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Abstract
The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial
roles in host defense against microbial organisms and in the development of inflammatory
diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A
and other IL-17 family cytokines have multiple sources ranging from immune cells to non-
immune cells. The IL-17 family signals via their correspondent receptors and activates
downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-
microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator
during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host
defense and IL-17-driven autoimmune conditions. This review will give an overview and recent
updates on the IL-17family, the activation and regulation of IL-17 signaling as well as diseases
associated with this cytokine family
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1. Introduction
The interleukin-17 (IL-17) family consists of a subset of cytokines that participate in both
acute and chronic inflammatory responses. Since the discovery of IL-17A (also called IL-17
or CTLA8) in 1993, five other members of this family IL-17B, IL-17C, IL-17D, IL-17E
(also called IL-25), and IL-17F have been identified based on amino acid sequence
homology [1–6]. While some are well characterized, others have remained understudied.

The most widely investigated cytokine of this family, IL-17A, is a pro-inflammatory
cytokine that plays an essential role in host defense against microbial infections and is
implicated in various inflammatory conditions such as autoimmune diseases, metabolic
disorders, and cancer [7–16]. Through the production of a variety of molecules including
cytokines, chemokines, acute phase proteins, anti-microbial peptides, mucins, and matrix
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metalloproteinases [17, 18], IL-17A can propagate cascades of events that lead to neutrophil
recruitment, inflammation and host defense. Pathological production of IL-17A leads to
excessive inflammation and overt tissue damage. It has received considerable attention upon
the discovery of a subset of helper CD4+ T cells that is distinct from the classical T helper 1
(Th1) and T helper 2 (Th2) lineages, which produce IFN-γ and IL-4respectively. This T
helper 17 (Th17) lineage produces IL-17A as a signature cytokine and plays a pathological
role in inflammatory and autoimmune diseases. Differentiation of naïve CD4+ T cells to
Th17 cells is triggered and tightly controlled by a set of cytokines that include IL-6, IL-1β,
IL-21, IL-23, and TGFβ, which leads to the activation of RORγt to enable Th17
programming [19]. Overabundance of these cytokines is associated with pathological
conditions.

Though Th17 cells were thought as a major source of IL-17A, IL-17A can also be produced
by other cell types, the most prominent of which are the innate immune cell populations
[20]. IL-17 producing innate immune cells mediate the rapid release of IL-17A in response
to pathogens or tissue injury [20–22]. For example, γδ T cells express pattern recognition
receptors (PRRs) such as dectin-1 and Toll-like receptor 2 (TLR2), which allow for rapid
IL-17 production in response to bacteria encounter [22–25]. LTi cells, key components of
the machinery required for the construction of the lymphoid structures, produce IL-17A
rapidly after challenge with the yeast cell wall product zymosan [26]. IL-17A is also
produced by a subset of CD8+ T cells, known as Tc17 cells which can participate in host
defense against viruses and contribute to autoimmunity [27, 28]. More recently, previously
unappreciated populations such as B cells were found to be a major source of IL-17A and
IL-17Fduring Trypanosoma cruzi infection. The T. cruzi surface antigen, trans-sialidase,
drives the formation of IL-17+ B cells, which via IL-17A production, promotes the control
of this parasite [29].

2. The IL-17 receptor family
In 1995, IL-17 receptor A (IL-17RA) was identified as a new cytokine receptor for IL-17A
and was later found to be part of a cytokine receptor family unrelated to existing cytokine
receptor family [30]. The IL-17 receptor family now consists of 5 members (IL-17RA, RB,
RC, RD and RE), all of which, like their ligands, share sequence homology (Fig. 1).
IL-17RA is ubiquitously expressed on a wide range of tissues and cell types. Upon the
stimulation with IL-17, IL-17RA initiates the activation of downstream signaling pathways
to induce the production of pro-inflammatory molecules. However, IL-17RA alone is
insufficient to mediated IL-17signaling. Further evaluation revealed that IL-17 signals
through a heterodimeric receptor complex composed of IL-17RA and IL-17RC [31–33]
(Fig. 1). It is proposed that the binding of ligand to the first IL-17 receptor subunit alters the
affinity and specificity of the second binding event, thereby promoting the formation of a
heterodimeric rather than a homodimeric receptor complex [34, 35]. Sharing the greatest
sequence homology(56%) with IL-17A, IL-17F also signals through the same receptor
complex, though IL-17F binds to IL-17RAwith ~100 to 1000 times lower affinity than does
IL-17A, while the binding affinities for IL-17RC is comparable between the two cytokines
[36, 37]. IL-17F is located adjacent to IL-17A on the same chromosome [6], and is produced
by similar cells, often in conjunction with IL-17A [38]. Crystal structures have revealed that
while IL-17A and IL-17F can form IL-17A/A or IL-17F/F homodimers, IL-17A/F
heterodimers are also formed [6, 36, 39,40]. Though some studies have indicated that
IL-17A and IL-17F may have disparate roles in inflammation, the aspects that distinguishes
the two cytokines have remained largely elusive [16, 38, 41, 42]
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3. Homotypic interaction of the SEFIR domains
At the C-terminus of the IL-17 receptors is a conserved region known as the SEFIR (similar
expression of fibroblast growth factor genes and IL-17Rs) domain, which helped to group
the receptors into a receptor family[43]. This region is closely related to the TIR (Toll/
Interleukin-1 receptor) domain in toll-like receptors (TLRs) and IL-1 receptors (IL-1Rs).
Due to this similarity, the STIR (SEFIR and TIR) domain superfamily now includes the
TLRs, the IL-1Rs, and the IL-17 receptors. Interestingly, the SEFIR domain is also present
in a cytosolic protein called Act1 (NFκB activator 1, also known as CIKS or TRAF3IP2).
Act1 was originally discovered as anNFκB activator during a search for NFκB binding
proteins [44, 45]. It was shown to activate IKK, an upstream kinase of NFκB, through a
helix-loop-helix (HLH) domain near its N-terminus. The involvement of the TIR domain in
TLR-IL-1R/MyD88 signaling implicated a possible role for Act1 in IL-17 signaling. Indeed,
Act1 is recruited to the IL-17 receptor complex through the homotypic interactions of the
SEFIR domains upon IL-17stimulation (Fig. 1). Act1-deficiency results in a loss of IL-17-
dependent NFκB activation and pro-inflammatory cytokine production [46, 47]. Further
detailed studies involving domain mapping showed that a coiled-coiled(CC) loop in the
SEFIR domain is essential for the interaction of Act1 with IL-17RA. The interaction was
blocked by a cell-permeable decoy peptide that mimicked the structure of the CC loop [48].
The crystal structure of the IL-17RB SEFIR domain was used to model the SEFIR-SEFIR
domain interaction between IL-17RB and Act1 [49]. Key residues located within the SEFIR
domain of IL-17RB (Leu419 and Leu422) and within the CC loop of Act1 (Leu474, His475,
Lys477, and Tyr478) are crucial for this homotypic association. These four key residues in
the CC loop of Act1 are likely to be critical for Act1’s interaction with the SEFIR domains
of other IL-17 receptors.

4. IL-17-dependent inflammation and signaling
4.1 IL-17A synergizes with other molecules to enhance pro-inflammatory responses

Previous studies have reported that IL-17A-dependent NFκB activation was dependent on
TRAF6 [50, 51]. Following Act1-binding to the receptor complex, TRAF6 is recruited
through the interaction with Act1’s TRAF binding motifs (Fig 2). The enzymatic U-box
domain of Act1 serves as an E3-ubiquitin ligase that facilitatesLys63-linked ubiquitination
of its target proteins for subsequent protein-protein interactions [51]. Ubiquitinated forms of
TRAF6 are detectable in wild-type cells but not in cells lacking Act1 upon IL-17A
stimulation. In vitroubiquitination assays revealed that Act1 mediates Lys63-linked TRAF6
ubiquitination through its U-box domain. Deletion and point mutations of the U-box
abolished Act1-mediated TRAF6 ubiquitination and attenuated IL-17-dependent responses.
Poly-ubiquitinated TRAF6 further activates downstream TRAF6-dependent TGFβ-activated
kinase 1 (TAK1) for NFκB activation.

IL-17A alone, however, is a weak NFκB activator. But what makes it such a pathogenic
cytokine is its ability to synergize with other cytokines like TNF-α to promote and prolong
pro-inflammatory responses. While TNF-α, a strong NFκB activator, induces the expression
of highly unstable pro-inflammatory mRNAs, IL-17A enhances the chemokine expression
through stabilizing these mRNAs [52–54]. This mechanism involves two other TRAF
molecules, TRAF2 and TRAF5, as well as a kinase called IKKi (also known as IKKε). IKKi
is recruited to the IL-17R–Act1 complex upon IL-17A stimulation, where it specifically
phosphorylates Act1 at Ser311. This generates a docking site that recruits TRAF2 and
TRAF5, but not TRAF6, to form anAct1/TRAF2/TRAF5/arginine- and serine-rich splicing
factor SRSF1 (SF2 (ASF)) complex. The formation of this complex prevents ASF from
binding to the 3’ UTR of CXCL1 mRNA for cleavage and thereby enhancesCXCL1 mRNA
stability [53, 54]. Whereas TRAF6 is essential for IL-17A-dependent activation of NFκB
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and MAPK cascades, TRAF2 and TRAF5 are involved in IL-17A-dependent mRNA
stabilization through the activation of IKKi. IKKi-deficiency abolished the formation of the
Act1/TRAF2/TRAF5/ASF complex and resulted in a loss of mRNA stability without
affecting Act1-TRAF6-NFκB activity. Deficiency of TRAF6 in mouse embryonic
fibroblasts resulted in the loss of NFκB and JNK activation as well as IL-6 production upon
IL-17Astimulation, whereas IL-17A-dependent mRNA stability was unaffected [50, 55]. In
addition to theAct1/TRAF2/TRAF5/SF2(ASF) complex, we recently found that an
SF2(ASF)-independent complex composed of Act1/TRAF2/TRAF5 and HuR, an RNA-
binding protein, can mediate IL-17A-dependent mRNA stabilization[56]. IL-17A
stimulation led to Act1-dependent HuR polyubiquitination, which was necessary for HuR to
bind the 3’-UTRs of its target mRNAs like CXCL1. Thus, IL-17 induced mRNA
stabilization via the TRAF6-independent pathway plays an important role in regulating the
coordinated expression of pro-inflammatory cytokines and chemokines.

4.2. Regulation of IL-17A signaling
IL-17A stimulation also leads to TRAF4 recruitment to the IL-17 receptor complex. TRAF4
is a negative modulator of IL-17-signaling and utilizes the same TRAF binding sites as that
of TRAF6 on Act1, competing with TRAF6 for Act1 binding [57]. TRAF4-deficient mice
displayed markedly enhanced IL-17–dependent signaling and cytokine expression [57].
TRAF3 has also been shown to be an important negative regulator in the IL-17 signaling
cascade, binding directly to the IL-17R to interfere with the formation of the IL-17R-Act1-
TRAF6 complex [58]. Knockdown of TRAF3 promoted NFκB and MAPK activation as
well as enhanced IL-17A-dependent pro-inflammatory gene expression [58]. IL-17
stimulation also triggers the dual phosphorylation of C/EBPβ at Thr188 and Thr179 by ERK
and glycogen synthase kinase 3β (GSK3β), respectively [59]. These phosphorylation events
on C/EBPβ led to inhibition of IL-17-dependent pro-inflammatory gene induction [60].

The binding of IL-17 to the receptors triggers a series of phosphorylation and ubiquitination
events. A recent study described a previously unknown function for the deubiquitinating
enzyme USP25 in restricting IL-17Rsignaling [61]. In vitro, IL-17A treated USP25 deficient
cells resulted in the hyper-ubiquitination of TRAF5 andTRAF6, prolonging the half-life of
CXCL1-encoding mRNAs and enhancing the phosphorylation of JNK and the inhibitor
IκBα. As a result, USP25-deficiency led to exaggerated IL-17A-dependent chemokine and
cytokine production. In vivo, USP25-deficient mice exhibited enhanced IL-17 mediated
pulmonary inflammation. These observations indicate that USP25 may negatively regulate
IL-17 signaling, in part by restricting the ubiquitination status of TRAF5 and TRAF6.
Another deubiquitinase, A20, a tumor suppressor encoded byTNFAIP3 (TNF-a–induced
protein 3), was recently found to interact directly with the distal domain of IL-17RAand
associated with TRAF6 in an IL-17–dependent manner to restrict the IL-17–dependent
activation of NFκBand MAPK [62].

IL-17-dependent NFκB activation can also lead to downregulation of a micro-RNA,
miR-23b, in human fibroblast-like synoviocytes, mouse primary kidney cells and astrocytes
[63]. MiR-23b suppresses NFκB activity and inflammatory cytokine expression by targeting
several upstream signaling mediators, including Tab2, Tab3and IKK-α. Thus, inhibition of
miR-23b by IL-17 provides a positive feedback loop for activation of the NFκB pathway
and the expression of pro-inflammatory genes in response to IL-17 [63, 64]. Activation of
NFκB can also be positively regulated by an IL-17 induced transcription factor NFκBIZ. It
is reported that NFκBIZ is required for IL-17A-induced human beta-defensin 2 in epithelial
cells and neutrophil gelatinase-associated lipocalin [65, 66].

One IL-17 receptor has been shown to participate in regulating IL-17 signaling. IL-17RD,
originally identified as an inhibitor of FGF signaling, co-localizes with IL-17RA and has
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recently been implicated to regulate IL-17Asignaling [67, 68]. Interestingly, IL-17RD-
deficiency resulted in enhanced IL-17A-dependent NFκB activation and increased IL-6 and
KC expression, yet reduced MAPK activation and decreased MIP2 expression upon IL-17A
stimulation. Furthermore, IL-17RD-deficiency resulted in impaired IL-17-induced
pulmonary neutrophilia. It was shown that IL-17RD interacts with IL-17RA and Act1
through SEFIR-SEFIR domain interaction as a means to disrupt Act1-TRAF6 binding,
thereby inhibiting NFκB activation for IL-6 and KC expression. However, the mechanism
by which IL-17RD positively transmits IL-17A-dependent MAPKs activation remains to be
delineated. Additional studies are required to determine whether IL-17RD also participates
in the receptor complexes for other IL-17 cytokine members.

More recently, we identified Act1 as a client protein of the molecular chaperone, Hsp90.
The highly conserved N-terminus of Act1 is necessary for Hsp90 interaction. Deletions and
mutations occurring at the N-terminus impacted its ability to bind to Hsp90 and abrogated
IL-17-dependent signaling, possibility due to improper folding of the adaptor protein.
Interestingly, the interaction between Act1 and Hsp90 was enhanced after IL-17stimulation,
suggesting a possible role for Hsp90 as a scaffolding protein in the IL-17 signaling cascade.
Such role for Hsp90 has previously been observed in the nitric oxide signaling cascade [69]

4.3 IL-17 is essential for host defense against microbial pathogens
IL-17A and IL-17F are both major contributors to host defense against bacterial and fungal
pathogens, and functions via neutrophil recruitment, anti-microbial molecule and acute
phase protein production [13, 32]. The protective role of IL-17 family in host defense
against microbial pathogens was first illustrated in studies showing that IL-17RA knockout
mice have increased mortality in intrapulmonary Klebsiella pneumoniaeinfections [13]. This
was further supported by data showing that IL-23, a cytokine necessary for the expansion
and maintenance of the Th17 population, was critical for host defense against K.
pneumoniae [70, 71]. By using genetic ablation of IL-17RA or IL-17 in murine models or by
using neutralizing antibodies to either the receptor or the ligand, impaired IL-17 signaling
was linked to host susceptibility to a variety of pathogens. These include Salmonella
enterica [72], Streptococcus pneumoniae [73], Listeria monocytogenes [25,
74],Staphylococcus aureus [16, 75], Helicobacter pylori [76], Citrobacter rondentium [16],
herpes simplex virus [77],Trypanosoma cruzi [78, 79] and Candida albicans [15, 80].
IL-17RC-deficiency in mice also resulted in increased susceptibility to C. albicans infection
[81]. In humans, chronic mucocutaneous candidiasis can result from autosomal dominant
IL-17F deficiency, autosomal recessive IL-17RA deficiency, or mutations that inhibit IL-17
immunity [82, 83].

Act1 has also been demonstrated to be involved in antiviral signaling [84]. A zebrafish Act1
protein is able to trigger antiviral gene expression in human cells, suggesting an
evolutionary conserved role of Act1 in the host defense against viruses. Furthermore, small
interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts reduced
the expression of antiviral genes induced by polyinosinic-polycytidylic acid (poly I:C).
Interestingly, a respiratory bacterial pathogen Chlamydia pneumoniae produces a secreted
protein that binds to Act1, which might provide an immune evasion strategy for the
organism by inhibiting IL-17RA signaling [85].

4.4 How things can go wrong: pathogenic roles of IL-17 in autoimmunity
It is now well established that IL-17A is one of the major drivers for several inflammatory
and autoimmune diseases. High IL-17A levels were found in patients with diseases like
multiple sclerosis (MS), psoriasis, asthma, Crohn’s disease and rheumatoid arthritis [86–92].
In an animal model for MS, experimental autoimmune encephalomyelitis (EAE), mice
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deficient in IL-17-signaling exhibited attenuated disease severity compared to wild-type
controls [47, 93]. Deficiency of Act1 showed attenuated EAE, confirming the pathogenic
role of IL-17 in MS pathogenesis. Cell-specific-deletion of Act1 demonstrated that IL-17-
signaling in neuroectoderm-derived cells, but not endothelial cells, macrophages, or
microglials, contributed to demyelination and axonal injury in EAE [94]. Moreover, in
cuprizone-induced demyelination models, loss of IL-17-signaling (using IL-17A-, IL-17RC-
and Act1-deficient mice) was accompanied by decreased microglial and polydendrocyte
cellular reactivity, and thus, decreased demyelination. More specifically, loss of IL-17-
signaling in astrocytes reduced the severity of cuprizone-induced demyelination [95].

Genome-wide association studies have identified a series of single nucleotide
polymorphisms (SNPs) in the genome of psoriasis patients linking the IL-17 cytokine
network to psoriasis susceptibility [96–99]. Likewise, murine models of psoriasis have also
shown the importance of the Th17 cytokine network in mediating the pathogenesis of skin
inflammation. In mice, intra-dermal IL-23 injection resulted in skin hyperplasia and
acanthosis that was alleviated with IL-17RA-deficiency, IL-17A-deficiency or anti-IL17
neutralization [100]. Imiquimod (a TLR7/8 agonist that induces Th17-mediated skin
inflammation) application led to attenuated skin inflammation in IL-17RA-deficient mice
[101]. However, a loss of function Act1 variant (Act1 D10N) was also linked to increase
susceptibility for psoriasis. We recently showed that this variant failed to interact with the
molecular chaperone, Hsp90 and consequently was unable to transduce IL-17-signaling
events. Paradoxically, the loss of IL-17 signaling increases the susceptibility to psoriasis.
Act1-deficient mice developed spontaneous skin inflammation, with elevated Th17
cytokines like IL-17A, IL-17F and IL-22 [69, 102]. Absence of IL-17signaling resulted in a
hyperactive Th17 population with elevated IL-22 that contributed to the skin phenotype.
Previously, it was shown that IL-17RA-deficient mice had more IL-17A-producing cells,
suggesting a role for IL-17A in Th17 homeostasis [103]. Similarly, antigen-specific
hyperactive Th17 cells have been seen in IL-17RC-deficent mice upon MOG33–55
immunization [104]. Moreover, in murine models of skin inflammation, IL-23 injection
intra-dermally resulted in elevated IL-22 expression in IL-17A-deficient and IL-17RA-
deficient mice compared to wild-type controls [100, 101], while short term TPA (12-O-
Tetradecanoylphorbol-13-acetate)treatment resulted in elevated, though not significant,
expressions of IL-17A, IL-17F, and IL-22 if anti-IL17A was administered [105]. These
observations suggest that IL-17A, though itself a pro-inflammatory cytokine, contributes to
immune homeostasis whereby in the absence of its signaling, can lead to dysregulated and
exaggerated production of other pro-inflammatory cytokines.

4.5 IL-17, intestinal diseases and microbiota
This dysregulation can be extrapolated to the gut, where IL-17 can play both a exacerbating
and a protective role in intestinal inflammation. IL-17A, IL-17F, and Th17 cells are
abundantly upregulated in the intestinal mucosa of Crohn’s disease and ulcerative colitis
patients [106–109]. Indeed, a variety of studies have shown the pathogenic role of IL-17 in
experimental models of inflammatory bowel diseases. For example, IL-17R-deficiency
protected mice from acute trinitrobenzenesulfonic acid (TNBS)-induced colitis [110], while
IL-17A aggravates dextran sodium sulfate (DSS)-induced colitis [111]. Similarly, IL-17F–
deficient animals were protected from DSS-induced colon pathology [41], indicating that
IL-17A and IL-17F may have redundant roles in promoting murine intestinal chronic
inflammation [112].

While IL-17 can contribute to intestinal inflammation, several lines of evidence suggest that
it plays a protective role as well. IL-17A was demonstrated to be protective in T-cell
mediated colitis by inhibiting Th1 polarization for IFN-γ dependent inflammation [113].
Furthermore, the loss of function variant of Act1 (D10N) was linked to extraintestinal
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manifestations of Crohn’s disease, suggesting that a loss of IL-17 signaling may contribute
to increase susceptibility for developing these Crohn’s disease-associated cutaneous
manifestations [114]. Recent studies have also revealed the crucial role of the gut microbiota
in intestinal immune homeostasis, including the development and the regulation of intestinal
Th17 cells. Segmented filamentous bacteria (SFB) can promote the generation of Th17 cells,
while the gut commensal bacterium Bacteroides fragilis restrains IL-17 production,
suggesting that the gut microbiota plays a crucial role in balancing IL-17 production and
response [115–117]. Th17 cells in the intestine are also dramatically reduced in antibiotic-
treated or germ-free animals [118, 119].

Higher IL-17 expression is associated with poor prognosis in patients with colorectal cancer
[120]. Ablation of IL-17A decreases the progression of intestinal tumorigenesis in the
Apc Min/+ mouse model [121], suggesting an important role for IL-17A in colorectal cancer
promotion. On the contrary, a recent study showed that IL-17F-deficiency in mice resulted
in increased colonic tumor numbers and tumor area, indicating a protective role for IL-17F
in colon tumorigenesis [42]. As IL-17 plays a critical role in host defense against microbes,
the gut microbiome has been emerging as a major environmental factor that affects
colorectal tumorigenesis [122, 123]. By using next generation sequencing technology, it was
demonstrated that an altered microbiota composition existed in colon cancer patients [122].
While the overall bacterial levels did not differ in normal versus cancer group, significantly
higher Bacteroides to Prevotella ratio was observed in colon cancer patients. The higher
bacteroides level in cancer patients was associated with elevated IL-17-expressing cells,
which was undetectable in healthy controls. Consistent with this observation, Bacteroides
enterotoxigenic fragilis, promoted tumorigenesis in Apc knockout mice via the activation of
Th17 responses as anti-IL-17 neutralizing antibody inhibited bacterial-induced tumor
formation [124]. Furthermore, colorectal tumors exhibited higher epithelial permeability to
commensal bacteria and microbial products, which promoted IL-23/IL-17-mediated tumor
growth [125]. Taken together, these findings illustrate the importance of the interaction
between IL-17 and the gut microbiota in colon tumorigenesis.

5. IL-17E potentiates type 2 allergic responses
IL-17E (IL-25), sharing the least sequence homology (29%) with IL-17A, functions very
differently from IL-17A. Whereas IL-17A promotes inflammation through the induction of
cytokines and chemokines for neutrophil recruitment, IL-25 is associated with type 2
responses, promoting the production of type 2 cytokines such as IL-4, IL-5, and IL-13 for
eosinophil recruitment and contributes to host defense against helminth and parasitic
infections [126–129]. IL-25 is produced by a variety of cells, including immune cells (CD4+

cells, CD8+ T cells, macrophages, dendritic cells, mast cell, and eosinophil) and non-
immune cells (epithelial and endothelial) and in a pathological setting it can potentiate
allergic inflammation [130, 131].

IL-25 signals through a heterodimeric receptor complex composed of IL-17RA and
IL-17RB [33, 132]. IL-17RB is expressed by a variety of cell types with highest expression
level in kidney, liver and brain [5]. Deficiency or antibody neutralization of either IL-17RA
or IL-17RB can abrogate IL-25-dependent responses. Similar to IL-17A signaling, Act1 is
recruited to the receptor complex upon IL-25 stimulation through the homotypic interactions
of the SEFIR domains [133–135]. IL-17RB was reported to possess a putative TRAF6
binding domain. Mutation of IL-17RB E338, which is located within this domain, initially
showed attenuated NFκB activation [136]. However, a recent paper showed mutations at
S337A, E338A or I339A within the putative TRAF6-binding sequence did not have any
effect on the interaction between IL-17RB and TRAF6, arguing against the existence of a
TRAF6 binding domain within this region of IL-17RB [49].
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IL-25 stimulation also led to TRAF6-independent activation of MAPKs like ERK, p38 and
JNK [136]. A death domain (DD) within SEFIR domain of IL-17RB was identified based on
alignment analysis with DDs of the apoptosis-stimulating fragment (FAS) receptor and
tumor necrosis factor (TNF) receptor 1 [137]. IL-25 was reported to induce caspase-
mediated apoptosis in breast cancer cells, which exhibited high expression of IL-25R. IL-25-
induced caspase activation was dependent on the DD of IL-17RB as deletion of the DD
resulted in a loss of caspase activation. Furthermore, DD adaptor proteins, FAS-associated
protein with death domain(FADD) and TNF-R1–associated death domain protein
(TRADD), were shown to interact strongly with IL-17RBin response to IL-25 stimulation,
suggesting that this pathway can be exploited for cancer therapy [137].

Since type 2 responses are essential for helminth expulsion, it is no surprise that in IL-25
deficient mice, expulsion of helminth parasites was delayed [138–140]. Studies using Act1-
deficient mice showed diminished type 2 responses (as indicated by reduced levels of IL-4
and IL-13) and delayed helminth expulsion [126]. More specifically, epithelial cells rather
than T cells and macrophages, were crucial for IL-25 mediated worm expulsion,
highlighting the importance of epithelial cells in IL-25 mediated host defense. Furthermore,
IL-25produced by epithelial cells mediated the expansion of Lin-c-Kit+ innate cells to
potentiate type 2 responses for worm expulsion [126].

IL-25 can induce lung inflammation by promoting the differentiation of naïve T cells to
effector Th2 cells [134, 141]. In human asthmatic tissue, both IL-25 and IL-17RB
expression were elevated compared to healthy controls [142]. Presumably, allergens induce
the expression of IL-25 by the epithelium and the increased IL-25 can feedback on T cells
and innate lymphoid cells to promote type 2 responses [134, 139, 141–144]. Similarly, in the
OVA-allergen model, Act1 was shown to be crucial for IL-25 mediated allergic airway
inflammation [133,134]. Cell type-specific deletion of Act1 in the epithelial compartment
resulted in abolished IL-25-induced cytokine production and eosinophilia [134]. Likewise, a
cell-permeable decoy peptide that inhibited the interaction of Act1 with IL-17RA, inhibited
IL-25–signaling in vitro and prevented IL-25–induced pulmonary inflammation in vivo [48].

6. IL-17C and others
IL-17C is mainly produced by epithelial cells and was recently found to be important in
promoting cytokines and anti-microbial peptides production in the gastrointestinal tract [32,
145]. Similar to IL-17A, IL-17C is implicated in protection against microbial infection as
well as in the pathogenesis of autoimmune disease including psoriasis and multiple sclerosis
[146–149]. IL-17C signals through the IL-17RA/IL-17RE receptor complex and Act1 to
promote innate host defense and regulate the intestinal inflammation and barrier function
[32, 145, 146, 150]. IL-17RE is upregulated on Th17 cells upon differentiation and has been
shown to promote Th17 differentiation through the induction of NFκBIZ [146]. Mice
lacking IL-17C are partially resistant to EAE. NFκB and MAPK pathways were activated by
IL-17C in colon epithelial cells but not in IL-17RE deficient cells [32]. IL-17C was
demonstrated to be important for early mucosal responses to C. rodentium infection [32].
IL-17C was substantially induced in colon epithelial cells as early as day 4 post C.
rodentium challenge and synergized with IL-22 for anti-microbial peptides production. In
the absence of its functional receptor, IL-17RE, mice exhibited impaired anti-microbial
peptide, cytokine and chemokine production during C. rodentium infection and succumbed
to infection within 13 days. IL-17C has also been shown to have a protective role in
intestinal inflammation as mice lacking IL-17C exhibited exacerbated DSS-induced colitis.
Moreover, IL-17C directly promoted the expression of the tight junction molecule occludin
by colonic epithelial cells, suggesting the critical role of IL-17C in maintaining intestinal
barrier function [150]. Furthermore, IL-17C is also involved in skin inflammation.
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Deficiency of IL-17C led to attenuated imiquimod-induced skin inflammation [145], while
over-expression of IL-17C in keratinocytes led to spontaneous psoriasiform skin
inflammation in mice [147].

IL-17B was detected in several organs with high expression in chondrocytes and neurons [3,
130, 151]. IL-17B was reported to bind to IL-17RB, though with lower affinity than IL-25
and stimulated the production of TNF-α and IL-1β by the monocytic cell line, THP-1 [3, 5].
Furthermore, it was highly expressed in the cartilage derived from the paws of collagen-
induced arthritis mice, suggesting a potential pro-inflammatory role in disease processes
[152]. IL-17D was also detected in several organs, whereas in immune cells, IL-17D is only
express in resting CD4+ T cell and CD19+ B cells [4]. The biological function of IL-17B
and IL-17D are still poorly understood. The receptor for IL-17D has yet to be solved.

7. Concluding remarks and perspective
The IL-17 cytokine family, derived from a wide array of cell types, coupled to the
differential expression of their receptors on various cells and tissues, illustrate the
complexity of this cytokine family network in modulating the immune response for host
defense and how its dysregulation could lead to pro-inflammatory diseases. Recent advances
that uncovered IL-17 sources, and studies dissecting the activation and regulation of the
signal transduction pathways have extensively expanded our knowledge in understanding
the biological functions of the IL-17 family in human diseases. However, given the
complexity of IL-17’s pro-inflammatory and tissue protective roles in different diseases, it is
unclear how current therapeutic developments including anti-IL-17A and anti-IL-17RA
antibodies for autoimmune diseases like psoriasis and rheumatoid arthritis [153–155] may
affect patients in the long run. Nevertheless, better understanding of IL-17 signaling in
inflammatory and autoimmune settings will be crucial for the discovery of new therapeutic
targets that will enable us to design more suitable treatments for patients who do not respond
to conventional therapies.
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Highlights

IL-17 is essential for host defense against microbial pathogens.

IL-17 signaling is tightly controlled at different levels of the signaling cascade.

Things can go wrong: pathogenic roles of IL-17 in autoimmunity.

The microbiota-regulated IL-17 production contributes to intestinal inflammation and
tumorigenesis.

IL-17E potentiates type 2 allergic responses.
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Figure 1. IL-17 cytokines, receptors and signaling
The IL-17 family consists of six members IL-17A-F, while the IL-17 receptor family
consists of five members IL-17RA to IL-17RE. IL-17RA is a common receptor that forms
heterodimeric complexes with IL-17RB, IL-17RC, and IL-17RE. Thus far, all of the IL-17
receptors recruit Act1 as an adaptor molecule for downstream signaling. IL-17A and IL-17F
signals through the IL-17RA-RC complex, triggering TRAF6-dependent target gene
transcription and TRAF6-independent IKKi-dependent mRNA stabilization, both of which
are important for host defense and contributes to the pathogenesis of autoimmune diseases
and cancer. IL-17 signaling is tightly controlled at different levels of the signaling cascade.
At the receptor level, IL-17RD interacts with Act1 basally, sequestering it from IL-17RA
and TRAF6 until IL-17 stimulation. TRAFs like TRAF3 and TRAF4 act to disrupt
downstream signaling complex formation. While TRAF3 binds to the IL-17R to prevent the
recruitment of Act1 and TRAF6, TRAF4 competes with TRAF6 for Act1 binding.
Deubiquitinating enzymes like USP25 and A20 regulate the ubiquitination status of TRAFs
(like TRAF5 and TRAF6), placing a brake on the signaling cascade. The IL-17A-dependent
micro-RNA, miR-23b, regulates NFκB activation. IL-17A-induced transcription factors
such as C/EBPδ inhibits inflammatory gene expression. IL-17E (IL-25) signaling through
the IL-17RA-RBreceptor complex induces Th2 responses by activating MAPK and NFκB
pathways. IL-17C signals through the IL-17RA-RE complex mediates host defense and like
IL-17A, contributes to the pathogenesis of autoimmune diseases. IL-17B have been shown
to interact with IL-17RB, however, its biological function is as yet unclear. The receptor for
IL-17D is unknown.
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Figure 2.
The structure of Act1. Act1 contains two TRAF binding motifs (TB1 and TB2) that mediate
TRAF6 and TRAF4 interactions following IL-17 stimulation. The U-box E3 ligase domain
is functionally important for mediating the ubiquitination of its target proteins, like TRAF6
and HuR. The SEFIR domain of Act1 is necessary for the recruitment of Act1 to the IL-17
receptor upon IL-17 stimulation. At the N-terminus, a highly conserved region is required
for Act1’s interaction with the molecular chaperone, Hsp90.

Gu et al. Page 20

Cytokine. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gu et al. Page 21

Table I

Regulators of IL-17 signaling

Name Description Reference

Negative

TRAF4 Competes with TRAF6 for Act1 binding [57]

TRAF3 Binds to the IL-17R to interfere with the formation of the IL-17R-Act1-TRAF6 complex [58]

USP25 Restricts the ubiquitination of TRAF5 and TRAF6 to down-regulate IL-17 signaling and mRNA stabilization [61]

A20 Interacts directly with the distal domain of IL-17RA and mediates deubiquitination of TRAF6 [62]

C/EBPβ Becomes phosphorylated by ERK and Gsk-3β and inhibit the expression of IL-17 target genes [60]

miR23b Inhibits IL-17 induced NFκB activation [63]

IL-17RD Disrupts the interaction of Act1 and TRAF6 to inhibit NFκB activation [67, 68]

Positive

NFκBIZ Required for IL-17A induced gene expression [65, 66]

IL-17RD Enhances IL-17A-dependent MAPK signaling and neutrophil recruitment through MIP-2 [67, 68]

C/EBPδ Essential for IL-27-dependent IL-6 expression [156]
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