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A B S T R A C T

Background and objectives: Alzheimer’s disease (AD) shares certain etiological features with

autoimmunity. Prevalence of autoimmunity varies between populations in accordance with variation

in environmental microbial diversity. Exposure to microorganisms may improve individuals’

immunoregulation in ways that protect against autoimmunity, and we suggest that this may also be

the case for AD. Here, we investigate whether differences in microbial diversity can explain patterns of

age-adjusted AD rates between countries.

Methodology: We use regression models to test whether pathogen prevalence, as a proxy for microbial

diversity, across 192 countries can explain a significant amount of the variation in age-standardized AD

disability-adjusted life-year (DALY) rates. We also review and assess the relationship between pathogen

prevalence and AD rates in different world populations.

Results: Based on our analyses, it appears that hygiene is positively associated with AD risk. Countries

with greater degree of sanitation and lower degree of pathogen prevalence have higher age-adjusted AD

DALY rates. Countries with greater degree of urbanization and wealth exhibit higher age-adjusted AD

DALY rates.

Conclusions and implications: Variation in hygiene may partly explain global patterns in AD rates.

Microorganism exposure may be inversely related to AD risk. These results may help predict AD burden
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in developing countries where microbial diversity is rapidly diminishing. Epidemiological forecasting is

important for preparing for future healthcare needs and research prioritization.

K E Y W O R D S : Alzheimer’s disease; hygiene hypothesis; inflammation; dementia; pathogen preva-

lence; Darwinian medicine

INTRODUCTION
Exposure to microorganisms is critical for the

regulation of the immune system. The immunodys-

regulation of autoimmunity has been associated

with insufficient microorganism exposure [1].

Global incidence patterns of autoimmune diseases

reflect this aspect of their etiology: autoimmunity

is inversely correlated to microbial diversity [1, 2].

The inflammation characteristic of Alzheimer’s

disease (AD) shares important similarities with

autoimmunity [3, 4]. The similarity in immuno-

biology may lead to similarity in epidemiological pat-

terns. For this reason, here we test the hypothesis

that AD incidence may be positively correlated

to hygiene. The possibility that AD incidence is

related to environmental sanitation was previously

introduced by other authors [5, 6], and remains as of

yet untested.

The ‘hygiene hypothesis’ [7] suggests that certain

aspects of modern life (e.g. antibiotics, sanitation,

clean drinking-water, paved roads) are associated

with lower rates of exposure to microorganisms

such as commensal microbiota, environmental

saprophytes and helminths than would have been

omnipresent during the majority of human history

[8]. Low amount of microbe exposure leads to low

lymphocyte turnover in the developing immune sys-

tem, which can lead to immunodysregulation.

Epidemiological studies have found that popula-

tions exposed to higher levels of microbial diversity

exhibit lower rates of autoimmunities as well as

atopies [9], a pattern that holds for countries

with differing degrees of development [10, 11].

Differences in environmental sanitation can partly

explain the patterns of autoimmunity and atopy

across history and across world regions [2, 12].

Patient-based studies have demonstrated that indi-

viduals whose early-life circumstances were

characterized by less exposure to benign infectious

agents exhibit higher rates of autoimmune and

atopic disorders. This pattern has been

demonstrated for farm living versus rural non-farm

living [13–15], daycare attendance [16, 17], more

siblings [7, 18], later birth order [19–21] and pets

in the household [22], exhibiting lower rates of

atopic and autoimmune disorders.

Low-level persistent stimulation of the immune

system leads naı̈ve T-cells to take on a suppressive

regulatory phenotype [23] necessary for regulation of

both type-1 inflammation (e.g. autoimmunity) and

type-2 inflammation (e.g. atopy) [12, 24, 25].

Individuals with insufficient immune stimulation

may experience insufficient proliferation of regula-

tory T-cells (TRegs) [26, 27]. AD has been described

as a disease of systemic inflammation [28], with the

AD brain and periphery exhibiting upregulated type-

1 dominant inflammation [29]: a possible sign of

TReg deficiency. Immunodysregulation as a conse-

quence of low immune stimulation may contribute

to AD risk through the T-cell system. Altogether, we

suggest that a hygiene hypothesis for Alzheimer’s

disease (HHAD) predicts that AD incidence may

be positively correlated to hygiene.

The period from gestation through childhood is

typically thought to be a critical window of time dur-

ing which the immune system is established [14, 30,

31], with some authors limiting this critical window

to the first 2 years of life [32]. However, proliferation

of TRegs occurs throughout the life course: there are

age-related increases in number of TRegs [30, 33] with

peaks at adolescence and in the sixth decade [34].

Therefore, it may be not only early-life immune

stimulation that affects AD risk (and perhaps

risk of other types of immunodysregulation) but also

immune stimulation throughout life. Our study is

designed based on the hypothesis that microorgan-

ism exposure across the lifespan may be related

to AD risk.

At an epidemiological level, our prediction is

opposite to Finch’s [6] hypothesis that early-life

pathogen exposure should be positively correlated

to AD risk. Both their and our predictions are based

on speculation about T-cell differentiation, although

we reached opposite suppositions. It is clear

that inflammation is upregulated in AD, and Finch

suggested that pathogen exposure, which is pro-

inflammatory, may increase AD risk [6]. We propose
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that at the population level, pathogen exposure,

as a proxy for benign microorganism exposure,

may be protective against AD.

Griffin and Mrak [5] suggested that an HHAD

is justified because hygiene-related changes in

immune development are probably related to AD

etiology, but it is not possible to predict the direc-

tionality of this effect. They focus on how hygiene

might influence microglial activation and IL-1

expression, and the opposing effects these changes

may have on AD-relevant pathways.

Our prediction, Finch’s contrary [35] prediction,

and the assertion of Griffin and Mrak that further

research is needed to establish the directionality

of hygiene’s effect on AD motivated this empirical

investigation of whether pathogen prevalence was

correlated to AD rates at the country level. This

information could lead to a better understanding

of the environmental influences on AD etiology

and could help judge the accuracy of existing predic-

tions for future AD burden.

METHODS

In order to test whether there is epidemiological evi-

dence for an HHAD, data for a wide range of

countries were compared. Age-standardized disabil-

ity-adjusted life-year (DALY) rates (henceforth ‘AD

rates’) in 2004 were evaluated in light of proxies for

microbial diversity across a range of years selected

to fully encompass lifespans of individuals in the

AD-risk age group in 2004.

Prevalence of Alzheimer’s and other dementias

We utilized the WHO’s Global Burden of Disease

(GBD) report published in 2009, which presents

data for 2004 [36]. The WHO only reports informa-

tion for AD and other dementias across different

countries, rather than AD alone. This variable does

not include Parkinsonism [37]. While there are other

types of dementia, AD accounts for between 60%

and 80% of all dementia cases [38], and the

neurobiological distinctions between some of the

subtypes may be vague [39, 40]. The WHO report

presents three variables related to AD: age-

standardized DALY, age-standardized deaths, and

DALY for age 60+. There is low correlation between

these three measures (linear regressions after ne-

cessary data transformations had R-squared values

0.040; 0.089; 0.041).

The WHO’s GBD report includes the following

ICD-10 codes as ‘Alzheimer’s and other dementias:’

F01, F03, G30–G31, uses an incidence-based ap-

proach, 3% time discounting, the West Level 26

and 25 life tables for all countries assuming global

standard life expectancy at birth [41], standard GBD

disability weights [42] and non-uniform age-weights

[43, 44]. DALYs are calculated from years of lost life

(YLL) and years lost due to disability (YLD). YLL data

sources for AD included death registration records

for 112 countries, population-based epidemiological

studies, disease registers and notification systems

[45]. Vital registration data with coverage over 85%

were available for 76 countries, and information for

the remaining 114 countries was calculated using a

combination of cause-of-death modeling, regional

patterns and cause-specific estimates (see [45] for

details). YLD data sources for AD included disease

registers, population surveys and existing epidemio-

logical studies [43]. When only prevalence data were

available, incidence statistics were modeled from

estimates of prevalence, remission, fatality and

background mortality using the WHO’s DisMod II

software [43].

Age-standardized rates were calculated by

adjusting the crude AD DALY for 5-year age groups

by age-weights reflecting the age-distribution of the

standard population [35]. The new WHO World

Standard was developed in 2000 to best reflect

projections of world age-structures for the period

2000–25 [35], and particularly closely reflects the

population age-structures of low- and middle-

income countries [46].

DALYs as better measure than death rates.
AD as cause of death is a particularly flawed meas-

urement across different countries, as certain

countries rarely attribute mortality to AD or recog-

nize dementia as abnormal aging [47], and other

causes of death may occur at far greater frequencies

masking AD prevalence. The DALY measurement is

the sum of years lost due to premature mortality and

years spent in disability. The number of years lost

due to premature mortality is based on the standard

life expectancy at the age when death due to AD

occurs [48]. Therefore, this measurement omits the

effects of differential mortality rates previous to

age 65, which accounts for the vast majority of dif-

ferences in life expectancy between developed and

developing countries [49], opportunely isolating the

effects of later life mortality causes. Therefore, DALY

includes but is not limited to AD as official cause of
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death, making it a more inclusive variable than AD

as cause of death.

Age-standardized data better indicator than
age 60+ data.
Age-standardized rates represent what the burden

of AD would be if all countries had the same age-

distribution [35]. While the WHO GBD report

also provides DALY for ages 60+, these data are

not age-standardized. Using DALY for ages 60+, a

country with a significant population over age 85,

for instance, would always appear to have greater

AD incidence than a country with few people over

85, regardless of differences in age-specific AD

incidence in the two countries. This is due to the

exponential way in which AD risk increases with

age [50, 51]. Differences in age-specific AD incidence

would be masked by differences in population

age structure. See Supplementary Section S6 for

examples and further explanation.

Predictive variables

The hygiene hypothesis is sometimes referred to as

the ‘old friends hypothesis’ [52]. This alternative title

highlights the fact that for the vast majority of our

species’ history, humans would have been regularly

exposed to a high degree of microbial diversity,

and the human immune system was shaped through

natural selection in these circumstances [53]. With

rapidly increasing global urbanization beginning

in the early nineteenth century, individuals began

to experience diminishing exposure to these

‘friendly’ microbes due to diminishing contact with

animals, feces and soil [1]. The microbes that were

our ‘old friends’ previous to this epidemiological

transition whose absence may lead to immunodys-

regulation in modern environments included gut,

skin, lung and oral microbiota; orofecally trans-

mitted bacteria, viruses and protozoa; helminthes;

environmental saprophytes; and ectoparasites

[1, 52]. The predictive variables in our analysis were

selected for their relevance to these ‘old friends’.

These variables do not specifically reflect exposure

to those microbiota and commensal microorgan-

isms that were omnipresent during our evolutionary

history, but rather cover a more general collection

of microbial exposures. This inclusive approach is

both because of limitations of available datasets,

and because it is not known if particular microbial

elements specifically relate to AD etiology.

Murray and Schaller [54] assessed historical dis-

ease prevalence for the years 1944–61. Their ‘seven-

item index of historical disease prevalence’ included

leishmanias, schistosomes, trypanosomes, malaria,

typhus, filariae and dengue. Their ‘nine-item index’

included the above diseases plus leprosy and a con-

temporary measure of tuberculosis. Another meas-

ure of pathogen exposure [55] combines data from

the WHO and the ‘Global Infectious Diseases and

Epidemiology Network’ (GIDEON) for 2002 and

2009. The WHO reports countries’ ‘percent popula-

tion using improved sanitation facilities’, which

‘separate human excreta from human contact’ [56],

and ‘improved drinking-water sources’, which pro-

tect the source from contamination [56]. Of 3 years

for which sufficient data were available, we chose to

look at 1995 (Supplementary Section S1). ‘Infant

mortality rate’ (IMR) is measured as number of in-

fant mortalities per 1000 live births [57]. We con-

sulted historical IMR statistics [58] for years 1900–

2002. The World Bank reports countries’ ‘gross na-

tional income’ (GNI) per capita at purchasing power

parity (PPP) [57], the economic variable that contrib-

utes to the composite Human Development Index

and is therefore an indicator of the contribution of

wealth to quality of life. We looked at both the earliest

year with sufficient data available, 1970 and 2004.

‘Gross domestic product’ (GDP) per capita (PPP)

is an economic measure of a country divided by its

mid-year population [57], often used as a measure of

standard of living, although it is not a direct assess-

ment of this. We consulted Maddison’s historical

economic statistics [59] for GDP from 1900 to

2002. Children growing up in rural areas may be

more exposed to pathogens due to factors including

unpaved roads, contact with livestock and animal

feed, and consumption of unprocessed milk [13,

14]. The World Bank reports the ‘percent of a coun-

try’s population living in urban areas’ [57], and we

looked at both the earliest year with data available,

1960 and 2004.

Statistical methods

All variables were transformed to optimize distri-

bution symmetry to avoid undue influence by

countries with extreme values for each variable

(Supplementary Section S1). Linear regression was

used to determine whether there was a relationship

between each of the microbial exposure proxies and

AD rate between countries. As there was reason to

suspect predictive overlap among the variables, a

176 | Fox et al. Evolution, Medicine, and Public Health

http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot015/-/DC1
``
''
,
,
,
,
-
19
:
,
``
''
the three
as
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot015/-/DC1
,
-
 (HDI)
,
-
,
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot015/-/DC1


principal component regression was conducted

(Supplementary Section S4).

To explore which part of the lifespan has the most

bearing on AD, we measure the strength of the same

proxy across several years as a predictor of 2004 AD

prevalence. We compare historical and contempor-

ary disease prevalence, and GNI and urban living.

Also, two of the proxies had more detailed historical

information available: GDP [59] and IMR [58]. GDPs

and IMRs from years spanning 1900–2002 were

compared. Each year’s GDP and IMR were

compared to 2004 AD rates by linear regression.

The resulting regression coefficients were inter-

preted as the degree to which each year’s GDP or

IMR and 2004 AD were correlated (Supplementary

Section S5).

RESULTS

Statistical analyses revealed highly significant

relationships between various measures of hygiene

and age-adjusted AD DALY. High levels of pathogen

exposure were associated with lower AD rates.

Countries with higher disease and pathogen preva-

lence and IMR had lower 2004 AD rates (Table 1,

Figs 1–4, Fig. S1). These results are consistent with

a protective role of exposure to microbial diversity

against AD, and support an HHAD.

Greater degree of hygiene, and therefore poten-

tially lower degree of microorganism exposure, was

associated with higher AD rates. Countries with

a higher percent of the population using improved

sanitation facilities, improved drinking-water

sources, living in urbanized areas, higher GNI and

GDP per capita (PPP) had higher rates of AD in 2004

(Table 1, Fig. 3, Figs S2–S5). The existence of a

strong positive correlation between historical levels

of sanitation and AD rate in 2004 is consistent with

the predictions of the HHAD.

Comparing predictive power of data from

different years

Our results indicate that microbe exposure across

the lifespan, not necessarily just during early-life,

is associated with AD burden. Predictive variables

reflecting the years during which elderly people in

2004 would have experienced their earlier years of

life were not consistently better indicators of 2004

AD rate compared to years during which they would

have spent their mid or later life years, consistent

with observations of lifelong TReg proliferation

[30, 33, 34]. Contemporary measures were more

powerful indicators in the cases of contemporary

parasite stress versus historical disease prevalence,

and GNI in 2004 versus 1970, while percent of

population living in urban areas in 1960 versus

2004 was a slightly better indicator of AD in 2004

(Fig. 3).

A series of linear regressions measuring the rela-

tionship between IMRs from 1900 to 2002 and AD

in 2004 revealed that IMR was significantly

Table 1. An evaluation of proxies for hygiene as predictors of Alzheimer burden

Variable Year N R2 P Direction

consistent

with HHAD?

Historical disease prevalence nine-item 1944–61 148 0.358 **** Yes

Historical disease prevalence seven-item 1944–61 191 0.242 **** Yes

Contemporary parasite stress 2002, 2009 190 0.373 **** Yes

Improved sanitation facilities 1995 177 0.334 **** Yes

Improved drinking-water sources 1995 178 0.327 **** Yes

GNI 1970 171 0.296 **** Yes

2004 174 0.328 **** Yes

Urban % 1960 187 0.282 **** Yes

2004 187 0.204 **** Yes

Linear regression for each predictive variable after transformation to optimize symmetry (Supplementary Section S1).
Principal component regression for parasite stress, sanitation facilities, drinking-water sources, infant mortality,
GNI and urbanization had a higher R2 than any predictive variable on its own (Supplementary Section S4).
****P< 0.0000.
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negatively correlated to 2004 AD rates with an

increasing annual ability to explain variance

(Fig. 4, Supplementary Section S5). This analysis

was restricted to countries with IMR data across

1900–2002 (N = 45) and thus was free from sample

size biases.

Similarly, a series of linear regressions measuring

the relationship between GDPs from 1900 to 2002

and AD in 2004 revealed that GDP was significantly

positively correlated to 2004 AD rates, although the

increasing annual ability to explain variance was only

consistently true for years 1940–2002 (Fig. S7).

Principal component analysis

A principal component regression analysis

demonstrated that the combined statistical impact

of the proxies for microbial diversity had a

significant effect on AD rates. There were high de-

grees of correlation between disease prevalence,

parasite stress, sanitation facilities, improved

drinking water, GNI and urban population

(Table S1). There was a significant relationship be-

tween the principal component and 2004 AD rate

(N = 159, R2 = 0.425, P< 0.0000) (Supplementary

Section S4, Fig. S6).

DISCUSSION

Inflammation plays an important role in AD patho-

genesis, and previous authors have hypothesized

that immune stimulation could increase AD risk

through T-cell [6] or microglial action [5, 60].

However, our results indicate that some immune

Figure 1. Countries’ parasite stress negatively correlated to Alzheimer’s burden

Countries with higher contemporary parasite prevalence have lower age-standardized rates of Alzheimer’s in 2004. N = 190,

R2 = 0.373, P< 0.0000. Contemporary parasite stress [55] combines years 2002 and 2009, and the variable is transformed by

adding a constant and taking square root. The Alzheimer variable is transformed by adding a constant and taking the natural log

of 2004 Alzheimer age-standardized DALY [36]
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stimulation may protect against AD risk. The trad-

itional hygiene hypothesis has effectively explained

prevalence rates of autoimmunity and atopy in

many populations. We have found that the hygiene

hypothesis can help explain some patterns in rates

of AD, as predicted previously [5, 8] with a direction

of correlation consistent with our predictions based

on T-cell differentiation.

In support of the HHAD, we found that proxies

for immune stimulation correlated to AD rates

across countries. These proxies included historical

disease prevalence, parasite stress, access to sani-

tation facilities, access to improved drinking-water

sources, IMR, GNI, GDP and urbanization. These

variables’ relationships to AD rate are independent

of countries’ age structures.

Further evidence supporting this hypothesis

from previous studies includes higher incidence of

AD in developed compared to developing countries,

comparison to incidence patterns of other disorders

with similar immunobiology and consideration of

the etiology of inflammation in AD.

Higher Alzheimer’s risk in industrialized

countries and urban environments

People living in developed compared to developing

countries have higher rates of AD. AD incidence at

age 80 is higher in North America and Europe than

in other countries [51]. A meta-analysis found

that dementia incidence doubled every 5.8 years in

high income countries and every 6.7 years in low-

and middle-income countries, where the overall

incidence of dementia was 36% lower [39] (but

see [61]). Another meta-analysis found that age-

standardized AD prevalences in Latin America,

China and India were all lower than in Europe,

and within those regions, lower in rural compared

to urban settings [62]. In a meta-analysis of

Asian countries, the wealthier ones had higher

Figure 2. Countries’ historical disease prevalence negatively correlated to Alzheimer’s burden 2004

Countries with historically more infectious disease have lower age-standardized rates of Alzheimer’s in 2004. N = 148, R2 = 0.358,

P< 0.0000. Historical disease prevalence 9-item data compiled by Murray and Schaller for years 1944–61 [54]. Alzheimer preva-

lence variable is transformed by adding a constant and taking the natural log of 2004 Alzheimer age-standardized DALY [36]
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age-standardized rates of AD prevalence than

the poorer countries [63]. A meta-analysis of

rural versus urban AD incidence demonstrated

that, overall, rural living was associated with higher

incidence, but when only high-quality studies were

considered, rural living was associated with reduced

incidence [47].

In developing countries and rural environments,

there are higher rates of microbial diversity,

exposure and infection. It is well-documented

that rates of atopies including allergies, hay fever,

eczema and asthma are lower in developing than

developed countries [12, 64], as are autoimmunities

such as multiple sclerosis, type-1 diabetes mellitus

and Crohn’s disease [65], and the same pattern

holds for rural versus urban environments [2, 14,

15] (but see [66]). We found that wealthier countries

(Figs S3 and S4) and more urbanized countries

(Fig. 2) had greater AD rates after adjustment for

population age-structures.

Alzheimer’s risk changes with environment

Previous studies have found that individuals from

similar ethnic backgrounds living in low versus high

sanitation environments exhibit low versus high risk

of AD. African Americans in Indiana had higher age-

specific mortality-adjusted incidence rates of AD

than Yoruba in Nigeria [67], and while there is no

indication that the sampled African Americans had

any Yoruba or even Nigerian heritage, the results

are at least consistent with our predictions for the

HHAD. There is also evidence that immigrant popu-

lations exhibit AD rates intermediate between their

home country and adopted country [63, 68–70].

Moving from a high-sanitation country to a

Figure 3. Countries’ urbanization 1960 positively correlated to Alzheimer’s burden 2004

Countries with more of the population living in urban areas in 1960 have higher age-standardized rates of Alzheimer’s in 2004.

N = 187, R2 = 0.282, P< 0.0000. Urbanization data [57] are transformed by adding a constant and taking the square root. The

Alzheimer prevalence variable is transformed by adding a constant and taking the natural log of 2004 Alzheimer age-standardized

DALY [36]
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low-sanitation country can decrease immigrants’ AD

risk [47] [e.g. Italy to Argentina [71] (but see [72])].

Our results are consistent with the possibility that

living in different countries confers different AD risk,

stratified by sanitation (Figs 1 and 2).

Alzheimer’s risk and family size

Having relatively more siblings would be expected

to correspond to higher rates of early-life immune

activation because of more interaction with

other children who may harbor ‘friendly’ commensal

microorganisms. Individuals with more siblings

have lower atopy prevalence [7, 18, 20]. Certain

studies have found that individuals with AD have

fewer siblings than controls [73, 74], but Moceri

and coworkers found no difference [75], and the

opposite [76].

Younger siblings compared to first-borns would

be expected to have higher rates of microorganism

exposure because this would indicate higher propor-

tion of childhood spent in contact with siblings.

Later-born siblings have lower rates of atopy [7, 20,

66, 77, 78]. No birth order effect has been observed

for AD [79].

Lymphocytes and Alzheimer’s

T cells are important modulators of immune func-

tion and have been identified as the major affected

system in trends attributable to the hygiene hypoth-

esis [8]. TReg cells become more abundant with age

in healthy subjects [80]. Whether the proliferation

of T cells in AD [80, 81] is effector or regulatory has

been the subject of controversy. Recently, Larbi et al.

re-analyzed their earlier postulation that TReg cells

may be upregulated in AD [82]. When a marker for

TRegs, FoxP3 [83], was considered, the authors

determined that the upregulation occurring was pro-

liferation of activated effector T cells [84], consistent

with our predictions for an HHAD.

One study found that TReg cells were increased in

mild cognitive impairment (MCI) and TReg-induced

immunosuppression was stronger in MCI than in

AD or controls [85]. This could be evidence that

among people with predisposition toward AD (i.e.

genetic or environmental risk factors), those with

adequate TReg function may merely develop MCI,

while those with inadequate TReg function may

develop AD. Also, it may be that during AD patho-

genesis, those with adequate TReg function may

Figure 4. Contemporary environment may be better indicator of Alzheimer’s burden than early-life environment

For each year (x), the regression coefficient (y) of the correlation between year’s (x) IMR and AD burden in 2004. IMR for the

various years were transformed by square root and natural log. See Supplementary Section S5. All correlations were significant

besides the years 1900, 1901 and 1911. Significance: 1902–19, P< 0.05; 1920–44, P< 0.01; 1945–2002, P< 0.000
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linger in the MCI phase for longer, while those with

inadequate TReg function may progress to AD more

rapidly.

It has already been well established that insuffi-

cient TReg numbers lead to excessive TH1 inflamma-

tion in autoimmunity and TH2 inflammation in atopy

[52, 86]. The inflammation characteristic of AD is

TH1 dominant [29, 87, 88]. In AD, amyloid-b
activates microglia and astrocytes, which stimulate

preferential TH1 proliferation [89], and AD patients

have elevated levels of TH1-associated cytokines

[90–92]. Non-steroidal anti-inflammatory drugs

have been demonstrated to be protective against

AD [93].

T cells may influence AD pathogenesis not only

from within the brain but also from the periphery.

Activated TH1 cells in the periphery could secrete

pro-inflammatory cytokines, which cross the blood–

brain barrier (BBB) and directly activate microglia

and astrocytes in the brain, as well as indirectly in-

duce inflammation by activating dendritic cells [89].

It should be investigated whether hygiene directly

affects the development of microglia. Microglia

sometimes exhibit a non-inflammatory phenotype,

in contrast to the pro-inflammatory phenotype

typical of the activated state in the context of

AD and other brain insults [5, 94], It is unknown

whether hygiene would promote development of

the inflammatory or non-inflammatory phenotypes

[5], and further research is needed to establish

the effect of microbial deprivation on microglial

development.

ApoE

ApoE-e4 is an allele that has pro-inflammatory

effects, and increases BBB permeability [95].

Compromise of the BBB would make other pro-

inflammatory mechanisms become exacerbated risk

factors for AD, when otherwise, inflammation might

have been limited to the periphery. There is already

evidence that ApoE alleles confer different degrees

of AD risk in different environments. While the e4 al-

lele was an AD risk factor among African Americans,

this was not the case among the Yoruba in Nigeria

[96], nor is e4 associated with increased risk among

Nyeri Kenyans, Tanzanians [97], Wadi Ara Arab

Israelis [98], Khoi San [99], Bantu and Nilotic

African cohorts [100]. These patterns support the

possibility that environmental factors such as micro-

bial diversity interact with inflammatory pathways to

influence AD risk.

Darwinian medicine

One of the major aims of Darwinian medicine is

understanding human health and disease within

the context of our species’ evolutionary history

[101]. In their formative 1991 paper, Williams and

Nesse discussed the promise for Darwinian medi-

cine to make strides in aging research [102]. There is

growing enthusiasm for Darwinian medicine

approaches to understanding aging [103], specific-

ally neurodegeneration [104] and more specifically

AD (Supplementary Section S7).

The hygiene hypothesis is an important contribu-

tion from Darwinian medicine [52]. Recently,

authors have suggested extending the hygiene hy-

pothesis toward explaining obesity [105] and certain

cancers [106, 107]. Thus far, the hygiene hypothesis

has been discussed mostly in the context of conse-

quences for early and mid-life pathologies, and

we feel that more attention should be paid to its

potential to explain patterns of disease in later life.

Study limitations

Some critics suggest that age-weighting is not re-

flective of social values [42, 108]. A systematic review

of GBD methodologies determined that the WHO’s

report [42] represented a rigorously comprehensive

methodology, but is still limited by the fact that many

developing countries use paper-based health sur-

veillance based more on estimates and projections

than actual counts. It is also possible that certain

predictive variables, especially urbanization, are

related to surveillance accuracy.

Large-scale epidemiological studies often suffer

from lack of surveillance and statistical limitations.

Much of public health and epidemiological research

is based on correlational studies, inherently

limited by the inability to demonstrate causality.

Nonetheless, these types of investigation provide

necessary perspective of environmental influences

on biological mechanisms, and help evaluate public

health burden and predict future healthcare needs.

Importance and applications

As AD becomes an increasingly global epidemic,

there is growing need to be able to predict AD rates

across world regions in order to prepare for the

future public health burden [39]. It is in low- and

middle-income countries that the sharpest rise is

predicted to occur in the coming decades [109].
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We suggest that ecological changes that will occur in

low- and middle-income countries as they become

more financially developed may affect AD rates in

ways not currently appreciated. Other authors have

also discussed the ways in which infectious disease

may affect patterns of non-communicable chronic

disease [110]. Disease predictions affect public

policy, healthcare prioritization, research funding

and resource allocation [111]. Better methods for

estimating AD rates could affect these policies and

strategies [112].

The next step in testing the HHAD should be

to directly investigate patients’ immune activity

throughout life and AD risk, preliminarily in a

cross-sectional study utilizing medical records,

serum analysis, or reliable interview techniques.

supplementary data

Supplementary data are available at EMPH online.
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