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Automatic protein structure solution
from weak X-ray data
Pavol Skubák1 & Navraj S. Pannu1

Determining new protein structures from X-ray diffraction data at low resolution or with a

weak anomalous signal is a difficult and often an impossible task. Here we propose a mul-

tivariate algorithm that simultaneously combines the structure determination steps. In tests

on over 140 real data sets from the protein data bank, we show that this combined approach

can automatically build models where current algorithms fail, including an anisotropically

diffracting 3.88 Å RNA polymerase II data set. The method seamlessly automates the

process, is ideal for non-specialists and provides a mathematical framework for successfully

combining various sources of information in image processing.
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X
-ray diffraction of macromolecular crystals does not
provide a direct image of a molecule. The macromolecule’s
electron density can be computationally constructed by

exploiting the anomalous signal from heavy atoms, such as
seleniums incorporated into a molecule of unknown fold. For
data sets with a strong anomalous signal diffracting to resolutions
better than 3 Å, current computational methods can usually
automatically build an atomic model. Yet, determining crystal
structures of large macromolecular assemblies or membrane
proteins that tend to diffract to lower resolutions is difficult and
involves manually iterating over the different steps in the
structure solution process1 and still may not lead to an
interpretable electron density map. Even at higher resolutions,
diffraction data containing a weak anomalous signal can elude
current computational methods and may require more data from
other crystals2. Here we propose a new method that combines the
traditional structure solution steps to push the limits of
computational techniques.

Currently, the process of solving a macromolecular crystal
structure of unknown fold from X-ray data consists of distinct
steps (Fig. 1a). In experimental phasing, crystallographic phase
estimates are calculated by exploiting the signal from an
anomalous substructure. An initial experimental electron density
is constructed from these phase estimates and the X-ray data.
Next, expected features of macromolecular electron density, such
as the flatness of solvent regions, are imposed on the experimental
electron density to improve its quality. This density-modified
map is typically combined with the initial experimental
density map in phase combination. Finally, the resulting electron
density is used to iteratively build and refine a model of the
macromolecule.

After the experimental density is constructed, information
about the unknown phase and its accuracy is often ignored or
approximated, and statically propagated to the steps of phase
combination and model refinement via Hendrickson–Lattman
coefficients3. We have previously demonstrated that using the
experimental data and anomalous substructure directly in phase

combination4 and model refinement5 via step-specific multi-
variate distributions can improve the individual steps.

Here we present a novel combined multivariate probability
function (Equation (2), see Methods section) that directly
considers phase information from the experimentally collected
X-ray data, and simultaneously combines it with the information
from density modification and model building into a single
unified process (Fig. 1b). The unified process consists of iterative
minimization of the minus log-likelihood of the new combined
probability distribution in reciprocal space, followed by current
density modification and model-building procedures in crystal
space. Thus, the structure solution process no longer relies on
successive stepwise approximations of the experimental data. The
full power of the new method is obtained by simultaneously
considering the anomalous substructure, density-modified elec-
tron density map and partial protein model. If only the
substructure is available, the new combined function elegantly
reduces to the previously described experimental phasing
function (Equation (3)). Similarly, when only the substructure
and electron density are available, the combined function
simplifies to the step-specific phase combination function. After
a partial protein model has been built, the full combined
probability distribution is used and all the information is
exploited simultaneously. Results from our large collection of
real data sets, described below, show that the best performance
and efficiency of the new algorithm can be achieved by skipping
the model-building step for some iterations (Fig. 2); currently,
model building is first performed after 20 iterations and then
repeated every eighth iteration. The total number of iterations is
chosen automatically by the algorithm; more iterations are run
for weaker signals.

Current automated structure solution systems use a stepwise
approach (Fig. 1a) for structure solution, but can use different
programmes or parameters for experimental phasing, density
modification or model building. To objectively assess the new
algorithm’s (Fig. 1b) power in a controlled fashion, we compare it
against the stepwise algorithm using the same programmes and
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Figure 1 | The current and new combined approach for structure solution. (a) Currently, when solving a structure using anomalous scattering, the steps

of experimental phasing, density modification with phase combination and model building with refinement are performed separately. (b) Unlike the

traditional stepwise approach, the combined function simultaneously uses the information from density modification, model building and from the data to

provide the best estimate of the electron density.
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parameters. For both approaches, real-space density modification
is performed in PARROT6 (version 1.0.2) and automated model
building is performed in BUCCANEER7 (version 1.5.2). The new
combined function, implemented in REFMAC8, simultaneously
uses the information from real-space density modification and
model building, whereas the current approach uses this
information separately in stepwise phase combination and
model refinement functions, also implemented in REFMAC.
The automated structure solution package CRANK9 (version
2.0.0) is used to link these programmes for both approaches in
this test. To assess the performance of the combined structure
solution approach against another automated package, we also
compare the new method against the default, recursive, stepwise
approach of PHENIX AutoSol10 (version 1.8.2-1309). We find
that the new combined algorithm performs significantly better in
both the controlled test and in comparison with PHENIX, and led
to many models built automatically when the current approaches
failed.

Results
Large-scale and controlled comparison. We test the perfor-
mance and robustness of the new method for combined structure
solution against the current stepwise approach on 147 single-
wavelength anomalous diffraction (SAD) data sets spanning a
wide range of resolutions from 0.94 to 3.88 Å and anomalous
scatterers, including selenium, sulphur, chloride, iodide, bromide,
calcium and zinc. Figure 3 compares the fraction of the 147
models automatically built within 1 Å of the deposited structure
by the combined method on the y axis and the stepwise approach
on the x axis, both implemented in CRANK. The cluster of points
in the lower left corner of the plot represents the data sets where
no model can be built, usually caused by the inability to find the
heavy atom substructure. The data sets providing 85–100%
complete models for both methods are depicted in the upper right
corner. Finally, the ‘Pushing the limits’ cluster shows the
numerous data sets for which partial or no model was built using
the current stepwise method, but near complete models with the
new combined method.

For all data sets, the average fraction of model correctly
built increases from 60% to 74%. If we exclude the data sets
built to at least 85% completeness by the stepwise method
and data sets where the heavy atom substructure could not be
found, 45 data sets remain with 28% of the model correctly
built on average by the stepwise approach and 77% by the
combined algorithm.

Large-scale comparison with PHENIX. Figure 4 shows the
fraction of the 147 models automatically built to within 1 Å of the
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Figure 2 | Detailed diagram for the combined algorithm. An expanded UML flowchart of the combined algorithm, which includes decision making (blue

diamonds) to skip the model building.
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Figure 3 | Comparison of CRANK’s stepwise and combined approach.

The fraction of model correctly built by the CRANK’s stepwise approach

compared with the new multivariate combined method on 147 data sets.

Each data set is represented by a circle. The y axis plots the fraction of

model correctly built using the combined algorithm, whereas the x axis

shows the performance of the stepwise traditional algorithm. The further a

circle lies above the dotted diagonal line, the greater the improvement the

new approach provides.
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deposited structure by the combined method and by the PHENIX
AutoSol software. The results are similar to that of Fig. 3, showing
many data sets significantly above the diagonal line for which no
or a partial model is built using PHENIX, but nearly complete
models with the combined method. Unlike in the controlled
comparison of the stepwise and the combined algorithm shown
in Fig. 3, we cannot draw direct conclusions about the perfor-
mance of these algorithms, as although PHENIX also uses a
stepwise approach it employs different programmes and para-
meters than CRANK. We can only conclude that with the default
settings, more structures are built automatically with the com-
bined approach in CRANK than with PHENIX for the random
sample of 147 data sets: the average fraction correctly built
increases from 59% to 74%.

RNA polymerase II data set (3.88 Å). The performance of the
new method at low resolution can be demonstrated on the
12-subunit RNA polymerase II SAD data set diffracting aniso-
tropically to 3.88 Å (ref. 11) and containing 3,950 residues in the
asymmetric unit. The authors could neither automatically nor
manually build the structure from the SAD data set collected:
structure solution was performed by a combination of multi-
crystal, multiple wavelength anomalous diffraction phasing from
five crystals, molecular replacement from a partial model and
manual iterative model building and refinement. The combined
method results in automatic building of a majority of the protein
backbone solely from the anomalous signal of eight intrinsic zinc
atoms and the single SAD data set. The quality of the auto-
matically built structure is evident from the R-free value12 of
37.6%. Figure 5 shows the agreement between the final and
automatically built model, and the resulting electron density for a
part of the RNA polymerase II molecule. 67% of the Ca positions
were traced to 2 Å precision, 82%, to 2.5 Å precision, and 9% were
placed incorrectly (see the Methods section for the definition
we use to assess model-building quality that also requires a
neighbouring Ca atom to be correctly placed).
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Figure 4 | Comparison of PHENIX and CRANK’s combined approach. The

fraction of model correctly built by PHENIX compared with the new

multivariate combined method on 147 data sets. Each data set is

represented by a circle. The y axis plots the fraction of model correctly built

using the combined algorithm, whereas the x axis shows the performance

of PHENIX. The further a circle lies above the dotted diagonal line, the

greater the improvement the new approach provides.

Figure 5 | RNA polymerase II electron density. Electron density of a

portion of the 3.88 Å RNA polymerase II structure automatically built by the

new combined approach contoured at 2.1s. The final Ca trace is shown

in grey, whereas the automatically built model is multicoloured. This

figure was made with COOT20. The length of the scale bar is 5 Å with

minor ticks at 1 Å.

Figure 6 | Deposited and automatically built clamp domain–Spt4/5

models. (a) The final, deposited structure of the related RNA polymerase

clamp domain in complex with Spt4/5. (b) The automatically built structure

using the combined method of the related RNA polymerase clamp domain

in complex with Spt4/5. Fig. 6a,b were made with MOLSCRIPT21.
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RNA polymerase clamp domain–Spt4/5 data set (3.3 Å). An
RNA polymerase clamp domain–Spt4/5 complex13 was built
manually from a partial molecular replacement model using a
3.3 Å SAD data set containing an anomalous signal from intrinsic
zinc atoms. The authors could not get an interpretable electron
density map from the anomalous signal alone. However, when
using the combined algorithm, 77% of the deposited model
backbone residues were automatically correctly built to the 2-Å
criteria. Figure 6a,b show the deposited and automatically built
structure, respectively. Table 1 shows model refinement and
building statistics for these two low-resolution data sets.

Discussion
The presented results demonstrate that the current limits of X-ray
crystallography can be significantly extended by the synergistic
effect of simultaneously combining the steps. Although the use of
the combined method does not improve the automated structure
solution if a substructure could not be found or if a nearly
complete structure can be built by the current methods, its use
substantially improves the automated model building limited by a
weak anomalous signal or a low resolution.

The mathematical framework presented here is certainly not
limited to X-ray crystallography, but can be applied to other
techniques such as cryo-electron microscopy where a related
maximum likelihood analysis14 can be generalized and combined
with, for example, model building15, while considering the
observed experimental data/images directly. Both CRANK and
REFMAC are open-source packages and these latest develop-
ments will be available from CCP4 (http://www.ccp4.ac.uk/).

Methods
Testing methodology. The new function and algorithm have been tested on 147
real SAD data sets mainly composed of the same data sets used previously4: all data
sets are listed in Supplementary Table S1. The diffraction data, the sequence of the
protein monomer, the f0 and f0 0 values for the substructure atoms and the
substructure as determined by SHELXC and SHELXD16, or AFRO9 and
CRUNCH2 (ref. 17), were input to PHENIX and to CRANK’s stepwise and
combined pipelines. All three approaches were run with default settings.

The combined algorithm and the PHENIX AutoSol software automatically
choose the number of model-building cycles (the current defaults for the CRANK
implementation of the combined algorithm are a minimum of 5 and a maximum of
50 building cycles). In CRANK’s stepwise approach, the density-modified map from
PARROT is input to model building by BUCCANEER, which is iterated 50 times
with refinement by the multivariate SAD function5 in REFMAC (Equaton (3)).
If the fraction of model built after the first 5 building cycles was higher than after 50
cycles, it was used for comparison with the combined algorithm’s results, otherwise
the fraction built after 50 cycles was used.

The quality of the protein models built is expressed as a fraction of the Protein
Data Bank-deposited model backbone ‘correctly built’. In the massive testing on
147 data sets, a residue is considered correctly built if its Ca position is at most 1 Å
distant from a deposited model Ca (Ca-deposited) position. For the highlighted
low-resolution cases, a 2-Å criteria18 is used, as 1 Å is a minimal estimate of the
coordinate uncertainty at 4 Å resolution19. However, we add an additional
requirement that a neighbouring Ca position must be at most 2 Å distant from
a neighbour of Ca deposited for the residue to be considered correctly built. A
residue is considered incorrectly built if it is 42.5 Å distant from the nearest
Ca-deposited position. Furthermore, a residue is also considered incorrectly built if
it is o2.5 Å distant from the Ca deposited, but none of its neighbouring Ca
positions are closer than 2.5 Å from a neighbour of Ca deposited.

The combined likelihood function. To apply a maximum likelihood analysis
that combines the information from the different steps in macromolecular X-ray
crystallography and incorporates the observed experimental diffraction data
directly, the multivariate probability distribution of the observed SAD structure
factor amplitudes (F þO ; F �O ), given the partial (anomalous and/or non-anomalous)
calculated structure factors (FþC ¼ FþC expðiaþC Þ;F�C ¼F �C expðia�C Þ) and density
modification structure factors (FDM¼ FDMexp(iaDM)) is required. Here the
subscripts O,C,DM denote observed, partial anomalous and/or non-anomalous
calculated, and density modification structure factors, respectively, and the þ and
� superscripts denote the Friedel pairs. To derive the above distribution, the
starting point is the multivariate distribution of structure factors:

PðFþO ; F�O ;FþC ; F�C ; FDMÞ ð1Þ

The distribution for equation (1) is well approximated by a complex
multivariate Gaussian distribution via the Central Limit Theorem. After
transforming the multivariate complex Gaussian to polar coordinates and
integrating out the unknown ‘observed’ structure factor phases, the required
distribution is obtained:

Pcomb¼PðF þO ; F �O ; FþC ; aþC ; F�C ; a�C ; FDM; aDMÞ

¼ 2F þO F �O detð�3Þ
pdetð�5Þ expð� a11F þ 2

O � a22F � 2
O �ða33 � c33ÞF þ 2

C Þ

�expð� ða44 � c44ÞF � 2
C �ða55 � c55ÞF2

DM
� 2F þC F �C ða34 � c34ÞcosðaþC � a�C ÞÞ

�expð� 2F þC FDMða35� c35ÞcosðaþC � aDMÞ� 2F �C FDMða45� c45Þcosða�C � aDMÞÞ

�
R 2p

0 expð� 2F �O ðF þC a23cosða�O � aþC Þþ F �C a24cosða�O � a�C Þþ FDMa25cosða�O � aDMÞÞÞ

�I0ð2F þO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a13F þC ðcosðaþC Þþ sinðaþC ÞÞþ a14F �C ðcosða�C Þþ sinða�C ÞÞ

p
da�O

ð2Þ

In equation (2), aij is the ijth element of the inverse of the full 5� 5 covariance
matrix S5 and cij is the ijth element of the model 3� 3 (S3) submatrix of S5. If the
density modification structure factor, FDM, is not available, the equation reduces to
the previously described multivariate function for SAD-based model refinement
function5:

Pcomb¼PðF þO ; F �O ; F þC ; aþC ; F
�

C ; a�C Þ

¼ 2F þO F �O detð�2Þ
pdetð�4Þ expð� a11F þO

2 � a22F �O
2�ða33� c33ÞF þ 2

C Þ

�expð� ða44 � c44ÞF � 2
C � 2F þC F �C ða34 � c34ÞcosðaþC � a�C ÞÞ

�
R 2p

0 expð� 2F �O ðF þC a23cosða�O � aþC Þþ F �C a24cosða�O � a�C ÞÞÞ

�I0ð2F þO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a13F þC ðcosðaþC Þþ sinðaþC ÞÞþ a14F �C ðcosða�C Þþ sinða�C ÞÞ

p
da�O

ð3Þ

In equation (3), aij is the ijth element of the inverse of the 4� 4 covariance
matrix S4 that is a submatrix of S5 and cij is the ijth element of the model 2� 2
(S2) submatrix of S4. If the partial structure factors FþC ; F�C consist only or mainly
of contributions from anomalous atoms, such as those found in substructure
detection, equation (3) reduces into the previously described function for
multivariate heavy atom refinement and phasing, only differing by the covariance
matrix S4 definition. Similarly, if only density modification structure factors and
anomalous atoms are available for calculation of FþC ; F�C , equation (2) reduces to
the previously described multivariate phase combination function4, differing by the
covariance matrix S5 definition. These special cases have all been implemented in
the programme REFMAC.
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