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ABSTRACT

In the past 15 years, there has been an increased under-
standing of the tumor biology of renal cell carcinoma
(RCC). The identification of vascular endothelial
growth factor (VEGF), its related receptor (VEGFR),
and the mammalian target of rapamycin as dysregulated
signaling pathways in the development and progression
of RCC has resulted in the rational development of
pharmaceutical agents capable of specifically targeting
key steps in these pathways. Clinical trials have demon-
strated survival benefit with these agents, particularly
in clear cell RCC patients. However, metastatic RCC

will progress in all patients, resulting in a critical need to
determine patient risk and optimize treatment. The goal
of this article is to highlight the significant break-
throughs made in understanding the critical genetic
alterations and signaling pathways underlying the
pathogenesis of RCC. The discovery of prognostic fac-
tors and development of comprehensive nomograms to
stratify patient risk and predictive biomarkers to facil-
itate individualized treatment selection and predict
patient response to therapy also are reviewed. The On-
cologist 2011;16(suppl 2):4–13

INTRODUCTION

Renal cell carcinoma (RCC) accounts for approximately
3% of all cancer diagnoses in the U.S. each year [1]. In the
U.S. in 2010, 58,000 individuals were diagnosed with RCC
and approximately 13,000 died [1]. Despite these sobering
statistics, significant progress has been made in our under-
standing of the tumor biology of RCC in the past 15 years.
What was once historically thought of as a single disease
entity is now correctly recognized as a group of heteroge-
neous malignancies with distinct genetic abnormalities and
natural histories. Five major subtypes are currently recog-
nized: clear cell, papillary (type I and type II), chromo-

phobe, collecting duct, and unclassified RCC (Table 1) [2].
This classification was made possible by advances in genet-
ics and molecular biology that have provided insight into
the alterations underlying these renal cortical tumor types
and the subsequent downstream molecular pathways in-
volved in their tumorigenesis. The goals of this review
article are to highlight the major genetic alterations un-
derlying our current understanding of these renal cortical
tumors, the crucial biological pathways that become al-
tered in the various RCC subtypes, prognostic factors,
and how an understanding of these molecular pathways
has permitted the rational development of pharmaceuti-
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cal agents capable of specifically targeting key steps in
these pathways.

TUMOR BIOLOGY OF RCC
Much of our current knowledge of the underlying genetics
and molecular biology of sporadic RCC is based on the
seminal work of Linehan [3] through the study of familial
kidney cancer and von Hippel Lindau (VHL) disease. Sub-
sequently, the corresponding genetic and molecular alter-
ations in seven autosomal dominant familial syndromes
were identified, providing the basis for non–clear cell tu-
mor biology [4].

CLEAR CELL RCC AND

THE HYPOXIA-INDUCIBLE PATHWAY

Linkage analysis of VHL-associated clear cell tumors in
1993 led to the identification of loss of the short arm of
chromosome 3 and the VHL gene [5, 6]. The VHL gene mu-
tation was then found in sporadic RCC cases [7]; indeed,
approximately 60%–80% of sporadic RCC cases harbor a
mutated VHL gene [8]. Multiple mutations have been de-
scribed resulting in inactivation, including intragenic muta-
tions, deletions, and splicing aberrations [4]. The VHL gene
is a tumor-suppressor gene that encodes the VHL protein,
which is one component of the E3 ubiquitin–ligase com-
plex, along with elongin B, elongin C, and cullin 2 [4, 9,
10]. In its normal functional state and under normoxic con-
ditions, the VHL complex targets hypoxia-inducible tran-
scription factors (e.g., HIF-�, HIF-2�) for ubiquitin-
mediated proteolysis by hydroxylation (Fig. 1) [11].
Because HIF regulates a host of important downstream tar-
gets (hypoxia-inducible genes), such as vascular endothe-
lial growth factor (VEGF), epidermal growth factor,
transforming growth factor �, platelet-derived growth fac-

tor (PDGF), erythropoietin, and glucose transporter 1, it
plays a crucial role in tumor angiogenesis [4]. Under hy-
poxic conditions, unhydroxylated HIF is upregulated and
skirts degradation by the VHL complex. However, if the
VHL complex is defective as a result of genetic mutation,
the same result occurs—HIF accumulates, translocates to
the nucleus, and leads to transcription of angiogenic factors
and tumorigenesis [4]. RCC tends to be a highly vascular
tumor with high expression of VEGF, VEGF receptor
(VEGFR), PDGF receptor, and basic fibroblast growth fac-
tor (bFGF) [8].

NON–CLEAR CELL RCC

Papillary RCC and the Mesenchymal–Epithelial
Transition Pathway
Hereditary papillary RCC (HPRC) syndrome results in bi-
lateral, multifocal papillary type 1 tumors [4]. Linkage
analysis in the late 1990s resulted in the identification of the
gene responsible for HPRC, the proto-oncogene mesenchy-
mal–epithelial transition factor (MET) [12, 13]. The MET
gene encodes a tyrosine kinase membrane receptor (the
MET receptor). The MET gene and that of its ligand, hepa-
tocyte growth factor (HGF), are both located on chromo-
some 7. Approximately 75% of sporadic papillary RCC
cases are associated with trisomy 7 [14]. When HGF binds
to the MET receptor, a signaling cascade occurs, resulting
in multiple events. With a gain-of-function mutation, the re-
ceptor is constitutively activated, resulting in a dysregu-
lated tumorigenic state. Of note, hypoxic conditions
upregulate MET along with VEGF, promoting angiogene-
sis [15]. Multiple tyrosine kinase inhibitors (TKIs) with
activity against MET pathways exist and anti-HGF mono-
clonal antibodies currently are in clinical trials [4].

Fumarate Hydratase Gene and Hereditary
Leiomyomatosis RCC
Individuals with hereditary leiomyomatosis RCC have
been found to have mutations in the fumarate hydratase
(FH) gene, located on the long arm of chromosome 1 [4].
FH is a tumor suppressor gene that encodes a Krebs cycle
enzyme. Mutation of the gene results in derangement of mi-
tochondrial conversion of fumarate to malate in the tricar-
boxylic acid cycle, leading to overaccumulation of
fumarate, hypoxia, and upregulation of HIF [16]; patients
characteristically develop papillary type II RCC. Clearly,
the link between this disease process and HIF regulation
suggests a potential role for anti-VEGF or VEGFR TKI
therapy.

Table 1. Current classification of renal cell tumors and
frequency in a surgical series of 1,600 consecutive
patients with renal cell tumors at University of
California–Los Angeles [2]

Benign neoplasms 7%

Papillary adenoma

Renal oncocytoma

Metanephric adenoma

Malignant neoplasms 93%

Clear cell renal carcinoma (82%)

Papillary renal carcinoma (11%)

Chromophobe renal carcinoma (5%)

Collecting duct carcinoma (�1%)

Renal cell carcinoma, unclassified (2%)
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Birt-Hogg-Dubé Syndrome
Renal tumors in Birt-Hogg-Dubé (BHD) syndrome can
have variable histology, including oncocytic-chromophobe
hybrid, pure chromophobe, clear cell, and oncocytoma.
BHD syndrome is caused by loss-of-function mutations in
the folliculin gene (FLCN) (BHD gene) [3]. The FLCN
gene is a tumor suppressor gene located on 17p11.2 that en-
codes for the protein folliculin [4, 17]. Folliculin is a 64 kDa
protein whose function is incompletely understood. Inacti-
vation of the FLCN gene results in the development of poly-
cystic kidneys and renal tumors in mouse models, and
inactivating mutations have been identified in BHD-asso-
ciated RCC, confirming the tumor suppressor function of
the gene [18, 19]. There are some indirect data suggesting
an interaction between folliculin and adenosine monophos-
phate-activated protein kinase of the mammalian target of
rapamycin (mTOR) complex 1 (mTORC1) via an interac-
tion with two novel proteins called folliculin-interacting
protein 1 and folliculin-interacting protein 2 [18, 20]. Based
on its position in this pathway, folliculin could hold a nu-
trient-/energy-sensing role [19]. In several other studies,
loss of FLCN function was associated with mTORC1 and

phosphorylated ribosomal protein S6 (pS6) activity during
renal cystogenesis and tumorigenesis [19, 21, 22]. Based on
the sum of these data, mTOR inhibitors may represent a ra-
tional therapeutic approach in this disease process.

Phosphatidylinositol-3-Kinase/Akt Pathway
The phosphatidylinositol-3-kinase (PI3K)/Akt pathway
has been associated with oncogenesis in a variety of ma-
lignancies [23]. PI3Ks are a family of lipid kinases that
phosphorylate the inositol ring 3�-OH group of inositol
phospholipids (PIPs) [24]. In response to extracellular
growth factor activation of tyrosine kinases, PI3K activa-
tion occurs (Fig. 1); PIP phosphorylation leads to activation
of several proteins including the serine/threonine kinase
Akt/protein kinase B (PKB) [25]. PIP can be dephosphory-
lated by tumor suppressor phosphatase and tensin homolog
deleted on chromosome 10 [26]. Akt/PKB is involved in the
regulation of different cellular processes relating to cell sur-
vival and cell cycle regulation; several notable targets in-
clude mTOR, glycogen synthase kinase 3, p21, p27, insulin
receptor substrate 1, and Raf-1 [27]. One mediator of Akt–
mTOR interaction is the tuberous sclerosis heterodimer

Figure 1. Important pathways involved in renal cell carcinoma biology and tumorigenesis [11].
Abbreviations: 4e-BP1, 4E binding protein 1; CAIX, carbonic anhydrase IX; EGF, epidermal growth factor; EGFR, EGF

receptor; GLUT-1, glucose transporter 1; HIF, hypoxia-inducible factor; IGF, insulin-like growth factor; MAPK, mitogen-
activated protein kinase; mTOR, mammalian target of rapamycin; PDGF, platelet-derived growth factor; PI3K, phosphatidylino-
sitol-3-kinase; PTEN, phosphatase and tensin homologue deleted on chromosome ten; TGF-�, transforming growth factor �;
VEGF, vascular endothelial growth factor; VHL, von Hippel Lindau.

Reprinted from Klatte T, Pantuck AJ. Molecular biology of renal cortical tumors. Urol Clin North Am 2008;35:573–580,
copyright 2010, with permission from Elsevier.
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protein complex TSC1/2, which acts to suppress mTOR
activity.

mTOR Pathway
The mTOR protein is an intracellular serine/threonine ki-
nase involved in regulation of cell growth, proliferation,
survival, and metabolism [28, 29]. Because of its key in-
volvement in these pathways that couple growth stimuli to
cell cycle progression, mTOR is critically involved in car-
cinogenesis [30]. As evidenced by its role in numerous cell
processes, it is situated at a convergence point of multiple
pathways (Fig. 1) [29]. mTOR inhabits two separate com-
plexes, mTORC1, consisting of mTOR, regulatory associ-
ated protein of TOR, and G�L (mLST8), and mTORC2,
composed of rapamycin-insensitive companion of TOR,
G�L, and SAPL interacting protein 1 [29, 31]. Various
growth factors, nutrients, hormones, and mitogens stimu-
late mTOR, resulting in protein synthesis, degradation, or
angiogenesis [27]. Key downstream effectors of mTORC1
are the ribosomal S6 kinase and the eukaryotic translation
initiation factor 4E binding protein 1 [32]. mTOR serves as
a therapeutic target in RCC for a number of reasons.
mTORC1 is involved in the regulation of oncogenic pro-
teins such as HIF-1�, VEGF, FGFs, cyclin D1, and c-Myc.
For example, one consequence of inactivation of the mTOR
pathway is an increase in HIF-1 gene expression [27].
mTORC2, on the other hand, is important for cell survival.

HISTOLOGIC SUBTYPE SUBPOPULATIONS

Although we traditionally have organized RCC into clear
cell tumors and non– clear cell subtypes, emerging data
gleaned from advances in our understanding of the molec-
ular biology of each of these entities have enabled subclas-
sification based on molecular features. Gordan et al. [33]
recently identified distinct populations of clear cell RCC
phenotypes: wild-type VHL, which did not widely express
HIF-1 or HIF-2; VHL mutated or hypermethylated tumors,
which were subdivided into HIF-1/HIF-2 expressing; and
HIF-2–expressing tumors. Further study of these subpopu-
lations of tumors is warranted.

DISCOVERY OF NEW AND MORE

EFFECTIVE TREATMENTS

Metastatic RCC (mRCC) historically has been insensitive
to chemotherapy and hormonal therapy. For decades, the
only treatments that showed some biologic activity in RCC
were nonspecific immune-based therapies and cytotoxic
chemotherapeutic agents.

With elucidation of the molecular pathways involved in
RCC pathogenesis, biologic rationale has guided the selec-
tion of key therapeutic targets such as VEGF and the mTOR

pathway. The currently available agents include TKIs (sor-
afenib, sunitinib, pazopanib, axitinib), VEGF antibodies
(bevacizumab), and mTOR inhibitors (everolimus, tem-
sirolimus). Numerous TKIs, including cediranib and erlo-
tinib, are in various phases of testing.

Despite the rapid expansion of this new armamentarium
against mRCC, immunotherapy has remained the only
treatment capable of inducing durable clinical complete re-
sponses (CRs). Interferon (IFN)-� was the first cytokine
that was studied in patients with mRCC, demonstrating re-
sponses in up to 26% of patients [34, 35]. Shortly thereafter,
reports of CRs also were found with interleukin (IL)-2–
based treatments in up to 13% of patients [36, 37]. Recent
data from the “Select” trial using high-dose IL-2 reported a
response rate of 28%, with a CR rate of 6% [38]. Early stud-
ies that established the immune susceptibility of RCC and
heralded the “cytokine era” laid the framework for the de-
velopment of novel immunotherapeutic approaches.

Recent strategies have employed tumor vaccines that
stimulate the innate immune system to recognize and elim-
inate cells that express tumor-specific antigens. Novel strat-
egies using genetically modified tumor cells, antigen-
presenting cells, or tumor-specific peptides have been
developed to increase the specificity of the response. Re-
cent phase III clinical trials using autologous cell lysate
showed a statistically significant higher 5-year progression-
free survival (PFS) rate [39]. A more specific multimodal
immune-based approach employed the use of dendritic
cells (DCs), potent antigen-presenting cells that can be
loaded with a specific tumor antigen to induce T-cell–
specific cytotoxicity. The University of California–Los An-
geles (UCLA) group created a fusion gene based on a
highly specific RCC-associated antigen carbonic anhydrase
IX (CA9 or CAIX) and GM-CSF, a cytokine that stimulates
DC proliferation. The fusion gene was inserted into an ad-
enovirus-based platform to infect DCs and allow the ex-
pression of the GM-CSF–CA9 fusion protein [40, 41].
Currently, clinical trials are under way with this innovative
strategy. Other investigators recently described the use of
lentiviral vector systems to target DCs. Yang et al. [42] cre-
ated a construct containing a transgene for a glycoprotein
called SVGmu, which targets the surface protein DC-spe-
cific intercellular adhesion molecule-3-grabbing non-inte-
grin. This surface receptor is an ideal DC target given its
capacity for binding and endocytosis of materials [43].
Vaccinia-based approaches were also recently investigated
[44, 45]. Amato et al. [44] used an attenuated vaccinia virus
designed to deliver the tumor antigen 5T4, an oncofetal pro-
tein expressed in most RCCs. In a phase III, randomized,
double-blind study of patients with mRCC, MVA-5T4 or
placebo was administered to patients in combination with
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standard-of-care IL-2, IFN-�, or sunitinib. Although 5T4-
specific antibody responses were detected and associated
with longer survival, no significant difference in terms of
overall survival was appreciated between cohorts. A similar
strategy was taken in a recent phase II study of a novel can-
cer vaccine, TG4010, which consists of a vaccinia virus ex-
pressing mucin (MUC)-1 and IL-2 [45]. Although this
vaccine demonstrated definitive cellular and humoral im-
mune responses for patients with MUC-1–expressing tu-
mors, no survival benefit was realized. Other novel
vaccines, using a variety of vectors and constructs, cur-
rently are under investigation.

PROGNOSTICATION/PREDICTING RESPONSE

TO THERAPY

Classic prognostic variables such as tumor–node–metasta-
sis (TNM) stage, Fuhrman grade, and pathologic subtype
have been limited in their ability to risk stratify patients for
the development of metastases. As molecular techniques
have evolved and high-throughput methods have been op-
timized, the identification of novel prognostic biomarkers
has rapidly increased. Incorporation of biomarkers into
standard predictive nomograms has led to better prognosti-
cation.

CAIX is a HIF-1�–regulated transmembrane protein in-
volved in regulating intracellular and extracellular pH lev-
els in response to hypoxic stress, which is present in 94% of
clear cell RCC cases but absent in most normal tissues [46].
An immunohistochemical threshold of 85% CAIX staining
stratified patients into two risk groups; low CAIX (�85%)
staining was an independent poor prognostic factor for sur-
vival for patients with mRCC (hazard ratio [HR], 3.10; p �
.001).

VEGF is another biomarker that has been independently
associated with survival. VEGF can undergo differential
splicing into at least four different isoforms [47, 48]. Ele-
vated serum VEGF levels have been associated with shorter
survival [49, 50]. In one study, lower VEGF levels were
found in patients with localized RCC than in those with lo-
cally advanced RCC or mRCC [49]; univariate analysis
demonstrated that patients with a serum VEGF level
�343.5 pg/ml had a significantly shorter survival time than
patients with lower levels (p � .0001).

As discussed above, HIF-1� is a central regulator of an-
giogenesis and other protumoral events. Klatte et al. [51]
recently investigated the association between tissue mi-
croarray–based HIF-1� nuclear expression and outcome to
determine the prognostic value of this biomarker. HIF-1�

was overexpressed across all RCC subtypes, with clear cell
RCC exhibiting the highest expression. In a subsequent
analysis of the clear cell group among patients with meta-

static disease, a high HIF-1� expression level (�35%) was
independently associated with shorter survival than a low
expression level (�35%; median survival time, 13.5
months versus 24.4 months, respectively; p � .005). Other
groups have demonstrated mixed results when evaluating
cytoplasmic HIF staining [52, 53]. Ku et al. [54] assessed
HIF-1� and HIF-2� expression within individual tumor ep-
ithelial and sarcomatoid regions; they observed predomi-
nantly cytoplasmic HIF staining, with expression in both
epithelial and sarcomatoid components (epithelial � sarco-
matoid). HIF-1� and HIF-2� were not expressed in the sar-
comatoid component in about 50% of clear cell RCC cases,
whereas HIF-2� was overexpressed in the epithelial com-
ponent in most tumors. Multivariate analysis demonstrated
statistically significant higher PFS and cancer-specific sur-
vival (CSS) rates for patients with HIF-1� expression, but
only for those who had tumors with sarcomatoid differen-
tiation (PFS: HR, 0.27; p � .05. CSS: HR, 0.22; p � .029).
In contrast, HIF-2� expression was not independently as-
sociated with survival. Among mRCC patients treated with
IFN-� or temsirolimus, HIF-1� expression in the primary
tumor was not related to the overall response rate or sur-
vival [55].

Other markers of interest include survivin, a protein ex-
pressed across all histologic RCC subtypes, which is anti-
apoptotic as a result of inhibition of procaspase processing
and direct binding of caspases [56]. Overexpression of sur-
vivin has been linked to adverse tumor features and poor
prognosis [57, 58]. B7-H1, a cell surface glycoprotein that
participates in T-cell costimulation, is a another marker of
interest that was independently correlated with a greater
risk for RCC death [59]. Finally, an intriguing study by
Bluemke et al. [60] correlated the presence of circulating
tumor cells and lymph node positivity, distant metastases,
and the risk for tumor-related death. Other studies evaluat-
ing the significance of circulating endothelial cells and cir-
culating tumor enzymes are under way [61, 62].

Various cytogenetic changes in RCC have been associ-
ated with prognosis (Table 2). Recently, among patients
with clear cell RCC, deletions of 3p were associated with a
better prognosis (p � .03) than with loss of 4p, 9p, and 14q,

Table 2. Common genetic alterations in clear cell,
papillary, and chromophobe renal cell carcinoma [2]

Subtype Typical aberration

Clear cell 3p-

Papillary Trisomies (3q, 7, 12, 16, 17, 20)

Chromophobe Monosomies (1, 2, 6, 10, 13, 17, 21)
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which were associated with a significantly poorer prognosis
[63]. In papillary type 1 and type 2 tumors, poorer survival
was noted with loss of 9p and 3p, whereas trisomy 17 was
associated with a more favorable prognosis [64].

PROGNOSTIC SCHEMA

Several nomograms have been developed for localized and
metastatic disease using factors such as histology, stage,
symptoms, performance status (PS), and tumor size (Table
3) [36, 65–76]. In 2001, Yaycioglu et al. [65] developed a
prognostic model independent of pathological stage. The
Kattan nomogram includes histologic type, tumor size,
TNM classification, and clinical presentation to estimate
the probability of recurrence-free survival after 5 years of
follow-up [66]. A system based on tumor stage, size, grade,
and necrosis (the SSIGN score) was proposed in 2002 [67].
One of the most widely used predictive models for patients
with mRCC is the Memorial Sloan-Kettering Cancer Cen-
ter (MSKCC) instrument developed by Motzer et al. [68],

which categorizes patients into three risk groups (favorable,
intermediate, and poor) according to the number of adverse
factors (e.g., time �1 year from diagnosis to initiation of
systemic therapy, elevated corrected serum calcium, ele-
vated lactate dehydrogenase [LDH] level, low hemoglobin
level, and low Karnofsky PS score) [68]. Another well-
known system, The UCLA Integrated Staging System
(UISS) incorporates the TNM classification, Eastern Coop-
erative Oncology Group (ECOG) PS score, and Fuhrman
grade for metastatic and non-metastatic RCC (Figs. 2 and 3)
[69]. In this system, patients are categorized into three
groups (low, intermediate, and high risk) to predict overall
survival. The Cleveland Clinic Foundation (CCF) group
sought to externally validate and expand upon the MSKCC
model by evaluating a cohort of 353 patients with mRCC
[70]. All the MSKCC prognostic factors were found to be
independent predictors of survival with the exception of the
ECOG PS score. In addition, prior radiotherapy and the
presence of hepatic, lung, and retroperitoneal metastases

Table 3. Summary of some important nomograms

Study; nomogram n Metastatic disease status Prognostic factors

Yaycioglu et al. (2001) [65] 296 M0 Tumor size, presentation (symptomatic/asymptomatic)

Kattan et al. (2001) [66] 601 M0 Stage, tumor size, symptom classification, histology

Frank et al. (2002) [67]; SSIGN 1,801 M0 (n � 1,516), M1 (n � 285) TNM stage, tumor size, FNG, necrosis

Motzer et al. (2002) [68];

MSKCC

463 M1 Hgb, LDH, Ca2�, KPS, time from diagnosis to

treatment

Zisman et al. (2001) [69]; UISS 477 M0 (n � 211), M1 (n � 266) TNM stage, FNG, ECOG PS

Kim et al. (2004) [71] 318 M0 (n � 163), M1 (n � 155) T stage, M stage, ECOG PS, CAIX, p53, vimentin

Mekhail et al. (2005) [70] 353 M1 (n � 353) MSKCC plus radiotherapy, hepatic, lung,

retroperitoneal metastases

Choueiri et al. (2007) [72] 120 M1a ECOG PS, Ca2�, time from diagnosis to treatment,

platelets, ANC

Karakiewicz et al. (2007) [73] 2,530 M0 (n � 2,203), M1 (n � 327) TNM stage, tumor size, FNG, symptom classification

Motzer et al. (2008) [36] 375 M1 Hgb, LDH, Ca2�, KPS, time from diagnosis to

treatment, metastatic sites (n), nephrectomy, lung/liver

metastases, ECOG PS, ALP, thrombocytosis

Klatte et al. (2009) [74] 170 M0 T stage, ECOG PS, Ki-67, p53, endothelial VEGFR-1,

epithelial VEGFR-1, epithelial VEGF-D

Parker et al. (2009) [75];

BioScore

634 M0 (n � 564), M1 (n � 70) B7-H1, survivin, Ki-67

Heng et al. (2009) [76] 645 M1a Hgb, LDH, Ca2�, KPS, time from diagnosis to

treatment, platelets, ANC
aTreated with bevacizumab, sorafenib, sunitinib, or axitinib.
Abbreviations: ALP, alkaline phosphatase; ANC, absolute neutrophil count; Ca2� � corrected serum calcium; CAIX,
carbonic anhydrase IX; ECOG PS, Eastern Cooperative Oncology Group performance status score; FNG, Fuhrman nuclear
grade; Hgb, hemoglobin; KPS, Karnofsky performance status score; LDH, lactate dehydrogenase; M stage, metastasis stage;
MSKCC, Memorial Sloan-Kettering Cancer Center; SSIGN, stage, size, grade, necrosis; T stage, tumor stage; TNM, tumor–
node–metastasis; UISS, University of California–Los Angeles Integrated Staging System; VEGF, vascular endothelial
growth factor; VEGFR, VEGF receptor.
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were also identified as independent negative prognostica-
tors. In a follow-up study by Choueiri et al. [72], the
MSKCC and CCF risk group criteria were applied to a co-
hort of patients with mRCC who received VEGF-targeted
therapy. A multivariate analysis of risk factors adversely

associated with PFS identified an ECOG PS score �1, time
from diagnosis to treatment �2 years, and corrected serum
calcium level �10 mg/dl. Two additional risk factors that
were identified in previous studies, high platelet count
(�300 K/�l) and high absolute neutrophil count (�4.5
K/�l), also were significant. Of note, neither the MSKCC
nor CCF risk scores were retained as significant predictors
of PFS. Karakiewicz et al. [73] looked at traditional predic-
tor variables in two large cohorts, one for nomogram devel-
opment and internal validation (n � 2,530) and a second for
external validation (n � 1,422).

More recent nomograms have integrated molecular in-
formation (Table 3). Kim et al. [71] screened 318 patients
with localized and metastatic clear cell RCC using a tissue
microarray technique to examine eight different molecular
markers. CAIX, TP53, gelsolin, and vimentin were inde-
pendent predictors of survival on multivariate analysis. In-
clusion into their nomogram yielded a C-index of 0.79,
which was an improvement upon existing schema based
only on standard clinicopathologic variables, such as grade,
stage, or integrated models (e.g., UISS). In a follow-up
study, an expanded set of 29 markers related to the hypoxia-
inducible and rapamycin pathways were evaluated [74]. A
unified nomogram was developed based on multivariate
Cox proportional hazards modeling, which identified Ki-
67, p53, endothelial VEGFR-1, epithelial VEGFR-1, and
epithelial VEGF-D along with ECOG PS, T classification,
and Fuhrman grade to stratify patients into three risk
groups. Again, the addition of molecular markers along
with classic variables improved the predictive accuracy
considerably (e.g., C-index of 0.904) [74]. Parker et al. [75]
developed the BioScore, a biomarker panel consisting of
B7-H1, survivin, and Ki-67 expression in 634 consecutive
clear cell RCC patients, and determined that a high Bio-
Score correlated with death from RCC (HR, 5.03; 95% con-
fidence interval, 3.8–6.6; p � .001).

PREDICTING RESPONSE TO SYSTEMIC THERAPY

The current selection of targeted agents has largely been
based on clinical efficacy, side effect profile, patient co-
morbidities, and PS. However, with a rapidly expanding ar-
ray of targeted agents, choosing a particular agent is
becoming increasingly difficult. Exciting data are emerging
based on host- and tumor-specific factors, ushering in the
notion of personalized therapy; the goal of personalized
therapy is to help predict or identify patients who are likely
to respond to systemic immunotherapy or targeted agents
while at the same time avoid potentially toxic ineffective
treatment in others.

Motzer et al. [36] (Table 3) developed a nomogram for
predicting the probability of 12-month PFS for patients who

Figure 2. University of California Integrated Staging System
[2].

Abbreviations: ECOG, Eastern Cooperative Oncology
Group.

Copyright © MedReviews�, LLC. Reprinted with permis-
sion of MedReviews�, LLC. Klatte T, Pantuck AJ, Kleid MD
et al. Understanding the natural biology of kidney cancer:
Implications for targeted cancer therapy. Rev Urol 2007;9:
47–56. Reviews in Urology is a copyrighted publication of
MedReviews�, LLC. All rights reserved.

Figure 3. Kaplan–Meier survival estimates (disease-specific
survival) according to University of California Integrated
Staging System risk groups [2].

Copyright © MedReviews�, LLC. Reprinted with permis-
sion of MedReviews�, LLC. Klatte T, Pantuck AJ, Kleid MD
et al. Understanding the natural biology of kidney cancer:
Implications for targeted cancer therapy. Rev Urol 2007;9:
47–56. Reviews in Urology is a copyrighted publication of
MedReviews�, LLC. All rights reserved.
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received sunitinib on the basis of outcome data from the
seminal randomized phase III trial of sunitinib versus
IFN-� in clear cell mRCC patients. ECOG PS score, time
from diagnosis to treatment, prior nephrectomy, corrected
serum calcium level, hemoglobin level, LDH and alkaline
phosphatase levels, thrombocytosis, number of metastatic
sites, and presence of lung and liver metastases were com-
bined into a comprehensive instrument.

Heng et al. [76] recently expanded upon the Motzer cri-
teria by analyzing a cohort of 645 patients with mRCC (all
subtypes) treated with VEGF-targeted agents. They found
that additional prognostic value for overall survival was
gained from the use of higher absolute neutrophil and plate-
let counts (greater than the upper limit of normal), allowing
for creation of three risk categories. The 2-year overall sur-
vival rates by risk were 75% (favorable risk, zero prognos-
tic factors), 53% (intermediate risk, one or two prognostic
factors), and 7% (poor risk, three to six prognostic factors),
respectively. The associated C-index of their model was
0.73.

Our group observed longer survival among patients
with high tumoral expression of CAIX (�85%); a possi-
ble association with IL-2 therapy (27% response rate
among high CAIX expression versus 14% with low
CAIX expression) was observed [46]. Atkins et al. [77]
expanded this finding in their evaluation of CAIX ex-
pression among 66 patients (27 responders and 39 non-
responders) who received IL-2– based therapy. They too
noted a correlation between IL-2 response and CAIX
staining, demonstrating a twofold higher response rate in
patients with high CAIX expression (odds ratio, 3.3; p �
.04). The prognostic power was greater with the inclu-
sion of histologic predictors [78].

Recently, Rini et al. [79] discerned a key association in
mRCC patients treated with targeted therapy: diastolic

blood pressure elevation was associated with a better clin-
ical outcome. An exploratory pooled analysis of two phase
II cytokine-refractory mRCC studies was performed to fur-
ther examine this intriguing association among diastolic
blood pressure, pharmacokinetics, and the clinical efficacy
of axitinib [80]. The median overall survival duration for
patients with one or more diastolic blood pressure value
�90 mmHg was significantly longer than that of normoten-
sive patients (130 weeks versus 42 weeks, respectively; p �
.01). Hypertension was validated as an independent predic-
tor of clinical efficacy of the drug.

SUMMARY

A better understanding of the oncogenesis and basic biol-
ogy of RCCs has helped to identify key molecular pathways
and proteins underlying their development and growth. In
turn, this has facilitated the discovery of prognostic factors
that can risk stratify patients, predictive biomarkers that can
help individualize treatment selection and predict a pa-
tient’s response to therapy, and the testing and approval of
novel targeted treatments that address these molecular al-
terations in an evidence-based manner. Furthermore, over
the past decade we have moved from the use of individual
clinical prognosticators to increasingly sophisticated inte-
grated multivariate models, which now incorporate molec-
ular and genetic information. As molecular technology
evolves and becomes more standardized, cost-effective,
and routinely available, new RCC-specific targets will be
identified, further expanding our knowledge of tumor-
specific molecular signatures and ultimately moving a step
closer to the goal of curative, nontoxic personalized thera-
pies.
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