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Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders which are currently
diagnosed solely on the basis of abnormal stereotyped behavior as well as observable deficits in
communication and social functioning. Although a variety of candidate genes have been identified
on the basis of genetic analyses and up to 20% of ASD cases can be collectively associated with a
genetic abnormality, no single gene or genetic variant is applicable to more than 1–2 percent of the
general ASD population. In this report, we apply class prediction algorithms to gene expression
profiles of lymphoblastoid cell lines (LCL) from several phenotypic subgroups of idiopathic
autism defined by cluster analyses of behavioral severity scores on the Autism Diagnostic
Interview-Revised diagnostic instrument for ASD. We further demonstrate that individuals from
these ASD subgroups can be distinguished from nonautistic controls on the basis of limited sets of
differentially expressed genes with a predicted classification accuracy of up to 94% and
sensitivities and specificities of ~90% or better, based on support vector machine analyses with
leave-one-out validation. Validation of a subset of the “classifier” genes by high-throughput
quantitative nuclease protection assays with a new set of LCL samples derived from individuals in
one of the phenotypic subgroups and from a new set of controls resulted in an overall class
prediction accuracy of ~82%, with ~90% sensitivity and 75% specificity. Although additional
validation with a larger cohort is needed, and effective clinical translation must include
confirmation of the differentially expressed genes in primary cells from cases earlier in
development, we suggest that such panels of genes, based on expression analyses of
phenotypically more homogeneous subgroups of individuals with ASD, may be useful biomarkers
for diagnosis of subtypes of idiopathic autism.
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Introduction
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect a
broad spectrum of functions, but are diagnosed primarily on the basis of deficits in
pragmatic language and communication, impaired ability to engage in reciprocal social
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interactions, as well as by stereotyped and repetitive behaviors often coupled with restricted
interests. 1 Although many genetic studies have provided evidence for high heritability, 2–7

there are still no genetic markers that are unequivocally diagnostic for idiopathic ASD. This
is in distinct contrast to the genetically-defined syndromic disorders, such as Fragile X,8, 9

tuberous sclerosis,10 Smith-Lemli-Opitz disease, 11 and Rett Syndrome, 12, 13 in which a
fraction of affected individuals are also diagnosed with ASD. The difficulty in identifying
genetic variants for idiopathic ASD is often attributed to the heterogeneity within the ASD
population, which is manifested by the broad symptomatic profile of individuals on the ASD
spectrum. Another problem associated with the majority of genetic analyses is that the
individual single nucleotide polymorphisms (SNPs) and copy number variants (CNVs)
identified as candidate biomarkers, even if replicated in a separate cohort, are each
associated with a small percentage (typically <1–2%) of the general ASD population.

Although the majority of studies directed towards biomarker identification for ASD have
focused on genetic variants, both common and rare, 4 we hypothesized that gene expression
signatures may also be informative with respect to identification of ASD. However,
realizing the challenges presented by the heterogeneity of ASD, we first divided the ASD
population into subgroups sharing similar symptomatic profiles. 14 As shown in our earlier
studies, dividing the ASD population into subgroups on the basis of cluster analyses of 123
scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument 15

resulted in the identification of distinct but overlapping gene expression profiles that
characterized each of three ASD subgroups analyzed in comparison to nonautistic
controls.16 In the current study, we conducted meta-analyses of our published gene
expression profiles of lymphoblastoid cell lines (LCL) from these 3 phenotypic subgroups of
ASD to identify differentially expressed genes that were robust in separating cases from
controls. Here, we applied class prediction algorithms to identify and test differentially
expressed genes that provide high sensitivity and specificity to separate cases and controls.
A fraction of the differentially expressed genes for one of the subtypes was confirmed by
high-throughput quantitative nuclease protection assays (qNPA), and then validated in part
with a new set of samples, demonstrating the potential of this approach for developing a
biomarker screen that can detect subtypes of ASD.

Materials and Methods
Analysis of data from ADI-R questionnaires to identify phenotypic subgroups

As previously described,14 ADI-R score sheets were downloaded for 1954 individuals with
autism from the Autism Genetic Research Exchange (AGRE) phenotype database. A total of
63 items that were identical or comparable on both 1995 and 2003 versions of the ADI-R
were included in our cluster analyses. “Current” and “ever” scores were used for most of
these items, thus giving rise to the 123 scores used to phenotype individuals with ASD. Only
items scored numerically from 0 – 3 (0 = normal; 3 = most severe) were analyzed. Cluster
analyses of the item scores were used to divide the cases into 4 subgroups that were
phenotypically distinguishable from each other on the basis of severity of symptoms across
the 63 items, using “current” and “ever” scores for most items. Gene expression data of LCL
from 3 of these ASD subgroups were used in this study as described below.

Selection of samples for large-scale gene expression analyses
In our previously published study16, lymphoblastoid cell lines (LCL) were selected from 3
of the 4 phenotypic groups for gene expression analyses to test “proof-of-concept” that
expression profiles could separate samples from individuals with ASD from that of controls
as well as to distinguish subtypes of ASD based on gene expression signatures. These
groups included individuals with severe language impairment (L), those with milder
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symptoms across all domains (M), and those defined by notable presence of savant skills
(S). Additional selection criteria were applied to exclude all female subjects (inasmuch as
the male:female ratio in ASD is ~4:1), individuals with cognitive impairment (Raven’s
scores < 70), those with reported genetic or chromosomal abnormalities (e.g., Fragile X,
Retts, tuberous sclerosis, chromosome 15q11-q13 duplication), those born prematurely (< 35
weeks gestation), and those with diagnosed comorbid psychiatric disorders (e.g., bipolar
disorder, obsessive compulsive disorder, severe anxiety), as reported in AGRE’s phenotypic
database. In addition, a score < 80 on the Peabody Picture Vocabulary Test (PPVT) was
used to confirm language deficits for those in the ASD subgroup identified by cluster
analysis as having severe language impairment. For this study, 22 cases with severe
language impairment and 22 controls from the original study were selected to validate
differential expression of the putative classifier genes by quantitative nuclease protection
assays.

Cell culture
LCL for the validation study were cultured as previously described 17 according to the
protocol specified by the Rutgers University Cell and DNA Repository, which maintains the
AGRE collection of biological materials from autistic individuals and relatives. Briefly, cells
are cultured in RPMI 1640 (MediaTech) supplemented with 15% fetal bovine serum
(Atlanta Biologicals), and 1% penicillin/streptomycin (Invitrogen). Cultures are split 1:2
every 3–4 days and cells are typically harvested for RNA isolation 3 days after a split while
the cultures are in logarithmic growth phase. The RNA was analyzed for purity and integrity
using a NanoDrop spectrophotometer and an Agilent 2100 Bioanalyzer.

Gene expression analyses using DNA microarrays
Gene expression profiling was accomplished using custom-printed TIGR 40K human arrays
as previously described.17 Total RNA was isolated from LCL using the TRIzol (Invitrogen)
isolation method according to the manufacturer’s protocols, and cDNA was synthesized,
labeled, and hybridized to the microarrays as described in our earlier study, with the
exception that cDNA from each sample was labeled with Cy-3 dye (Molecular Probes) and
hybridized against Cy-5 labeled reference cDNA prepared from Universal human RNA
(Stratagene). This “reference” design allows the flexibility to perform different comparisons
among the samples since all expression values are measured against a common reference.
After hybridization, washing of the arrays, and laser scanning to elicit dye intensities for
each element on the array, the intensity data was normalized and filtered using Midas and
analyzed using MeV, which are open-access software programs for DNA microarray
analyses. 18 The raw and normalized gene expression data for these samples were deposited
into the Gene Expression Omnibus (GEO), accession number GSE15402. All analyses for
this study were performed with a 100% data filter which means that each gene included in
the analyses must have an expression value in 100% of the samples. Unpaired t-tests on the
normalized data from cases (either combined or subtyped by ASD) and controls were used
to obtain significant differentially expressed genes (nominal p-value ≤ 0.01). These t-tests
resulted in a total of 1197, 343, and 320 genes for the language-impaired (L), mild (M), and
savant (S) subgroups, respectively, and 130 genes for the combined cases (A). The 100 most
significant genes from each list were then subjected to class prediction and validation
methods to select the most robust genes for predicting cases and controls.

Class prediction and validation methods
Two supervised machine learning methods were employed to identify highly predictive
differentially expressed genes for ASD. Program modules for Uncorrelated Shrunken
Centroids (USC) and Support Vector Machine (SVM) analyses were both contained within
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MeV software developed for microarray analyses.18 These methods were applied to
discriminate each of the members of the ASD subgroups from controls as well as to
discriminate members of the combined group of individuals with ASD from controls. The
100 most significant differentially expressed genes derived from the unpaired t-tests (p ≤
0.01) were subsequently analyzed using USC analysis with 10-fold cross-validation to
identify a reduced set of genes by removing highly correlated genes.19 SVM analyses20 with
leave-one-out (LOO) cross-validation were used to determine the accuracy, sensitivity, and
specificity of correctly assigning samples to case or control groups, using the genes from the
respective USC analyses. The flow chart in Fig. 1 describes the workflow used in this study.

Validation of putative “classifier” genes
High-throughput quantitative nuclease protection assays (qNPA) were used to confirm
differential expression of a subset of predictive classifier genes derived for the severely
language-impaired subtype of ASD as well as to validate differential expression of these
genes in a completely new set of LCL derived from cases and controls. Although the
complete lists of potentially predictive genes for this subtype ranged from 24 (Supplemental
Table 5) to 29 (Supplemental Table 1), we restricted our assay to 14 genes because of the 16
gene/microtiter well format of the qNPA platform at the time of these studies and the need
to include both positive and negative expression controls for the qNPA, the exploratory
nature of this validation assay, and fiscal constraints. Gene selection criteria for the qNPA
included presence on both gene lists, which included genes with adjusted Bonferroni p-
values ≤ 0.01 and, in one case, high level of differential expression relative to control
samples (FGFR1). The selected classifier genes/transcripts were: ALS2CL, BZRP,
C12ORF30, CASP7, DDX26, FGFR1, FLJ11021, ITGAM, JAK1, MYLE, PTPN1,
SFRS10, UPF1, and a transcript with GenBank# AI187812. Based upon SVM analysis using
the microarray expression values, the predicted accuracy, sensitivity, and specificity for this
set of 14 genes in differentiating cases from controls exceeded 93% (see last row of Table
1). Probes for these transcripts were designed by HighThroughputGenomics, Inc. (HTG) as
a contract service which included the qNPA of RNA samples provided by our laboratory.
The method of qNPA is described by Roberts et al.21 Two sets of RNA samples were
provided for qNPA. The first set of samples included RNA from LCL of 22 male cases
(severely language-impaired phenotype) and 22 male controls who were originally included
in the large-scale gene expression study.16 The second set of samples analyzed by qNPA
included RNA from LCL that were derived from 13 new cases of language-impaired male
individuals with ASD identified by our previously described phenotyping method14 and 10
new age-matched male controls. The qNPA (performed by HTG) were conducted in
triplicate for each sample and values that exceeded 3 standard deviations from the mean for
other values in the series were discarded. Data for ALS2CL was low or non-existent for the
majority of samples and were thus eliminated from the analyses. The coefficient of variance
(CV) for all samples was typically <20%. Inasmuch as the expression values for different
genes included in the qNPA covered more than 2 orders of magnitude, relative gene
expression values (obtained by dividing the mean expression value for each sample by the
highest mean expression for the respective gene) were used in order to bring expression data
for all genes to within the numerical range of 0 to1. The resulting data was then used for
SVM analyses as described above.

Pathway analysis of predictive classifier genes
Pathway analysis was accomplished using two different network prediction software
packages, Pathway Studio 7 and Ingenuity Pathway Analysis (IPA). Where provided, the p-
values, calculated on the basis of the Fisher Exact Test as implement by IPA which uses the
complete set of annotated genes as the reference set, represent the probability that the
indicated functions or disorders are not associated with the given set of genes.
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Results and Discussion
A major goal of this study was to identify sets of genes that may be used to discriminate
individuals with ASD from unaffected controls on the basis of gene expression profiles that
may ultimately be used as biomarkers to develop a diagnostic screen for autism. Towards
this goal, we performed DNA microarray analyses to obtain the gene expression profiles of
LCL of 87 autistic male individuals who were divided into 3 phenotypic subgroups based on
cluster analyses of scores on the ADI-R questionnaire 14, 16. Here, we applied gene
classification and validation software in a meta-analysis of the data derived from the
expression analyses to identify sets of genes that have a high statistical probability of
predicting cases and controls for each of the 3 ASD subtypes that we studied. To establish
proof-of-concept that small sets of differentially expressed genes may be used to distinguish
cases from controls, we used high-throughput qNPA to first confirm that a subset of
“classifier” genes for the severely language-impaired subtype of ASD could replicate the
separation of cases and controls achieved by cDNA microarray analyses, and then tested the
performance of this limited set of genes in classifying new samples of cases and controls on
the basis of qNPA.

Identification of classifier genes for 3 phenotypic variants of ASD
The phenotypic subgroups of ASD that were studied included one group with severe
language impairment (n = 31), another of moderate severity with noticeable savant skills (n
= 30), and a subgroup with an overall mild phenotype (n = 26), as previously described.14

Gene expression data on LCL from these 3 phenotypic subgroups were obtained using a
40K TIGR human cDNA array with 39,936 probe elements.16 Using MeV microarray
analysis software,18 the resulting data were subjected to a 100% data filter that eliminated
genes that were undetectable in any one of the samples under study. Unpaired t-tests were
performed on the filtered data from each of the ASD subgroups and from the nonautistic
controls to identify significantly differentiated genes (nominal p ≤ 0.01) between each
subgroup and the group of controls (n = 29). An unpaired t-test was also used to identify
differentially expressed genes (nominal p ≤ 0.01) between the combined cases (n = 87) and
the 29 controls. Two different supervised learning methods were used to select and validate
genes from each of the resulting sets of differentially expressed genes for our predictive
models. Uncorrelated Shrunken Centroids (USC) with 10-fold cross-validation 19 as
implemented in MeV software18 was first used to select the most robust classifier genes
from the lists of significant genes (Supplemental Tables 1–4). The limited sets of subtype-
dependent classifier genes from the USC analyses (ranging from 18–29) were then entered
into the support vector machine (SVM)20 software program using leave-one-out (LOO)
cross-validation to test the gene classifier for each of the phenotypic variants. As shown in
Figures 2A–C and Table 1, the SVM analyses suggest that gene classifiers based upon a
relatively small number of differentially expressed genes can discriminate between each of
the ASD phenotypic variants with an overall accuracy of ~93%, with the number and
identity of classifier genes dependent on the phenotype. As shown in Table 1, the sensitivity
of the predictive gene panels was ~96% for all 3 ASD subtypes, while the specificity ranged
from 90–93%. As an alternative to the USC method of identifying highly predictive genes
described above, we also employed a t-test with an adjusted Bonferroni correction for
multiple testing (corrected p ≤ 0.01) to identify significantly differentially expressed genes
between the severely language-impaired ASD subgroup and controls. The resultant set of 24
genes (Supplemental Table 5) could also correctly distinguish ASD from controls with 90%
accuracy as indicated by SVM analysis (Table 1, row 5). Six of these genes overlapped with
those identified by the USC algorithm. By comparison, if the combined autistic samples (n =
87) are tested against the nonautistic controls (n = 29) using the USC and SVM procedures
described earlier, the accuracy of correct assignment to case or control groups is 81% with a
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sensitivity of ~91% and a specificity of 61%, based upon 74 differentially expressed genes
(Table 1, Fig. 2D, and Supplemental Table 4), thus demonstrating the value of
subphenotyping of cases to identify genes for improved classifier performance. Despite the
low overall specificity, it is interesting to note that the classifier based on 74 genes shows
the best performance in separating the most severely affected individuals with language
impairment from the control group, with only one out of 31 ASD samples incorrectly scored
as “negative”.

Partial replication and validation of classifier gene expression differences using high-
throughput quantitative nuclease protection assays

To test the ability of the proposed classifier genes to discriminate between ASD cases and
controls, another highly sensitive method of detecting gene expression, high-throughput
quantitative nuclease protection assay (qNPA), was used: 1) to confirm differential
expression of putative classifier genes using LCL derived from individuals with severe
language impairment and nonautistic controls that were used previously for DNA
microarray analyses; and 2) to validate this same set of classifier genes with completely new
LCL from cases and controls. The normalized qNPA data from each of these studies are
provided in Supplemental Tables 6 and 7, respectively. Support Vector Machine analyses
were used to assess the performance of the selected classifier genes in discriminating cases
from controls in both studies. Table 2 summarizes the results of the SVM analysis (with
LOO cross-validation) based on the qNPA expression data obtained using 22 cases and 22
controls from the original samples that were previously analyzed by DNA microarray
analyses.16 As shown, the sensitivity and specificity of the test genes for assignment of
samples to the correct groups (cases vs. controls) were 78 and 80%, respectively. This is in
general agreement with the separation of individual samples based on unsupervised principal
components analysis of the qNPA data (Fig. 3A), which captures >72% of the gene
expression variation among the samples within the first 3 principal components.

Table 3 and Fig. 3B show the results of SVM analysis using the qNPA data obtained with
completely new LCL from the subgroup of severely language-impaired individuals with
ASD and nonautistic controls. As shown, the sensitivity and specificity of the classifier
genes when applied to this new set of samples were 90.9% and 75%, respectively. While the
specificity is less than desired, it is notable that the sensitivity for identifying cases, which is
highly desirable for screening purposes, exceeded 90%. It is also important to note that, due
to the limited number of genes that could be tested per sample well in the qNPA, the number
of potential classifier genes tested in the qNPA was restricted to less than half (14) of the 29
genes previously identified by class prediction analyses of the DNA microarray data.
Furthermore, the controls used in the qNPA studies are siblings of individuals with ASD
(but not of the cases used in this study) who may share an overlapping gene expression
profile with their autistic sibling, but who do not exhibit behaviors or ASD characteristics
that meet the diagnostic criteria for ASD. Both of these factors, coupled with the limited
number of tested samples, may account for the lower than predicted sensitivity and
specificity (~93%) for this set of genes based on DNA microarray data (Table 1, last row).

Pathway analysis of predictive classifier genes
Although the usefulness of classifier genes as biomarkers of ASD need not depend explicitly
on their functions relative to the disorder, we undertook pathway analyses to determine
whether the identified genes were relevant to functions associated with ASD. Figure 4
shows the network generated using the 29 transcripts (Supplemental Table 1) that are
predictive for identifying ASD individuals with severe language disorder. The functions
associated with 15 annotated genes from this list include neurite outgrowth, embryonic
development, cell proliferation and translation, which are all known to be impacted by ASD.
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Disorders associated with some of these genes include absence and myoclonic seizure,
Huntington’s disease, major depression, and schizophrenia, demonstrating overlapping
genes and pathways impacted by these different neurological disorders (Supplementary
Table 8). The gene network constructed with the classifier genes associated with the “mild”
phenotype (Supplemental Table 2) revealed functions associated with chromatin
remodeling, muscle function, cell proliferation and differentiation, survival, and apoptosis
(Figure 5), with two genes identified by Ingenuity Pathway Analysis software as being
associated with neurological disease. MARCKS is involved in mania22 and microglial
activation23 and an isoform of TRIO is implicated in Purkinje cell degeneration.24 The
“savant” phenotype, classified according to only 18 transcripts (Supplemental Table 3),
revealed a network that included dendrite morphogenesis, synapse maturation and
transmission in addition to cell proliferation and apoptosis among the gene-associated
biological functions (Figure 6). These results suggest that the genes identified by class
prediction analyses are functionally meaningful with respect to what is known about the
pathophysiology of autism.

Study limitations and future directions
This study was undertaken in order to assess the feasibility of identifying a small set of
genes capable of distinguishing individuals with ASD from unaffected, unrelated controls.
However, as mentioned earlier, the unrelated controls from the AGRE repository are
siblings of probands with ASD and may bear some gene expression similarities with that of
individuals with ASD, which would have the effect of attenuating expression differences
between the cases and controls in our study. In fact, a recent study on the gene expression
profiles of case-control siblings and unrelated, unaffected individuals without a family
history of ASD suggests that the gene expression pattern of some of the undiagnosed sibling
controls resembled that of their affected sibling while the expression profile of other siblings
resembled that of the unrelated controls.25 Another possible confounder might be that of
population structure which has been reported in a meta-analysis26 of a genetics study27 that
identified risk alleles for ASD where the cases and controls were reportedly from different
ancestral populations. However, both cases and controls used in this study are from the
AGRE collection of white Americans of various European ancestries which may reduce the
effect, if any, of population structure on gene expression differences. Other limitations,
related to the qNPA platform and cost per assay, were the use of less than the full set of
classifier genes in the qNPA studies and the relatively small number of samples. Thus, the
class predictor based on gene expression still requires optimization with regard to the
number and selection of genes for each subtype of ASD. Nevertheless, the results from this
pilot study still reveal the potential for developing a predictive and subtype-dependent gene
classifier for ASD based on a limited set of genes. For clinical translation, these gene panels
should be further investigated as potential biomarker screens for idiopathic autism using
primary blood cells. Two recent studies demonstrate that transcriptomic signatures derived
from both primary lymphocytes and mononuclear cells have a predictive value for
identifying cases with accuracies of 68% and 91%, respectively,28, 29 thus reinforcing the
idea that a diagnostic screen for ASD might be developed using peripheral tissues. Finally,
since the mean age of the individuals with ASD represented in this study was 9.6 (range
4.5–17) years for the qNPA and 12.5 (range 5–37) years for the microarray analyses,
longitudinal studies are needed in order to determine the earliest times of development for
which expression differences can be reliably detected and used diagnostically.

Conclusions
This study is the first to report class prediction methods for identifying potential biomarkers
of idiopathic autism based upon gene expression profiling of LCL. In particular, we
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establish proof-of-concept that individuals with idiopathic autism can be segregated from
nonautistic controls with a moderate to high degree of accuracy, good sensitivity, and
reasonable specificity based upon gene panels comprised of a relatively small number of
differentially expressed genes, which are specific for different phenotypic variants of ASD.
Although additional validation studies with a larger cohort of cases and controls are needed,
and effective clinical translation must include confirmation of the differentially expressed
genes in primary cells from cases obtained at younger ages, we suggest that the strategy
demonstrated here of reducing clinical heterogeneity for class prediction analyses will aid in
the identification of robust biomarkers for not only diagnosis of ASD, but also as
pharmacogenomic indicators of the subphenotype of ASD which may be uniquely amenable
to subtype-targeted therapies. Early identification of autism based on objective gene
screening is a major first step towards early intervention and effective treatment of affected
individuals.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Workflow for class prediction analyses
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Fig. 2. Performance of “classifier” genes for ASD subtypes vs. control samples
The differentially expressed genes used for class prediction were selected by USC with 10-
fold cross-validation. SVM analyses of microarray expression data for the selected genes
show: A) Separation of severely language-impaired ASD (L, red) from controls (C,
turquoise) based on 29 genes; B) Separation of mild ASD (M, blue) from controls (C ) based
on 27 genes; C) Separation of ASD with savant skills (S, yellow) from controls (C ) based
on 18 genes; D) Separation of combined ASD samples (each subtype represented by its
respective color) from controls.
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Fig. 3.
A) Principal components analysis of the qNPA data for cases and controls. Quantitative
nuclease protection assays were performed on LCL [22 cases of the severely language-
impaired subtype (red) and 22 controls (turquoise)] that were previously analyzed by DNA
microarray analyses. Principal components analysis of the qNPA data shows good
separation of the samples based on 14 differentially expressed genes, with 72% of the
variance represented within the first 3 principal components. B) SVM analysis of the qNPA
data for a new set of 13 cases (red) and 10 controls (turquoise). For the SVM analyses,
cases were initially identified as positives and controls as negatives for training the
classifier.
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Fig. 4.
Interactive gene network of classifier genes associated with the severely language-impaired
subtype of ASD.
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Fig. 5.
Interactive gene network of classifier genes associated with the “mild” subtype of ASD.
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Fig. 6.
Interactive gene network of classifier genes associated with the “savant” subtype of ASD.
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Table 2

Validation of selected classifier genes on original samples from severe language subtype by quantitative
nuclease protection assay

Sample Description Number Sensitivity (%) Specificity (%)

Positive Cases 22

Classified as positive 23

True positives 18 78.2

False negatives 5

Controls 22

Classified as negative 21

True negatives 17 80.9

False positives 4

Results are from SVM analysis of the qNPA data.
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Table 3

Class prediction performance of selected classifier genes on new samples from severe language subtype by
quantitative nuclease protection assay

Sample Description Number Sensitivity (%) Specificity (%)

Positive Cases 13

Classified as positive 11

True positives 10 90.9

False negatives 1

Controls 10

Classified as negative 12

True negatives 9 75

False positives 3

Results are from SVM analysis of the qNPA data.
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