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Abstract
Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular
events at short length scales lead to an initial tumorigenic population, which left unchecked by
immune action, acts at increasingly longer length scales until eventually the cancer cells escape
from the primary tumor site. This series of events is highly complex, involving multiple cell types
interacting with (and shaping) the microenvironment. Multiscale mathematical models have
emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes
occurring on the systemic scale, with the molecular signaling processes occurring on the cellular
and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling
across multiple length scales, with an emphasis on the integration of intracellular signal
transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues.
First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on
angiogenesis. Then, we summarized the development of tissue engineering platforms which could
provide highfidelity ex vivo experimental models to identify and validate multiscale simulations.
Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular
networks with the microenvironment. We present models of a variety of cancers, in addition to
breast cancer specific models. Taken together, we expect as the sophistication of the simulations
increase, that multiscale modeling and bottom-up agent-based models in particular will become an
increasingly important platform technology for basic scientific discovery, as well as the
identification and validation of potentially novel therapeutic targets.
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INTRODUCTION
Breast cancer is one of the predominant cancers diagnosed among women, and the second
leading cause of cancer death.66 In the past, most experimental cancer research has focused
on the genetic and molecular scale malfunctions which deregulate cell growth.10

Understanding the deregulation of the wiring which controls central molecular programs is a
daunting and multifaceted problem. These molecular pathways are large, and contain
complex architectural features such as redundancy, feedback and crosstalk. 148 While this
complexity ensures robustness and efficiency, it also complicates the reprogramming of
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signal flow and the interpretation of experimental findings. For example, Jones et al. showed
in a study of pancreatic cancer patients that on average each patient had 63 genetic
alterations spread throughout 12 core signaling pathways.69 Thus, there was not a single
dominant malfunction or pathway. Rather a combinatorial interplay of malfunctions acting
in concert deregulated cellular function. This integration underscores the realization that
cancer is a systems disease, even at the subcellular length scale.

Unfortunately, tumorigenesis involves far more than just malfunctions in signal transduction
pathways in homogenous cell populations. Breast tumors are highly heterogenous, involving
the simultaneous transmission and processing of many chemical and mechanical signals
between multiple cell types within a time- and spatially-varying microenvironment.
Furthermore, this cellular variety often includes diverse genetic populations within the same
cell type. For example, Navin et al.104 sequenced single cells in highgrade (III) ductal
carcinomas and found a complex polygenomic population containing approximately 63%
normal and 37% tumor cells, with a large fraction of leukocytes. Interestingly, within the
same tumor, they identified four major genetically diverse tumorigenic cell subpopulations.
Thus, understanding and ultimately reprogramming the integration of central programs such
as proliferation, differentiation or death within multiple cell types, or genetic variants of the
same cell type, in concert with the chemical and mechanical cues of the microenvironment is
a grand challenge.

To attack a complex disease like breast cancer, we must build comprehensive experimental
and computational tools which integrate intracellular signaling architectures with the
extracellular microenvironment. Multiscale simulation methods, in combination with novel
in vitro tissue engineering platforms, are rapidly evolving to meet this critical challenge. In
this study, we review the current state of the art in cancer modeling across multiple length
scales, with an emphasis on the integration of intracellular signal transduction models with
pro-tumorigenic chemical and mechanical microenvironmental cues. First, we review the
underlying biomolecular origins of breast cancer with a special emphasis on angiogenesis.
Next, we summarize the development of tissue engineering platforms which could provide
high-fidelity ex vivo experimental models to identify and validate multiscale simulations.
Following that, we review top-down and bottom-up multiscale computational strategies that
integrate subcellular networks with the microenvironment and tumorigenesis. We present
models of a variety of cancers, in addition to breast cancer specific models. Thus, as our
understanding of the complexity of these processes evolves, multiscale simulation could be a
critical tool which provides fundamental biological understanding and potentially important
clinical insight.

THE BIOMOLECULAR ORIGINS OF BREAST CANCER
Breast cancer is a highly heterogenous disease which can be broadly subdivided into three
major subtypes: hormone receptor-positive tumors, ERBB2-amplified tumors and a third
category collectively referred to as triple-negative tumors. The molecular understanding of
each subtype, along with the possible treatments for each,58 continues to evolve. High-
throughput analytical technologies, such as gene expression profiling or rapid whole-
genome sequencing, have been used to great effect to characterize the tumor type and
microenvironment, 2,114 and specific gene signatures associated with stages of the
disease.25,104,115,147 The traditional tumor initiation hypothesis posits that genetic
transforming events in single cells, e.g., TP53 mutations110 or epigenetic changes,64 leads to
clonal expansion and the accumulation of additional genetic changes. However, mutations in
genes classically associated with breast cancer, e.g., BRCA1, BRCA2 and TP53, account for
less than 25% of the excess risk associated with family history.115 Thus, there are likely
other transformation pathways that initiate the disease. For example, this traditional view
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has recently been challenged by the cancer stem cell (CSC) hypothesis in which
differentiated cancer cells, which are unable to self-renew, are the progeny of a population
of self-renewing CSCs.16,106,115. These tumorigenic cells can then recruit (or phenotypically
transform) many other cell types which collectively form the microenvironment of the
growing tumor (Fig. 1). Interactions between the tumorigenic cells and the
microenvironment, and even the cellular composition of the microenvironment, is a complex
function of many factors.73 It is thought that autocrine and bidirectional paracrine signaling
regulates the tumorigenic cell population (including CSCs), and these cells in turn secrete
factors which influence the makeup and behavior of the microenvironment.82,116 However,
soluble signals are likely not the only important cues. Physical changes, solid stresses,
matrix stiffness, fluid pressure and other biomechanical forces have also been implicated in
tumorigenesis and may influence the recruitment of other cell types including circulating
tumor cells (CTCs), fibroblasts and immune cells (recently reviewed by Shieh et al.127 and
Lu et al.86). The complexity of the tumor microenvironment may even play a critical role in
drug resistance (see Correia et al.29). However, CSCs/CTCs and their respective role in
driving tumorigenesis remains controversial. Yet another hypothesis, which builds upon an
older idea, is that tumorigenesis is actually a malfunctioning wound-healing process.96

Whatever the initiation events and source of heterogeneity, it is agreed that the complexity
of breast tumorigenesis complicates our understanding of the disease, and ultimately limits
the development of effective targeted treatment options.

The transition from localized ductal carcinoma to invasive and ultimately metastatic breast
cancer is a critical milestone impacting the clinical management and outcome of the disease.
One of the central programs associated with this transition is angiogenesis (Fig. 1). Tumor
angiogenesis is stimulated by many factors, including reduced oxygen tension (i.e., hypoxia)
which up-regulates the secretion of proangiogenic signaling molecules by tumorigenic
cells.56 Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor
secreted by tumor cells in response to hypoxia.39,43 Anti-angiogenic therapies aimed at
disrupting the molecular coupling between hypoxia, VEGF signaling, and tumor
angiogenesis initially showed great promise.40 Several of the regulatory axes which control
VEGF expression in the microenvironment, for example the role of oxygen tension, are
relatively well understood. Oxygen in the microenvironment is sensed by hypoxia inducible
factor 1α (HIF1α) and the generation of reactive oxygen species (ROS).79,100 HIF1α
mediates the initial phase of the angiogenic program by forming a transcriptionally active
complex with HIF1β and co-activators such as p300. The stability of the HIF1α subunit is
oxygendependent. 117 In normoxic conditions, hydroxylation at two prolyl residues (P402
and P564) by PHD proteins promotes the association of HIF1α with the Von Hippel- Lindau
(VHL) E3 ubiquitin ligase and subsequently leads to degradation. An additional
hydroxylation site at N803 near the C-terminus of HIF1α is regulated by the asparaginyl
hydroxylase FIH. Hydroxylation at N803 does not influence stability; rather, it blocks the
interaction of the HIF1α C-terminal domain with transcriptional co-activators such as p300.
Activated HIF1 up-regulates the expression of many factors including VEGF and
Interleukin-8 (IL-8).146 On the other hand, ROSpromotes nuclear factor κB (NF-κB)
activation.100 NF-κB also regulates both VEGF and IL-8 expression. 100,146 The exact
relationship between ROS and NF-κB activation is unclear; ROS has been hypothesized to
activate serine kinases which in-turn phopshorylate the N-terminal serine residues (S32/S36)
on IKK.44 Unfortunately, the initial success of the anti- VEGF-A monoclonal antibody
bevacizumab has been reexamined in light of clinical evidence suggesting anti- VEGF
therapy often prolongs patient survival by only months, without offering an enduring cure.72

Studies have also emerged questioning the overall survival advantage of bevacizumab in
combination with chemotherapeutics, 98 while other studies suggested that even short-term
exposure to potent anti-angiogenic therapies might actually induce invasiveness.36,108 These
studies, in combination with potential safety concerns,27 led the US Food and Drug
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Administration (USFDA) to remove the breast cancer indication from the bevacizumab
label.

The finding that anti-VEGF therapy may induce invasiveness seemingly contradicts years of
dogma suggesting VEGF-induced vessel recruitment is essential for cancer progression.
Carmeliet and coworkers recently reviewed two of the leading hypotheses explaining this
apparent contradiction.84 The first has suggested that reduced angiogenesis selects for a
hypoxia-tolerant tumorigenic population that is better adapted to the low-oxygen
microenvironment.18 These hyper-tolerant tumorigenic cells thrive in the noxious
microenvironment by adapting their metabolism or escape by inducing invasive programs
such the epithelial mesenchymal transition (EMT).18 The role of EMT in cancer progression
and metastasis has long been recognized.55,140 However, this population of hyper-tolerant
tumorigenic cells may also recruit other vascular precursor cell types, for example
angiocompetent bone marrow-derived cells,52 or co-opt existing vasculature that is not
inhibited by anti-VEGF therapy. 15 Ebos and coworkers suggested a second hypothesis
where VEGF inhibitors induce a chronically inflamed state characterized by the expression
of several factors including stromal cell-derived factors 1-alpha (SDF1α), placenta growth
factor (PlGF), interleukin-6 (IL-6), erythropoietin, osteopontin, and other cytokines.35 These
cytokines may then recruit angiogenic bone marrow-derived endothelial and myeloid
progenitors,70 many of which express vascular endothelial growth factor receptor 1
(VEGFR1), thus their recruitment is not blocked by VEGF inhibitors.70 Both of these
hypotheses involve the recruitment of immunomodulatory cell types by the secretion of
cytokines and other factors. The integration between the immune system, inflammation and
cancer progression (including the modulation of the CSC population) is an emerging area
with classical roots.34 The immune system can both inhibit and stimulate tumorigenesis,
where these influences are mediated by complex mechanisms.93 Inflammatory signals, such
as Interleukin-6 (IL-6) and IL-8, are secreted by many cell types in the
microenvironment.147 IL-6 is known to promote breast cancer progression,125,126 and serum
levels of both IL-6 and IL-8 correlate with patient outcome.14,124 Interestingly, both IL-6
(via the GP130 receptor) and IL-8 (via the CXCR1 receptor) have also been shown to
directly regulator breast cancer stem cell (BCSC) self-renewal.64 The expression of both of
these cytokines is regulated by NF-κB,12 thereby potentially linking this critical signaling
axis with ROS formation in hypoxic environments.

Ex Vivo Experimental Models
The development of effective anti-angiogenic therapies depends critically upon a
comprehensive understanding of proliferation and vascularization programs and the
interaction of these programs with the microenvironment. Multiscale simulation tools in
combination with high-fidelity ex-vivo experimental models can help unravel this
complexity.111 However, multiscale models require fine-grained training and validation data
to be successful. Unfortunately, wideranging but fine-tuned experimental control of the
receptor signaling cascades involved in angiogenesis or other tumorigenic processes is not
possible with current in vitro and in vivo approaches. For example, conventional
angiogenesis models (e.g., tube formation on Matrigel) fail to capture: (i) the intrinsic,
threedimensional morphology and diffusion-limited formation of intratumor niches, (ii)
microscale integration of multiple cell types within physiologically relevant architectures,
and (iii) coupling to a vascular interface that provides systemic convective transfer of
endocrine signals and other cellular nutrients. Tissue engineering approaches to model
tumor physiology have recapitulated the reaction-diffusion processes of solid tumors and
begun to elucidate the microphysiological details of the angiogenic and other tumorigenic
processes. These advancements have been enabled by new synthetic materials,88

development of microfluidic lab on a chip technologies33,63 as well as a new appreciation
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for the significant role played by the microenvironment in shaping tumor progression.86 The
integration of microfluidic and three dimensional tissue engineering technologies permits
control over and monitoring of the soluble microenvironment experienced by cells.21–26

Nelson et al.105 developed one of the first three-dimensional patterning techniques to
construct multicellular epithelial tissues in three-dimensional gels composed of extracellular
matrix (ECM) proteins. Using this patterning technology, they later explored the signaling
forces driving cell organization in engineered three dimensional mammary ducts101 as well
as how complex interactions between mammary progenitor cells and the microenvironment
drive cell fate decisions.75 Using three-dimensional polymeric scaffolds to mimic the tumor
ECM, we recently showed that dimensionality (i.e., two-dimensional vs. threedimensional),
hypoxia, and integrin engagement play a critical role in VEGF and IL-8 up-regulation.42,43

Zheng et al.153 created ex-vivo microvascular networks using human umbilical vein
endothelial cells (HUVECs) seeded into microfluidic circuits formed via soft lithography in
a type I collagen gel. They quantified sprout formation following exogenous administration
of vasculogenic medium throughout the device. Seok and coworkers used a similar three-
dimensional microfluidic strategy to explore sprouting in the presence of angiopoietin 1
(ANG-1) and VEGF gradients. 68,128 Engineered culture systems could advance studies of
tumor vascularization by faithfully replicating the in vivo microenvironment, while
providing highly quantifiable, and controlled conditions. Microfluidic devices have also
been used to reconstruct realistic microenvironmental mimics to study other processes
important in breast tumorigenesis e.g., differentiation and migration.62 These experimental
tools and others, such as bead-based methods,103 when combined with mathematical models
of signaling driving the evolution of the microenvironment, could unravel the complexity of
tumor vascularization and perhaps identify molecular targets for improved proangiogenic
therapies.

MULTISCALE MODELING METHODS IN CANCER
Many factors act in concert to drive tumor formation. These forces act across multiple length
and time scales, involve heterogenous cell populations and involve both biophysical and
biochemical cues. To understand how these disparate forces drive tumor formation
generally, and breast cancer tumorigenesis in particular, we need to develop predictive
multiscale models. Multiscale models of tumorigenic processes e.g., growth-factor induced
proliferation or angiogenesis dynamics are not new. Mathematical models exploring this
space of problems have been developed since the 1970s (see Quatub et al.119 for a review
angiogenesis models). A wonderful compilation of recent work in multiscale modeling has
been organized in a book edited by Deisboeck and Stamatakos.31 The individual chapters
(authored by several groups) describe the application of agent based and continuum
modeling strategies to study several cancer types, including breast cancer. Moreover, several
journals have dedicated special issues to multiscale simulation methods and their application
to cancer modeling.121 While the objectives of multiscale simulation studies have not
changed in several decades, current models are significantly more sophisticated. This
increased sophistication has largely been driven by increased biological understanding and
the rapid increase in computing power.

Multiscale strategies can broadly be organized into continuous, discrete and hybrid
approaches. Continuous approaches use continuum mechanical principles encoded in partial
differential equations (PDEs) or integral partial differential equations (IPDEs) to describe
the variation of population-averaged phenomena, e.g., tumor cell density as a function of
space and time. Continuum models offer the advantage of easily describing whole tumor
dynamics, including complex physical phenomena such as interstitial pressure gradients and
convective transport from the tumor.65 For example, Murray and coworkers used continuum
approaches to model prostate cancer137 and many aspects of glioma formation,136 including
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the response to treatment.135 More recently, Swanson and colleagues used continuum
approaches to model glial progenitor cell recruitment.94 Continuous approaches have also
been used to explore therapeutic antibody distribution in tumors,142 as well as the design of
therapeutic antibodies.120 While these and other continuum studies have generated
nontrivial insights, continuum models are limited to a population-averaged picture of the
tumor. This is an issue if you are interested in population distributed behavior at the cellular
and subcellular length scales, or the behavior of your system is strongly stochastic. On the
other hand, discrete approaches such fully stochastic simulations, can predict emergent
properties generated by interactions between individual cells.23 Fully stochastic methods,
such as the next subvolume method (NSM), naturally integrate stochastic reaction dynamics
with physical models.57 Unfortunately, stochastic methods such as NSM typically scale
poorly with problem size.

Agent Based Models (ABMs)
In between continuum and fully discrete approaches are hybrid strategies. Perhaps the best
known hybrid strategy in the cancer and complex systems community is agent based
modeling (ABM).17 ABMs are a class of simulation in which combinations of autonomous
actors or agents are embedded in a spatially and temporally varying computational universe.
Both the agents and universe may have state, meaning variables or variable combinations
which describe the current configuration of the system. The stateful agents individually
interact with the universe (and each other) using predefined rules. These interactions can be
twoway, i.e., the state of the agents can be informed by the universe (often governed by
continuum mechanics), and conversely the state of the universe can inform the agents (Fig.
2). Integration between the behavior of the agents and the microenvironment occurs
naturally by making the behavior rules functions of spatially or temporally distributed
microenvironmental variables. Arguably, ABMs have had the largest impact simulating
morphogen-induced developmental programs 50,141 as well as immunological processes
such as cell trafficking.9 However, ABMs have also proven useful in modeling
tumorigenesis,1,134 subprocesses such as normal and pathological angiogenesis30,81 and
microvascular patterning.112 ABMs have also been used extensively in ecology,51

epidemiology,22 crowd behavior102 as well as non-biological fields such as transportation
management.17 Thus, ABM is a powerful technique with wide applicability to a broad
spectrum of problems, not just modeling cancer progression.

There are two schools of thought governing ABM rule formulation. Top-down approaches,
which have traditionally been the most popular strategy, encode system attributes as coarse-
grained empirical rules which describe global control mechanisms. Often these rules are
based on experimental observations, thus topdown ABMs can predict sophisticated cellular
behavior without mechanistic information.23 Furthermore, software packages, e.g.,
NetLogo129 or CompuCell4 facilitate ABM formulation and simulation, making this strategy
easy to implement. On the other hand, bottom-up approaches use mechanistic signal
transduction pathway models to inform the behavior of agents. Each agent in the simulation
is equipped with these signaling networks. Thus, the signaling profile of each agent can vary
as a function of time and position, within the microenvironment. This integration allows
agents to make complex decisions which vary as the extracellular microenvironment varies.
Moreover, if these signaling programs result in secretion, the agents can transform the local
extracellular matrix or initiate autocrine or paracrine signaling programs. The advantage of a
bottom-up strategy is the direct coupling of agent behavior with cellular or subcellular
signaling programs. Arguably one of the most advanced examples of a bottom-up
biophysical tumor simulation is the recent vascularized tumor growth model of Perfahl et
al.113. In the Perfahl et al. study, a comprehensive simulation that integrated several
biophysical and biochemical facets of tumorigenesis e.g., blood flow, angiogenesis, vascular
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remodeling, extracellular transport and nutrient-dependent cell cycle dynamics was used to
explore three-dimensional tumor formation. While the solid tumors simulated were not
breast tumors, the strategy used in the Perfahl et al. study could be easily adopted to model
breast tumorigenesis. Of course the Perfahl et al. study was build upon or extended several
other important previous multiscale studies.91,107 The integration of subcellular networks
with macroscopic tumor formation, also potentially allows bottom-up ABMs to be useful as
in silico surrogates for therapeutic target identification, or ultimately to understand the
morphological outcome of cellular mutations. For example, Rejniak et al. used the IBCell
framework to simulate the formation of epithelial structures e.g., hollow acinar structures
which were qualitatively consistent with three dimensional MCF10A cell culture studies.122

This study was important in two ways. First, it an excellent case study of the integration of
experimental tools with multiscale simulation. Second, the authors performed a parameter
sampling calculation that identified regions of distinct epithelial morphologies. These
possible configurations were then validated with engineered MCF10A cell lines. The latter
aspect of this study firmly established that bottom- up multiscale models could be used as
predictive tools. However, including mechanistic information can also be a disadvantage;
intracellular signal transduction models are difficult to formulate, identify and validate. This
is especially true in breast cancer because of the multiple cytokine and growth-factor
signaling axes involved in the disease.76 Thus, one of the central challenges to using bottom-
up ABMs is the identification of the signal transduction models used in the rule sets.
Typically, these models are formulated as a coupled system of nonlinear ordinary
differential equations (ODEs), however many other model formulations could be possible.71

To formulate and solve ODE signaling models requires a deep understanding of both
network structure and model parameters. The rates of biochemical or biophysical
transformations within ODE models can be described using a variety of kinetic
formulations, e.g., mass-action kinetics.24 These various kinetic forms have a variety of
parameter types that must be estimated or measured. The parameter estimation problem is
often very difficult, given the underdetermined and noisy nature of most training data sets.
Moreover, signal transduction models typically exhibit complex behavior with respect to
inputs and their parameters. For example, models of growth factor, hormone signaling,
differentiation and MAPK signaling all showed threshold or switch-like behavior.7–138.
Thus, it is often impossible to uniquely identify parameters in signaling models, even with
extensive training data.46 Despite identification standards47 and the integration of model
identification with experimental design,11 parameter estimation remains challenging.
Towards this issue, a number of groups have turned to ensemble methods. Instead of
identifying a single (but uncertain) model, the goal of an ensemble approach is to identify a
family of models consistent with, and constrained by, the available experimental data. This
strategy has been used in systems biology and other fields like weather prediction to identify
parameter rich models using incomplete or sparse data.74–109 Their central value is the
ability to constrain model predictions despite uncertainty in the model parameters (and
sometimes structure). For example, Sethna and coworkers showed that an ensemble of
growth factor signaling models gave good predictions despite incomplete parameter
information (sometimes only order of magnitude estimates).20 They further showed that
model ensembles were predictive using many different mathematical model formulations.54

Model ensembles have also been hypothesized as a general coarse-grained means to capture
population distributed phenomena when stochastic simulation is too expensive. For
example, the population specific translation regulation77 or the response of a patient
population to treatment.87 There are several numerical techniques to generate model
ensembles. Battogtokh et al. introduced a Metropolis-type random walk strategy97 to
estimate an ensemble of models describing the quinic acid gene cluster of Neurospora
crassa.13 This Monte Carlo strategy was later modified by Tasseff et al. to control for
ensemble correlation in models of prostate cancer,138 and later Retinoic Acid (RA) induced
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differentiation of hematopoietic precursors cells.139 A similar Markov-Chain Monte Carlo
technique was developed by Song et al. to generate a family of models describing
Neutrophil trafficking in Sepsis.132 Other strategies such as the Pareto optimal ensemble
technique (POET), a multiobjective optimization strategy which uses simulated annealing to
sample parameter space, have also been proposed. 130,131 POETs has been used, in
combination with cross-validation, to generate predictive ensembles for several networks
including fundamental programs such as translation initiation.77 Taken together,
identification of intracellular signal transduction models that are parameter rich will
continue to be a challenge. However, ensembles are one strategy to develop reasonably
predictive models which could be useful for ABM simulations, despite uncertainty.

Perhaps the more fundamental challenge to developing predictive signal transduction
models is representing the signaling network architecture. Yeast Two- Hybrid (Y2H),41,
Fluorescence Resonance Energy Transfer (FRET)150 or Chromatin Immunoprecipitation
(ChIP) combined with DNA-microarrays (ChIP-chip) or high-throughput DNA-sequencing
(ChIP-seq) techniques92 have all been used to estimate protein–protein or protein–DNA
interactions. These techniques when combined with low-throughput immunoprecipitation
have been the basis for most experimental network discovery. Computational motif
discovery,99 network discovery and reconstruction using high-throughput data sources145,149

or text mining, 3,38 have also contributed significantly to network identification. These
studies and many others have led to comprehensive on-line network databases such as
STRING,67 NetworKIN,80 PhosphoSitePlus60 or KEGG6 which continue to evolve as new
information is made available. On-line model repositories such as the BioModels database78

have also been created to archive published signal transduction models. Thus, as more
network architecture information becomes available, and model development continues to
evolve perhaps the challenge of developing comprehensive signal transduction simulation
models will decrease. However, for the foreseeable future, biologically realistic network
models are likely to be parameter rich and data poor, even with the advent of advanced
analytical techniques.

Despite identification challenges, there are several examples where bottom-up strategies
have been used to integrate subcellular data with the microenvironment. 32 Deisboeck and
coworkers developed a number of ABM simulations exploring growth-factor signaling
within brain and non-small cell lung cancer (NSCLC) tumors. An ODE-based epidermal
growth factor (EGF) signaling model was embedded within two- and three-dimensional
computational domains, where the spatial-temporal dynamics of the microenvironment
domain was governed by PDEs. This framework was then used to explore a number of
complex questions: the role of epidermal growth factor receptor (EGFR) density in tumor
progression,8 the influence of genetic instability in tumor heterogeneity,152 the components
that control the proliferation-to-migration switch for brain tumors,151 and the role of EGF
and TGFβ signal integration in non-small cell lung cancer.144 Macklin et al. used an ABM
approach to investigate breast ductal carcinoma in situ (DCIS),90 using patient-specific
molecular and cellular measurements to calibrate their model. Likewise, Frieboes et al. used
multiscale modeling to identify specific functional relationships linking tumor growth and
regression to the underlying phenotype of breast cancer following chemotherapy.45

Simulations of the factors controlling tumor shape and morphology is another area where
ABMs have made an impact. For example, Engler et al. used multiscale modeling to
investigate how emergent properties of adhesion-directed multicellular structures sculpt the
tissue, promote its functionality, and maintain its homeostasis.37 While the majority of
bottom-up decision networks are mechanistic, non-mechanistic network models have also
been used to guide agent behavior. For example, Gerlee and Anderson used a neural
network formulation where extracellular variables formed the input layer, intracellular
variables were the hidden layer and phenotype was the output layer.48 The neural-network
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agent framework was used in several studies of the general properties of invasion and
tumorogenesis,5,49 including the response of the tumor to treatment.59 Potentially, other
hybrid mechanistic models, such as discrete logic models, could also be used in the ABM
rules.123

There is growing enthusiasm for using signaling assisted multiscale models as tools for
therapeutic target discovery and validation.143 However, the signaling models used to date
have not been comprehensive, typically containing perhaps two abstracted pathway
architectures at most. Thus, while the concept of using bottom-up ABMs for drug discovery
is intriguing, the description of the biology must be significantly expanded to capture the
intricate responses of signaling architectures to perturbation. Increasing the level of detail of
the signaling architectures used by agents brings several challenges. We have already
mentioned the challenges of network model identification. Assuming we already have
identified network models, the next big challenge is then the scaling performance of the
simulation. While the exact performance of bottom-up ABM simulations is problemspecific,
in the worst case we would expect exponential scaling with the number of agents. Thus,
detailed simulations using many bottom-up agents, each equipped with multiple decision
networks, is not tractable on single processor machines. However, this is a common issue
faced in many multiscale modeling application domains. For example, combustion
applications often have chemical reaction networks with hundreds or thousands of species
which are coupled to turbulent flow models. For these problems, Pope and coworkers
developed the in situ adaptive tabulation (ISAT) algorithm which minimizes expensive
function updates. Interestingly, the ISAT strategy has resulted in speed-ups of up to a
thousand-fold for complex combustion calculations.85 While ISAT has not been applied to
bottom-up ABMs, this and other highperformance computing strategies could be adapted to
facilitate increasingly detailed multiscale simulations.

CONCLUSIONS
Breast cancer initiation, invasion and metastasis span multiple length and time scales.
Molecular events at short length scales lead to an initial tumorigenic population, which left
unchecked by immune action, acts at increasingly longer length scales until eventually these
cells escape from the primary tumor site. This series of events is highly complex, involving
multiple cell types interacting with (and shaping) the microenvironment. Multiscale
mathematical models have emerged as a powerful tool to quantitatively integrate the
convective-diffusion-reaction processes occurring on the systemic scale, with the molecular
signaling processes occurring on the cellular and subcellular scales. In this study, we
reviewed the current state of the art in cancer modeling across multiple length scales, with
an emphasis on the integration of intracellular signal transduction models with pro-
tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the
underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis.
Then we summarized the development of tissue engineering platforms which could provide
highfidelity ex vivo experimental models to identify and validate multiscale simulations.
Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular
networks with the microenvironment. Taken together, we expect as the sophistication of the
simulations increase, that multiscale modeling and bottom-up agent-based models in
particular will become an increasingly important platform technology for basic scientific
discovery.
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FIGURE 1.
Schematic of the tumor microenvironment. Breast cancer initiation, invasion and metastasis
span multiple length and time scales. Molecular events at short length scales lead to an
initial tumorigenic population, which left unchecked by immune action, acts at increasingly
longer length scales until eventually the cancer cells escape from the primary tumor site.
One of the central programs associated with this transition is angiogenesis. Tumor
angiogenesis is stimulated by reduced oxygen tension (i.e., hypoxia) which up-regulates the
secretion of pro-angiogenic signaling molecules, e.g., VEGF, Interleukin-6 (IL-6) and
Interleukin- 8 (IL-8) by tumorigenic cells and other cell types in the tumor
microenvironment. These signals then initiate autocrine and paracrine programs which shape
the chemical, mechanical and cellular composition of the microenvironment.
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FIGURE 2.
Schematic of a generic bottom-up ABM strategy. A three-dimensional computational
domain representing the microenvironment is discretized into well-mixed
microcompartments. The extracellular state e.g., the concentration of pO2 or VEGF in each
of the microcompartments is governed by the solution of continuum mass balances
equations (partial differential equations). Agents representing different cell-types, each
equipped with perhaps many signal processing networks, are embedded into the
computational microenvironment and allowed to evolve according to rules that are functions
of the output of the signaling networks. The agents make decisions about possible actions
e.g., move, proliferate, differentiate etc. by evaluating the network models. Thus, the
decisions of the agents depend upon both the position and temporal state of the agent.
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