using an X-inactivation-based clonality assay at the
human androgen receptor locus (HUMARA), was predictive of the development of t-MDS/
t-AML.15 This assay is limited by its low sensitivity, requiring a high proportion of
monoclonal cells to be present prior to reaching the threshold for detection, and is applicable
only to female patients. Gene expression profile of ALL cells at diagnosis was shown to be
predictive of risk of t-MDS/AML.104 Altered gene expression (of genes regulating
mitochondrial function, metabolism, and hematopoietic regulation) was observed in CD34+
cells from the peripheral blood stem cells (PBSCs) of patients who subsequently developed
t-MDS/AML after autologous HCT for lymphoma when compared with controls who did
not.105 An optimal 38-gene PBSC classifier accurately distinguished patients who did or did
not develop t-MDS/AML in an independent group of patients. The development of t-MDS/
AML appears to require the acquisition of more than one mutation. Moreover, t-MDS/AML
is a heterogeneous disorder with multiple subtypes characterized by different genetic
abnormalities. Therefore, the identification of a single genetic abnormality may not
necessarily have predictive value for development of t-MDS/AML.

It is possible to consider potential strategies to reduce the risk of t-MDS/AML, based on our
understanding of the risk factors and pathogenesis of t-MDS/AML. Such strategies may
include alteration in autologous stem cell procurement regimens to eliminate factors
associated with increased risk of this complication. Standardized screening of patients in the
immediate pre-HCT period with marrow pathology and cytogenetics could potentially help
identify high risk populations that would then benefit from an allogeneic rather than
autologous HCT. If strategies to develop predictors for patients at high risk prior to HCT are
realized, alternative treatment approaches such as allogeneic transplantation or non-
transplant modalities may be worth considering for patients identified being at increased risk
of this complication.
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Future Directions
Studies examining single gene polymorphisms in small heterogeneous samples can result in
inconclusive results. Presence of functional redundancy results in a variant in one gene to
have minimal consequences, whereas the combination of variants in two or more genes to
potentially have more serious consequences resulting in the emergence of a malignant
phenotype. Furthermore, there exists a need to systematically examine gene-therapy
interactions, because of the absence of detailed therapeutic exposure data collected by the
previous studies and the small sample sizes. A systematic assessment of the role of drug-
metabolizing enzymes, DNA repair genes and drug transport in the development of t-MDS/
AML is currently under way in a Children’s Oncology Group-wide study, funded by the
National Cancer Institute.
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Table 1

Magnitude of Risk and Populations at Increased Risk of Therapy-related Leukemia

Study Study design Sample size/
number of
SMNs

Primary Diagnoses
Type of HCT

Magnitude of Risk and
Risk Factors

t-MDS/AML after autologous Hematopoeitic cell Transplantation

Krishnan A et al.
Blood. 2000;95:1588-
1593106

Retrospective
cohort study
Nested case-
control study

612/22
MDS/AML

Hodgkin lymphoma
Non-Hodgkin lymphoma
Autologous HCT

Cumulative probability of
MDS/AM L : 8.6% at 6
years
Stem cell priming with VP-
16, pre-HCT radiation
associated with increased
risk of t-MDS/AML

Milligan DW et al. Br
J Haematol.
1999;106:1020-
1026107

Retrospective
cohort design

4,998/ 66
MDS/AML

Hodgkin lymphoma
Non-Hodgkin lymphoma
Autologous HCT

5-year cumulative
probability was 4.6% for HL
and 3% for NHL.
Older age at HCT, diagnosis
of HL, exposure to TBI,
multiple HCT, years
between diagnosis were
associated with increased
risk of MDS/AML

Bhatia S, et al. Blood
1996;87:3633-910

Retrospective
cohort design

258/ 10
MDS/AML

Hematologic malignancies
Autologous HCT

6-year cumulative
probability was 13.5%.
Peripheral blood stem cell
transplantation
Age >35 years at autologous
hematopoietic cell
transplantation

Friedberg JW, et al. J
Clin Oncol
1999;17;3128-3592

Retrospective
cohort design

552/41 Non-Hodgkin lymphoma Fewer number of cells
infused

t-MDS/AML after conventional therapy

Koontz MZ et al. J
Clin Oncol
2013;31:592-8108

Retrospective
cohort design

754/24 Hodgkin lymphoma 10-year cumulative
incidence ranged from 0.3%
to 5.7%.
Cumulative alkylating agent
exposure increased the risk

Bhatia S et al. N Engl
J Med 1996;334:745-
513

Retrospective
Cohort design

1380/26 Hodgkin lymphoma 14-year cumulative
probability was 2.8%
Treatment with alkylating
agents, age at diagnosis at 10
to 16 years (c/w <10 years),
recurrence of primary
disease risk, and a late stage
of disease at diagnosis were
associated with an increased

Bhatia S, et al. Blood
2002;99:4257-647

Retrospective
cohort design

8831/14 Acute lymphoblastic
leukemia

15-years cumulative
incidence was 0.3%; relapse
of primary disease was
associated with increased
risk

Bhatia S et al. Blood
2007;109:46-516

Retrospective
cohort study
design

578/11 Ewing sarcoma 5-year cumulative incidence
of 2%; increasing exposure
from 90 g/m2 to 140 g/m2;
cyclophosphamide from 9.6
to 17.6 g/m2 and
doxorubicin from 375 to 450
mg/m2 increased the risk

Travis LB et al. N
Engl J Med.
1999;340:351-79

Case-control
study design

Cases: 96/
controls: 272

Ovarian cancer Relative risk for treatment
with carboplatin and
cisplatin increased the risk in
a dose-dependent fashion
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Study Study design Sample size/
number of
SMNs

Primary Diagnoses
Type of HCT

Magnitude of Risk and
Risk Factors

Travis LB et al. J Natl
Cancer Inst
2000;92:1165-718

Case-control
study design

Cases: 36;
controls: 106

Testicular cancer Radiation to active bone
marrow (dose-dependent
relation); cumulative dose of
cisplatin
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