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SUMMARY

The mTORC1 kinase is a master growth regulator that senses numerous environmental cues,
including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid
sufficiency by promoting the translocation of mMTORCL to the lysosomal surface, its site of
activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which
consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino
acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key
regulator of the interaction of mMTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D
must be GDP-bound for the interaction to occur. We identify FLCN and its binding partners,
FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we
reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor
suppressor.

INTRODUCTION

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master
regulator of growth. It senses a diverse set of signals, such as growth factors, nutrient and
energy levels, to regulate many anabolic and catabolic processes, including protein, lipid,
and nucleotide synthesis, as well as autophagy. Given that mTORC1 regulates a multitude of
processes, it is not surprising that the pathway it anchors is deregulated in various common
diseases, including cancer (reviewed in Howell et al., 2013; Kim et al., 2013; Yuan et al.,
2013; Zoncu et al., 2011b).

The mechanisms through which mTORC1 senses and integrates stimuli have been of great
interest over the last few years. One key upstream factor is the TSC1-TSC2 tumor
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suppressor, which suppresses mMTORC1 in response to growth factor or energy deprivation
(Brugarolas et al., 2004; Castro et al., 2003; Corradetti et al., 2005; Garami et al., 2003;
Inoki et al., 2003a; Inoki et al., 2003b; Ma et al., 2005; Reiling and Hafen, 2004; Roux et al.,
2004; Saucedo et al., 2003; Stocker et al., 2003; Tee et al., 2003a; Tee et al., 2002; Tee et
al., 2003b; Zhang et al., 2003). TSC1-TSC2 does so by inhibiting Rheb, a GTP-binding
protein that is an essential activator of the mTORC1 kinase activity (Long et al., 2005;
Sancak et al., 2007).

mTORC1 is also acutely sensitive to drops in amino acid levels, but these nutrients do not
appear to signal through TSC1-TSC2 (Nobukuni et al., 2005; Roccio et al., 2006; Smith et
al., 2005). Instead, emerging evidence indicates that mTORC1 activation by amino acids
requires a lysosome-associated machinery, comprised of the vacuolar adenosine
triphosphatase (v-ATPase), the Ragulator, and the Rag GTPases (Kim et al., 2008; Sancak et
al., 2010; Sancak et al., 2008; Zoncu et al., 2011a). Like Rheb, the Rags are members of the
Ras-related GTP-binding superfamily of proteins, but they are unusual in that they function
as obligate heterodimers of RagA or B (A/B) with RagC or D (C/D). RagA and RagB are
highly homologous and redundant, as are RagC and RagD (Hirose et al., 1998; Sancak et al.,
2008; Schiirmann et al., 1995; Sekiguchi et al., 2001). We have proposed that amino acids
signal from within the lysosomal lumen to Ragulator, in a v-ATPase-dependent fashion. In
turn, Ragulator activates RagA/B through its guanine nucleotide exchange factor (GEF)
activity. When RagA/B is loaded with GTP, the Rag heterodimer recruits mMTORC1 to the
lysosomal surface where it binds Rheb and becomes activated (Bar-Peled et al., 2013; Bar-
Peled et al., 2012; Efeyan et al., 2012).

Whereas much attention has focused on RagA/B, the role of RagC/D in mTORC1 signaling
has remained a mystery. Here, we make the surprising finding that GDP-loading of RagC is
necessary for the binding of mMTORCL to the Rag heterodimer, and that the nucleotide state
of RagC affects the activation of mMTORCL in response to amino acids. Moreover, we
identified the FLCN-FNIP complex as a potent GTPase activating protein (GAP) for RagC/
D that interacts with the Rag heterodimer in an amino acid-sensitive fashion and localizes to
the lysosomal surface upon amino acid starvation. Thus, we provide a molecular function for
FLCN, mutations in which cause the Birt-Hogg-Dubé hereditary cancer syndrome, and
reveal a role for RagC/D in amino acid signaling to mTORC1.

The RagC Nucleotide State Determines mTORC1 Binding to the Rag Heterodimer

The binding of mMTORCL1 to the heterodimeric Rag GTPases in the presence of amino acids
is a key event in the activation of mMTORCL. Using two classes of Rag nucleotide binding
mutants, we and others have shown that the interaction between the Rags and mTORC1
depends on the nucleotide configuration of the Rag heterodimer (Gong et al., 2011; Sancak
et al., 2008). The first class of mutations (RagBQ%L and RagCQ120L) is analogous to the
oncogenic H-RasQ61L mutant (Frech et al., 1994; Krengel et al., 1990) that abolishes
GTPase activity and maintains RagB or RagC loaded with GTP (Bar-Peled et al., 2012;
Sancak et al., 2008). Mutations of the second class (RagAT2IN, RagBT54N and RagCS7°N)
disrupt the coordination of the magnesium co-factor (Feig, 1999; Feig and Cooper, 1988;
John et al., 1993), resulting in mutants with much lower affinity for all nucleotides but with
likely preferential binding of GDP over GTP within cells (Bar-Peled et al., 2012; Sancak et
al., 2008).

To test the contribution of each Rag to the binding of mMTORCL1, we expressed combinations
of Rag nucleotide mutants in human embryonic kidney (HEK)-293T cells. Consistent with
previous reports (Gong et al., 2011; Sancak et al., 2008), RagBQ99L—-CS75N ¢o-
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immunoprecipitated the largest amount of endogenous mTORCL1 (Figure 1A). From these
data, as well as the observation that RagAT2IN- or RagB T>*N-containing heterodimers do
not co-immunoprecipitate mTORC1, it has been supposed that RagA/B nucleotide state is
the major determinant for mTORC1 binding (Gong et al., 2011; Sancak et al., 2008). To re-
examine which Rag heterodimer is responsible for mTORC1 binding, we
immunoprecipitated single Rag nucleotide mutants paired with wild-type partners.
Surprisingly, RagB-CS"®N, but not RagBR%L-C, was sufficient to recover large amounts of
mTORC1 similar to that of RagBR99L-CS73N syggesting that the RagC nucleotide state
determines mTORCL binding (Figure 1A).

Because the behavior of these mutants may not reflect that of nucleotide-loaded, wild-type
Rags, we developed an in vitro assay in which we load purified Rag heterodimers with
specified nucleotides and monitor their ability to bind to raptor, the Rag-binding subunit of
mTORC1. Unexpectedly, wild-type Rags loaded with GDP bound more raptor than Rags
loaded with GTP (Figure 1B), suggesting that the GDP-bound state of one or both Rags
promotes raptor binding. To determine which Rag in the heterodimer is responsible for this
effect, we employed another class of Rag nucleotide mutants that has base specificity for
xanthine rather than guanine nucleotides (Bar-Peled et al., 2012; Hoffenberg et al., 1995;
Schmidt et al., 1996). We term these RagB* and RagC* (RagBP163N RagCP18IN) 3 they
bind less than 2% of the amount of guanine nucleotides bound by their wild-type
counterparts (Bar-Peled et al., 2012). Consistent with the results obtained in cells, the RagC
nucleotide state determined raptor binding, as only GDP-loaded RagB*-C could bind raptor
(Figure 1C). Importantly, RagB-C* loaded with XDP also recovered raptor, suggesting that
the state induced by the nucleotide diphosphate loading of RagC promotes raptor binding
(Figure 1D). Thus, unlike most GTPases, which activate their effectors in the GTP-bound
state, it is the GDP-bound state of RagC that promotes raptor binding to the Rag
heterodimer.

Given that the nucleotide state of RagC is important for mTORCL1 binding, we reasoned that
expression of RagC nucleotide mutants might alter the sensitivity of the mTORC1 pathway
to amino acid levels. Indeed, expression of RagCS”>N rendered mTORC1 activity resistant
to amino acid starvation, as judged by phosphorylation of S6 kinase (S6K1), a canonical
mTORCI1 substrate (Figure 1E). Conversely, the GTP-bound mutant RagCQ120L plunted
mTORC1 activity, even in the presence of amino acids. Thus, RagC plays a pivotal role in
mediating the binding of mMTORCL to the Rag heterodimer and manipulating the nucleotide
state of RagC affects mTORC1 pathway activity.

FLCN Interacts with the Rag GTPases in an Amino Acid-Sensitive Fashion

Because RagC is critical for mTORC1 activation, we sought to identify regulators of its
nucleotide state. We employed proteomic approaches that have successfully identified other
mTORC1 pathway components (see Experimental Procedures). Mass spectrometric analysis
of anti-FLAG immunoprecipitates prepared from HEK-293T cells stably expressing FLAG-
tagged RagA, —B, —C, or —D, but not control proteins, consistently identified peptides
derived from Folliculin (FLCN) and its interacting partners, FNIP1 and FNIP2.

FLCN is evolutionarily conserved, yet its molecular function remains unknown (Schmidt,
2012; van Slegtenhorst et al., 2007). Loss-of-function mutations in FLCN cause a familial
cancer syndrome called Birt-Hogg-Dubé (BHD), characterized by hamartomatous tumors of
the hair follicle (fibrofolliculomas), kidney, and lung (BIRT et al., 1977; Nickerson et al.,
2002). Given that TSC1/2, PTEN, and LKB1—genes linked to other hamartoma syndromes
—are bona fide tumor suppressors that impinge on the mTORC1 pathway, FLCN is likely a
fregulator of the pathway (Baba et al., 2006; Guertin and Sabatini, 2007). In addition, there
is emerging evidence that FLCN plays a role in mTORC1 nutrient sensing, potentially
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implicating the involvement of the Rags. For example, deletions of the fission yeast
orthologs of FLCN and TSC1/2 have opposite effects on the expression of amino acid
metabolism genes (van Slegtenhorst et al., 2007). Furthermore, a chemical genomic screen
revealed that the deletion mutants for the budding yeast orthologs of FLCN (LST7) and the
Rags (GTR1, GTR2) exhibited similar growth sensitivities to various environmental and
chemical insults (Figure S1) (Hillenmeyer et al., 2008). FLCN forms a complex with either
FNIP1 or FNIP2, paralogs with 74% sequence similarity (Baba et al., 2006; Hasumi et al.,
2008; Takagi et al., 2008). The FNIPs directly interact with AMP-activated protein kinase
(AMPK), an energy-sensor that monitors the AMP/ATP ratio. Given these results, the
possibility that the FLCN-FNIP complex interacts with the Rags was of great interest.

To begin to verify our mass spectrometric identification of FLCN and FNIPs as Rag-
interacting proteins, we expressed them alone or in combination in HEK-293T cells.
Endogenous RagA and RagC co-immunopreciptated with FLCN when it was co-expressed
with FNIP2, but not with metap2, or when FLCN or FNIP2 were expressed alone (Figure
2A). This suggests that a FLCN-FNIP2 complex is required for either FLCN or FNIP2 to
interact with the Rags.

The Rags, Ragulator, and v-ATPase, established components of the mTORCL1 nutrient-
sensing machinery, all engage in nutrient-responsive interactions with each other (Bar-Peled
etal., 2012; Efeyan et al., 2013; Zoncu et al., 2011a). Like that of Ragulator and the v-
ATPase, the interaction between endogenous FLCN and the Rag heterodimer, isolated
through stably expressed RagB, strengthened upon amino acid starvation (Figure 2B).

FLCN is Necessary for mTORC1 Activation and Localization to the Lysosomal Membranes

Studies investigating the role of FLCN in the mTORC1 pathway in mammalian systems
have yielded equivocal results. While in most cell-based systems acute loss of FLCN
inhibits mMTORC1 activation (Bastola et al., 2013; Hartman et al., 2009; Hudon et al., 2010;
Takagi et al., 2008; van Slegtenhorst et al., 2007), deletion of FLCN in tissues in vivo,
causes mTORCL1 hyperactivation (Baba et al., 2008; Baba et al., 2012; Chen et al., 2008;
Hasumi et al., 2009) (see Discussion for more details). In the cell-based assays we have used
to study other mTORC1 components, we find that FLCN is indeed necessary for mTORC1
activation by amino acids. In HEK-293T cells, short-hairpin RNAs (shRNASs) targeting
FLCN suppressed mTORCL activation by amino acids, as read out by the phosphorylation
of S6K1 (Figure 2C). This phenotype was recapitulated in Drosophila S2 cells treated with
double stranded RNAs (dsRNAs) targeting the ortholog of FLCN, indicating that the
function of FLCN is conserved (Figure 2D). Collectively, these results show that FLCN
interacts with the Rag GTPases in a nutrient-sensitive manner and is necessary for mTORC1
activation by amino acids.

A key event in the activation of mTORC1 by amino acids is its recruitment to the lysosomal
surface by the Rag GTPases (Sancak et al., 2010). In HEK-293T cells expressing ShRNAs
targeting FLCN, mTOR failed to localize to LAMP2-positive lysosomes in response to
amino acid stimulation (Figure 2E). Unlike Ragulator, the lysosomal scaffold for the Rags,
FLCN was not required for Rag subcellular localization (Figure 2F). Thus, although the
Rags localize appropriately to the lysosomal membranes in FLCN knockdown cells,
mMTORCL1 is unable to be recruited there. These results are consistent with FLCN being
required for mTORC1 activation by amino acids (Figure 2C).
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FLCN Co-Localizes with the Rag GTPases on the Lysosomal Surface in an Amino Acid-
Sensitive Fashion

Given that FLCN and FNIPs are enriched in membranes (Takagi et al., 2008) and that FLCN
interacts with the Rag GTPases, we tested the possibility that FLCN itself may localize to
the lysosomal surface. Indeed, in HEK-293T cells co-expressing HAFNIP2, GFP-tagged
FLCN co-localized with RFP-tagged LAMP1, a lysosomal marker (Figure 3A), and this
association persisted over time as lysosomes trafficked within the cell (Figure 3B and Movie
S1). Consistent with previous reports (Takagi et al., 2008), FLCN-GFP was found diffusely
throughout the cell when FNIP2 was not co-expressed (Figure S2), suggesting that FNIP2 is
required for the lysosomal localization of FLCN.

Despite detecting amino acid-sensitive interactions between the Rags and FLCN in co-
immunoprecipitation experiments, initial tests using transiently co-expressed FLCN and
FNIP2 did not reveal appreciable nutrient-responsive changes in their localization. We
reasoned that overexpression might overwhelm endogenous regulatory mechanisms;
therefore, we sought to probe the localization of endogenous FLCN using an anti-FLCN
antibody. Although knockdown of FLCN expression did not diminish the
immunofluorescence signal of most anti-FLCN antibodies we tested, we did identify one
antibody that showed both specific (lysosomal) and non-specific (nuclear) signals (Figure
3C). Using this antibody we found that, in HEK-293T cells, endogenous FLCN was
enriched at the lysosomal surface during amino acid starvation and dispersed upon amino
acid stimulation (Figure 3C). Furthermore, in HEK-293T cells treated with Torinl, an ATP-
competitive inhibitor of mMTOR (Thoreen et al., 2009), FLCN still dispersed from the
lysosome upon amino acid stimulation (Figure 3D). Thus, FLCN localizes to the lysosomal
surface during amino acid starvation, but leaves this site upon amino acid stimulation in an
mTORC1 activity-independent manner. This regulated localization of FLCN to the
lysosomes is consistent with the increased binding of FLCN to the Rags under amino acid
starvation conditions (Figure 2B).

FLCN-FNIP2 is a GAP for RagC and RagD

Regulators of GTP-binding proteins commonly associate with either the GTP- or GDP-
bound form of their cognate GTPases (Takai et al., 2001). To investigate the molecular
function of the FLCN-FNIP complex, we asked if it exhibits any preferential binding to the
Rag GTPase mutants. Different combinations of Rag mutants were co-expressed with FNIPs
in HEK-293T cells. Interestingly, Rag heterodimers containing low affinity nucleotide
mutants behaved in opposite ways; large amounts of endogenous FLCN co-purified with the
RagBT>4N-C heterodimer, whereas little FLCN was recovered with RagB-CS7>N (Figure
4A\). In contrast, RagB-CS7>N was able to interact with mTORC1 and Ragulator, as detected
through their raptor and p18 subunits, respectively.

These binding properties are consistent with several possible functions for the FLCN-FNIP
complex. The robust binding to RagB 4N suggests that the FLCN-FNIP complex might be
a guanine nucleotide exchange factor (GEF) or GDP dissociation inhibitor (GDI) for RagB
(Bos et al., 2007; DerMardirossian and Bokoch, 2005). Intriguingly, a recent report of the
crystal structure of the FLCN C-terminal domain revealed that despite having almost no
sequence similarity, it shares structural similarity with the DENN domain, which has GEF
activity towards the Rab GTPases (Nookala et al., 2012). Alternatively, although not
mutually exclusively, the inability of FLCN to interact with RagCS"°N indicates that the
FLCN-FNIP complex prefers binding to RagC in its GTP-bound state, a property shared by
many GTPase activating proteins (GAPs) (Bos et al., 2007; Takai et al., 2001).

Mol Cell. Author manuscript; available in PMC 2014 November 21.
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Because the Rags function as obligate heterodimers, it was necessary to monitor the
nucleotide state of one Rag at a time. To accomplish this, we assembled Rag heterodimers
composed of a wild-type Rag with its appropriate Rag* partner. Thus, loading with
radiolabeled guanine and unlabeled xanthine nucleotides allowed us to selectively monitor
the nucleotide state of the wild-type Rag, as previously described (Bar-Peled et al., 2012).
Purified FLCN-FNIP complex did not stimulate or inhibit the dissociation of GDP from
RagB or RagC when coupled with either a RagX or wild-type partner (Figures S3A-S3C).
These results suggest that FLCN-FNIP does not have GEF or GDI activities towards the
Rags. Instead, the strong binding to RagBT>*N might indicate that RagB serves as a docking
site for FLCN-FNIP on the Rag heterodimer. As RagB is GDP-bound during amino acid
starvation, this behavior would be consistent with both the increased binding to the Rag
heterodimer and lysosomal localization of FLCN under this condition (Figures 2B and 3C).

We pursued the possibility that the FLCN-FNIP complex may be a GAP for RagC/D. To
assay GTPase activating activity towards one Rag at a time, we prepared Rag heterodimers
with a wild-type Rag partnered with a doubly mutated Rag that binds xanthine nucleotides
but lacks GTPase activity, termed RagBR¥L-X and RagCR120L-X  As expected, purified
GATOR1, a GAP for RagA/B (Bar-Peled et al., 2013), strongly stimulated the GTPase
activity of RagB, but not RagC or RagD (Figures 4B-4D). Conversely, purified FLCN-
FNIP2 potently stimulated GTP hydrolysis by RagC and RagD, but not RagA, RagB, or
Rap2A (a control GTPase), in a time- and dose-dependent manner (Figures 4B-4E, 4G,
S3D). Similar degrees of GAP activity were observed toward RagC when RagB* was
loaded with either XTP or XDP, suggesting that the GAP activity towards RagC/D is not
dependent on the nucleotide state of RagA/B (Figure 4F). The FLCN-FNIP1 complex was
overall less active than FLCNFNIP2 and appears to prefer RagD instead of RagC (Figures
4B and 4C).

The observed GTP hydrolysis was not due to contaminating phosphatases because addition
of purified FLCN-FNIP2 to free GTP showed minimal hydrolysis (Figure S3E).
Furthermore, an FLCN-FNIP2 complex with FLCN lacking its N-terminal region (Nookala
etal., 2012), but that still interacts with the Rags, did not exhibit GAP activity, suggesting
that this region is required for the GAP activity (Figure 4F). In contrast to a recent report
that proposed that the leucyl-tRNA synthetase (LRS) acts as a GAP for RagD (Han et al.,
2012), purified LRS did not increase basal GTPase activity of any of the Rags in any
condition tested (Figures 4B-D). Lastly, purified FLCN or FNIP2 alone did not have GAP
activity for the Rags, suggesting that an intact complex is required (Figure 4F).

As RagC-GDP is required for mTORC1 binding to the Rag heterodimer (Figure 1), we
asked if FLCN-FNIP2 GAP activity was sufficient to promote binding of mTORC1 to the
Rags in vitro. Indeed, addition of FLCN-FNIP2, but not a control protein, caused RagB*-C
loaded with GTP to bind raptor (Figure 4H). Together, these results indicate that FLCN-
FNIP2 acts as a positive component of the mTORC1 pathway by promoting the binding of
mTORCL1 to the Rag heterodimer via its GAP activity for RagC and RagD.

DISCUSSION

A growing body of evidence indicates that the Rags and Rheb are key components of a
coincidence detector mechanism that ensures mTORCL is active only in the appropriate
growth conditions (reviewed in Dibble and Manning, 2013; Efeyan et al., 2012; Kim et al.,
2013; Yuan et al., 2013). Through a Rag-mediated pathway, amino acids recruit mTORC1
to the lysosomal surface, where it can encounter Rheb. If growth factors and energy levels
are sufficient, Rheb then binds to and activates the kinase activity of mTORC1. Our new
findings support the idea that the Ragulator-Rag complex is a nutrient-regulated docking site
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for mTORCL on lysosomes, in which the nucleotide state of RagC, and likely RagD, is the
key determinant of mTORC1 binding.

Our work raises a number of intriguing questions. First, given the importance of RagC in the
binding of the Rag heterodimer to mTORC1, what is the role of RagA/B? It is clear that
RagA/B plays a dominant role in mTORC1 activation as expression of a RagA/B mutant
that is bound constitutively to GTP makes the mTORC1 pathway completely insensitive to
amino acid starvation (Efeyan et al., 2013; Kim et al., 2008; Sancak et al., 2008). A likely
possibility is that RagA/B controls a process that has not been recognized but is critical for
mTORC1 signaling. For example, RagA/B may regulate the subcellular localization of the
heterodimer, thereby controlling its access to mMTORC1. While the Rag proteins appear to be
constitutively localized to the lysosomal surface, there may be a pool of Rag heterodimers
that cycle on and off lysosomes upon amino acid stimulation, enabling them to find and
retrieve mTORC1 from its nonlysosomal location in amino acid-starved cells. This cycling
could be controlled by the RagA/B nucleotide state, which would be consistent with the
observation that the loading of RagA/B with GDP greatly strengthens the binding of the Rag
heterodimer to Ragulator, its lysosomal scaffold (Bar-Peled et al., 2012).

Such a model could also help address a second conundrum. As mTORC1 and the Rags
reside on the lysosomal surface in the presence of amino acids, why is FLCN found
diffusely in the cytoplasm under this same condition? A possibility consistent with the above
model is that FLCN activates RagC/D in Rag heterodimers that have come off the
lysosomes upon amino acid stimulation and are on route to recruiting mTORCL.
Alternatively, in amino acid starved cells FLCN might be poised at the lysosomal surface to
activate RagC/D upon the restoration of amino acid levels, but such a scenario would require
a mechanism to regulate the FLCN-FNIP GAP activity.

A third question is why FLCN is a tumor suppressor and yet in most studies in cultured cells
and whole organisms, including ours, it scores as a positive component of the TORC1
pathway (Baba et al., 2006; Bastola et al., 2013; Hartman et al., 2009; Hudon et al., 2010;
Liu et al., 2013; Takagi et al., 2008; van Slegtenhorst et al., 2007). It is possible that in
response to the suppression of mMTORC1 signaling caused by FLCN loss, cells overdrive
other pathways that more than compensate for mTORCL1 inhibition. Indeed, in FLCN-null
kidney tumors and cysts, as well as embryonic stem cells, the Ras-MAPK, Akt, and
mTORC1 pathways all appear hyperactive (Baba et al., 2008; Cash et al., 2011; Chen et al.,
2008; Hasumi et al., 2009), although this could reflect the proliferative state of the cells.
Furthermore, in FLCN-null tumors there must be a mechanism to reactivate mTORC1,
suggesting that there may be proteins that can compensate for FLCN loss. Candidates for
such a role include C9orf72 and SMCRS8, which have very little sequence homology with
FLCN, but like it, are predicted to have DENN-like domains (Levine et al., 2013; Zhang et
al., 2012). Lastly, it is likely that future studies will reveal that the FLCN-FNIP complex
funnels so far unidentified regulatory signals to the Rag pathway so as to modulate amino
acid sensing by mTORCL.

EXPERIMENTAL PROCEDURES

Cell Lysis and Immunoprecipitation

HEK-293T cells were rinsed once with ice-cold PBS and lysed with Triton lysis buffer (1%
Triton X-100, 10 mM B-glycerol phosphate, 10 mM pyrophosphate, 40 mM Hepes pH 7.4,
2.5 mM MgCl, and 1 tablet of EDTA-free protease inhibitor (per 25 ml)). When amino acid-
sensitive interactions were interrogated, cells were lysed in CHAPS lysis buffer (0.3%
CHAPS, 10 mM B-glycerol phosphate, 10 mM pyrophosphate, 40 mM Hepes pH 7.4, 2.5
mM MgCl, and 1 tablet of EDTA-free protease inhibitor (per 25 ml)). The soluble fractions
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of cell lysates were isolated by centrifugation at 13,000 rpm in a refrigerated
microcentrifuge for 10 minutes. For anti-FLAG-immunoprecipitations, the FLAG-M2
affinity gel was washed with lysis buffer 3 times and 50 pul of a 50% slurry of the affinity gel
was then added to cleared cell lysates and incubated with rotation for 3 hours at 4°C. The
beads were washed 3 times with lysis buffer containing 150 mM NaCl. Immunoprecipitated
proteins were denatured by the addition of 50 pul of sample buffer and boiling for 5 minutes
as described (Kim et al., 2002), resolved by 8%-16% SDS-PAGE, and analyzed by
immunoblotting.

For co-transfection experiments, 2,000,000 HEK-293T cells were plated in 10 cm culture
dishes. Twenty-four hours later, cells were transfected using XtremeGene 9 transection
reagent with the pRK5-based cDNA expression plasmids indicated in the Figures in the
following amounts: 100 ng HA-RagB; 100 ng HA- or HA-GST-RagC; 300 ng HA-GST-
RagBRQ99L or 300 ng HA-GST-RagB™4N: 300 ng HA-GST-RagC37>N or 300 ng HA-GST-
RagCQ120L: 100 ng FLAG-Rap2A,; 300 ng of FLAG-metap2, 300 ng of FLAG-FLCN, 300
ng of HA- or FLAG-FNIP2, and 5 ng Flag-S6K. The total amount of plasmid DNA in each
transfection was normalized to 2 pug with empty pRK5. Thirty-six hours after transfection,
cells were lysed as described above.

Amino acid Starvation of Cells

HEK-293T cells in culture dishes or coated glass cover slips were rinsed with and incubated
in amino acid-free RPMI for 50 minutes and stimulated with amino acids for 10-15 minutes.
After stimulation, the final concentration of amino acids in the media was the same as in
RPMI. A 10x amino acid mixture used to stimulate cells, which was prepared from
individual powders of amino acids. When Torinl was used, cells were incubated with 250
nM of Torinl or DMSO during the 50 minute starvation period and the 10 minute
stimulation period.

RNAIi in Mammalian Cells

Lentiviral ShRNAs targeting FLCN and non-targeting controls (Sancak et al., 2008) were
obtained from the TRC. The TRC number for each shRNA is as follows:

Human FLCN shRNA_1: TRCN0000237882
Human FLCN shRNA_2: TRCN0000237885

shRNA-encoding plasmids were co-transfected with the Delta VPR envelope and CMV
VSV-G packaging plasmids into actively growing HEK-293T cells using XtremeGene 9
transfection reagent as previously described (Sarbassov et al., 2005). Virus-containing
supernatants were collected 48 hours after transfection and passed through a 0.45 um filter
to eliminate cells. Target cells were infected in the presence of 8 ug/ml polybrene. 24 hours
later, cells were selected with puromycin and analyzed on the 3™ day after selection.

Immunofluorescence Assays

Immunofluorescence assays were performed as described in (Sancak et al., 2010). Briefly,
400,000 of the indicated HEK-293T cells were seeded on fibronectin-coated glass coverslips
in 6-well tissue culture plates. Twenty-four hours later, the slides were starved or stimulated
with amino acids as described above and fixed for 15 min with 4% paraformaldehyde in
PBS at room temperature. The slides were rinsed twice with PBS and cells were
permeabilized with 0.05% Triton X-100 in PBS for 5 min. After rinsing twice with PBS, the
slides were incubated with primary antibody in 5% normal donkey serum for 1 hr at room
temperature, rinsed four times with PBS, and incubated with secondary antibodies produced
in donkey (diluted 1:400 in 5% normal donkey serum) for 40 min at room temperature and
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washed four times with PBS. Slides were mounted on glass coverslips using Vectashield
containing DAPI (Vector Laboratories) and imaged on a spinning disk confocal system
(Perkin Elmer).

Live Cell Imaging

300,000 HEK-293T cells were seeded on fibronectin-coated glass bottom 35 mm dishes
(MatTek Corp.). The next day, cells were co-transfected using XtremeGene 9 with the
following plasmids: 90 ng FLCN-GFP (Clontech), 10 ng HA-FNIP2, 100 ng mRFP-
LAMP1, 300 ng empty pRKS5. The following day, cells were imaged on a spinning disk
confocal microscope (Andor Technology) with a 488-nm and a 568-nm laser through a 60x
objective.

Purification of Recombinant Proteins for GAP and In Vitro Binding Assays

To produce protein complexes used for GAP assays, 4,000,000 HEK-293T cells were plated
in 15 cm culture dishes. Forty-eight hours later, cells were transfected with the following
combination of constructs (all cDNAs were expressed from the pRK5 expression plasmid).
For RagB-RagCQ120L-X: 16 ug HA-RagB and 8 pg Flag-RagCQ120L-D18IN: for
RagBQ99L-X.RagC: 8 pg FLAG-RagBQL-D163N and 16 ug HA-RagC; for RagBQ99L-X.
RagD: 8 pg FLAG-RagBQ99L-D163N and 16 ug HA-RagD; for RagB*X-RagC: 8 ng FLAG-
RagBP163N and 16 ng HA-RagC. For Rags used in in-vitro binding: 8 pg HA-
GSTRagBP163N and 16 pg HA-RagC; 8 ng HA-GST-RagCP18IN and 16 pg HA-RagB; 8 pig
HAGST-RagC and 16 pg HA-RagB; GATOR1: 4 ng FLAG-DEPDCS5 and 8 ug myc-
NPRL2 and 8 pg myc-NPRL3 (Bar-Peled et al., 2013); FLCN-FNIP1: 8 pg FLAG-FNIP1
and 16 ng HA-FLCN; FLCN-FNIP2: 8 pg FLAG-FNIP2 and 16 g HA-FLCN; FLCN(AN-
term)-FNIP2: 8 pg FLAG-FNIP2 and 16 pg HA-FLCN(AN-term) (Nookala et al., 2012).
For FLCN-FNIP purifications, it is crucial to immunoprecipitate through the FNIP
component to obtain stoichiometric complexes with high activities. For individual proteins:
10 pg Flag- or HA-GST-Rap2A, 15 pg of FLAG-Leucyl tRNA synthetase (LRS), or 10 pg
Flag-Metap2, 16 ug FLAG-FLCN, 16 ug FLAG-FNIP2.

Thirty-six hours post transfection cell lysates were prepared as described above, with the
exception that for all FLCN or FNIP containing purifications, EDTA-free protease inhibitor
tablet was added to prevent degradation and for all GATOR purifications cells were lysed in
0.3% CHAPS buffer without MgCl,. 200 pul of a 50% slurry of FLAG-M2 affinity gel or
immobilized glutathione beads were added to lysates from cells expressing FLAG-tagged
proteins or HA-GST tagged proteins, respectively. Recombinant proteins were
immunoprecipitated for 3 hours at 4°C. Each sample was washed once with Triton lysis
buffer, followed by 3 washes with Triton lysis buffer supplemented with 500 mM NaCl and
finally, 4 washes with the CHAPS buffer. FLCN-FNIP complexes were rotated at 4°C in the
last Triton salt wash for 30 minutes for a cleaner purification. FLAG-tagged proteins were
eluted from the FLAG-M2 affinity gel with a competing FLAG peptide for 1 hour as
described above. All proteins were stored in CHAPS buffer supplemented with 10%
glycerol, snap frozen with liquid nitrogen and stored at —80°C.

To remove the FLAG peptide, proteins were subsequently purified on a HiLoad 16/60
Superdex 200 FPLC column (GE) pre-equilibrated with CHAPS buffer supplemented with
150 mM salt. For FLCN-FNIP purifications, 4 protease inhibitor tablets were supplemented
per 400mL of CHAPS buffer. The peak corresponding to the desired complex was
concentrated in 10,000 MW CO columns (Amicon), snap frozen in CHAPS buffer
supplemented with 10% glycerol and stored at —80°C. All proteins were verified by
Coomasie staining on a 4-16% gel.
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Rag GTP Hydrolysis Assays

GAP assays were performed essentially as described in (Bar-Peled et al., 2013). In brief, the
indicated GTPases were bound at 4°C to FLAG-M2 affinity gel. The resin was then washed
to remove unbound protein, and the GTPases were loaded with XDP (or XTP where
indicated) and [a-32P]GTP at room temperature followed by an incubation with MgCls to
stabilize the nucleotide. The GTPases were subsequently washed to remove unbound
nucleotide and eluted from the affinity gel with competing FLAG peptide. Protein
concentrations were determined prior to use.

For the TLC-based GTP hydrolysis assay, 5 pmoles of the indicated Rag heterodimer or
Rap2a loaded with xanthine nucleotides and [a-32P]GTP were added to 20 pmoles of
purified LRS, GATORL, or FLCN-FNIP in 45 pl of GTPase wash buffer. The reaction was
incubated at 25°C for the indicated times and eluted samples were spotted on PEI Cellulose
plates and developed for 2.5 hours in 0.5 M KH,PO,4 pH 3.4. Plates were exposed to film
and spot densities were quantified with ImageJ.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RagC Q120L: GTP hydrolysis mutant [RagC S75N: low affinity for all nucleotides FLAG-raptor: GOP GTP XOP XTP
X .
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Figure 1. The RagC Nucleotide State Determines mTORC1 Binding to the Rag Heter odimer and
Regulates Amino Acid Sensing by mTORC1

(A) Rag heterodimers containing RagCS’>N co-immunoprecipitate the largest amount of
endogenous mTORC1. Anti-FLAG immunoprecipitates were prepared from HEK-293T
cells expressing the indicated cDNAs. Cell lysates and immunoprecipitates were analyzed
by immunoblotting for the indicated proteins.

(B) Raptor preferentially binds a GDP-loaded Rag heterodimer. In vitro binding assay in
which recombinant HA-GST-tagged-RagB-RagC or -Rap2A were loaded with the indicated
nucleotide and incubated with purified FLAG-tagged raptor protein. HA-GST precipitates
were analyzed by immunoblotting for indicated proteins. Irrelevant lanes were removed and
indicated by a dashed line.

(C) Raptor only binds to the RagB*-C heterodimer when RagC is GDP-loaded. In vitro
binding assay in which recombinant HA-GST-tagged-RagBX-RagC or -Rap2A were loaded
with the indicated nucleotide and incubated with purified FLAG-tagged raptor protein and
analyzed as in (B).

(D) Raptor only binds to the RagB-C* heterodimer when RagC* is XDP-loaded. In vitro
binding assay in which recombinant HA-GST-tagged-RagB-RagCX or -Rap2A were loaded
with the indicated nucleotide and incubated with purified FLAG-tagged raptor protein and
analyzed as in (B).

(E) Expression of RagCS7>N or RagCQ120L renders the mTORC1 pathway insensitive to
amino acid levels. HEK-293T cells expresssing the indicated cDNAs were analyzed as in
(A). Irrelevant lanes were removed and indicated by a dashed line.

Mol Cell. Author manuscript; available in PMC 2014 November 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Tsun et al. Page 17
A N B _
N > \\ LAG-  FLAG- shRNA: GFP FLCN_1 FLCN_2
& H 2 a1
tran:geﬁlt;d: &" Q\;\Q QVO QVO‘\\ cells expressing: RapZA RagB iy actde T e
y «\y' Q\’OQ\? Q?' amino acids: "= # '"— + ®-T389-86K1 -
RagA T FLCN o
S6K1 RN o I o =
RagC - p18 - — -
FLCN
IP: HA-FNIP2 =3 P RagC - o= —
FLAG FLAG i :
FLAGFNIP2 P prpy (P)-S473-Akt # S 0 S0 9 B
FLAG-FLCN = e Akt SIS -
FLAG-metap2 @B | FLAG-Rap2A “ o
| raptor sHs SNE S S . =
RagA " s e
-—
RagC e sl s e FLCN [ 4 [T P ——
lysate HA-FNIP2 - P18 D
- dsRNA: _GFP_ dRagB dFLCN_1 dFLCN 2
FLAG-FNIP2 = lysate RagC == aminoacids: — ¥+ = +''— +' = +
FLAG-FLCN - .. FLAG-RagB = T398-dS6K
FLAG-metap2 @ | g (P)-T398-dS6 =
FLAG-Rap2A (D ASEK == B wu o wn o5 . -
E shGFP shFLCN_2 F shGFP shFLCN_2
antibody RagC LAMP2

-a.a. for
50min

mTOR  LAMP2 " mTOR __LAMP2 antibody: RagC LAMP2

-RagC

n LAMP2
- merge

-a.a. for
50min

Figure 2. FLCN-FNIP2 isa Rag-Interacting Complex and is Necessary for mTORCL1 Activation
by Amino Acids

(A) Recombinant epitope-tagged FLCN-FNIP2 co-immunoprecipitates endogenous RagA
and RagC. Anti-FLAG immunoprecipitates were prepared from HEK-293T cells expressing
the indicated cDNAs in expression vectors and analyzed along with cell lysates by
immunoblotting for indicated proteins. Irrelevant lanes were removed and indicated by a
dashed line.

(B) Amino acid starvation increases the amount of endogenous FLCN that co-
immunoprecipitates with recombinant RagB. HEK-293T cells stably expressing FLAG-
RagB were starved for amino acids for 50 min, or starved and stimulated with amino acids
for 10 min. Anti-FLAG immunoprecipitates were analyzed as in (A).

(C) FLCN is necessary for the activation of the mTORC1 pathway by amino acids.
HEK-293T cells expressing a control ShRNA or two distinct ShRNAs targeting FLCN were
starved for amino acids for 50 min, or starved and stimulated with amino acids for 10 min.
Levels of indicated proteins and phosphorylation states were analyzed by immunobloting of
cell lysates.

(D) FLCN function is conserved in Drosophila cells. Drosophila S2 cells were transfected
with a control dsRNA, or dsRNAs targeting dRagB, or dFLCN, starved of amino acids for
90 min, or starved and re-stimulated with amino acids for 30 min and analyzed as in (C).
(E) Knockdown of FLCN prevents amino acid-induced translocation of mTOR to
lysosomes. HEK-293T cells expressing the indicated ShRNAs were starved or starved and
re-stimulated with amino acids for the specified times before co-immunostaining for mMTOR
(red) and LAMP?2 (green).

(F) FLCN is not required for the lysosomal localization of RagC. HEK-293T cells
expressing the indicated ShRNAs were treated and processed as described in (E). In all
images, insets show selected fields that were magnified two times and their overlays. Scale
bars represent 10 um. See also Figure S1.
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Figure 3. FLCN Localizesto the Lysosomal Surfacein an Amino Acid-Sensitive Fashion
(A) FLCN localizes to the lysosomal surface. Spinning disk confocal image of a HEK-293T
cell co-expressing FLCN-GFP, HA-FNIP2, and mRFP-LAMP1 (pseudo-colored red and
green in merge, respectively).
(B) FLCN associates with lysosomes as they traffic within cells. Time-lapse of FLCN- and
LAMP1-positive lysosomes from the boxed region in (A) magnified by 2.5 times. Time
intervals are in seconds.
(C) FLCN localizes to the lysosomal surface upon amino acid starvation. HEK-293T cells
expressing the indicated ShRNAs were starved or starved and re-stimulated with amino acids
for the specified times before co-immunostaining for FLCN (red) and LAMP2 (green).

..

2

el b

= 2 C
O 3 =
=z r 3

LAMP2

merge

Mol Cell. Author manuscript; available in PMC 2014 November 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Tsun et al.

Page 19

(D) Amino acid-sensitive localization of FLCN is independent of mTORC1 activity.
HEK-293T cells treated with DMSO or Torinl (250 nM) were starved or starved and re-
stimulated with amino acids for the specified times before co-immunostaining for FLCN
(red) and LAMP2 (green). In (C) and (D), insets show selected fields that were magnified
two times and their overlays. All scale bars represent 10 pm.

See also Movie S1 and Figure S2.

Mol Cell. Author manuscript; available in PMC 2014 November 21.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Tsun et al.

A HA-FNIP1+ HA-FNIP2 &
transfected HA-GST-RagC: — wr wr wr Q1200 S75N
cDNAs: | FLAG-RagB: _ wr ool Tsan wr wr
FLAG-Rap2A: + — — — — —
FLCN =
raptor - . -
p18 - -
HA-GST-RagC (RGN W% o
IP:
FLAG FLAG-RagB e e
FLAG-Rap2A Wl
FLCN =& - &b &b &b o
raptor wes e s == - -
P18 . - & —
HA-GST-RagC el am ™ o
lysate FLAG-RagB e —
FLAG-Rap2A W
RagB*-RagC
Nucleotides
Condition Hydrolysis | Loaded
Buffer only 3.0% GTP, XDP
FLCN-FNIP2 84.5% | GTP, XDP
FLCN-FNIP2 84.3% | GTP, XTP
FLCN alone 5.6% GTP, XDP
FNIP2 alone 5.7% GTP, XDP
FLCN(AN-term)-FNIP2 3.8% GTP, XDP

G 90

B RagBog9L-x_RagC
r 1
FLCN FLCN
Condition: buffer LRS GATOR1 FNIP2 FNIP1
GDP .
e # # B ’
% GDP: 56+24 53%23 55:17 96609 20159
30 min
D Rag B-RangZOL'X
r 1
FLCN FLCN
Condition: buffer LRS GATOR1 FNIP2 FNIP1
GDP v
e B # .

% GDP: 1.3:02 4028 88716 16438
30 min

==FLCN-FNIP2
~metap2

80
70
60
50
40
30
20

% GDP in 10 minutes, 25°C

10 f

156+2.7

0 v T
0 1 2 3 4 5 6
Molar Ratio (Protein : RagB*-RagC)

7

binding

Page 20

C RagBoggL-x_RagD

FLCN FLCN

Condition: buffer LRS GATOR1 FNIP2 FNIP1

GDP ' '

GTP . ' . .

% GDP: 18+14 21:09 3608 963%17 52411
30 min

E Rap2A

FLCN FLCN
Condition: buffer FNIP2 FNIP1

GDP
cr § # #
% GDP: 24+08 20+07 3505
30 min
Qv
N N
& &P
W «Vo‘\ &S

&S
FLAG-raptor: "+ '+ '+ '+

. GTP GTP
HA-GST-RagB* + HA-RagC: ~ load load

HA-GST-Rap2A: + - -
in vitro FLAG-raptor mm -

assay HA-GST-RagB* -

HA-RagC o o

HA-GST-Rap2A

Figure4. FLCN-FNIP isa GTPase-Activating Protein Complex for RagC and RagD

(A) Rag heterodimers containing RagB 4N, but not RagCS7>N, co-immunoprecipitate
endogenous FLCN. Anti-FLAG immunoprecipitates were prepared from HEK-293T cells
transfected with indicated cDNAs in expression vectors. Cell lysates and
immunoprecipitates were analyzed by immunoblotting of indicated proteins.

(B) FLCN-FNIP stimulates GTP hydrolysis by RagC. 5 pmol of RagBQ99L-X-RagC was
loaded with [a-32P]GTP and incubated with indicated proteins (20 pmol). GTP hydrolysis
was determined by thin-layer chromatography (see Experimental Procedures). Each value
represents the mean = SD (n=3).
(C) FLCN-FNIP stimulates GTP hydrolysis by RagD. GAP assay was performed with
RagBRQ99L-X RagD as described in (B).
(D) GATORY, but not FLCN-FNIP1/2, stimulates GTP hydrolysis by RagB. GAP assay was
performed with RagB-RagCQ120L-X as described in (B).
(E) FLCN-FNIP does not stimulate GTP hydrolysis by Rap2A. GAP assay was performed
with the Rap2A control GTPase as described in (B).
(F) Nucleotide state of RagB does not affect FLCN-FNIP2 GAP activity towards RagC,
FLCNFNIP2 complex is required for GAP activity, and N-terminal region of FLCN is
required for GAP activity. GAP assays were performed as described in (B) with 10 min
incubations of indicated proteins. Values represent an average from at least 2 experiments.
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(G) FLCN-FNIP2 stimulates GTP hydrolysis by RagC in a dose-dependent manner. GAP
assay was performed as described in (B) with indicated molar ratios of FLCN-FNIP2 or
control metap2 to RagB*-RagC.

(H) In vitro, the FLCN-FNIP2 GAP activity is sufficient to cause raptor to bind to the Rags.
In vitro binding assay in which recombinant HA-GST-tagged-RagBX-RagC or -Rap2A were
loaded with the indicated nucleotide and incubated with purified FLAG-tagged raptor along
with FLCN-FNIP2 or metap2 control protein. HA-GST precipitates were analyzed by
immunoblotting for indicated proteins.

See also Figure S3.
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