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Abstract
Clinical trials on early stage Alzheimer’s disease (AD) are reaching a bottleneck because none of
the current disease markers changes appreciably early in the disease process and therefore a huge
sample is required to adequately power such trials. We propose a method to combine multiple
markers so that the longitudinal rate of progression can be improved. The criterion is to maximize
the probability that the combined marker will be decreased over time (assuming a negative mean
slope for each marker). We propose estimates to the weights of markers in the optimum
combination and a confidence interval estimate to the combined rate of progression through the
maximum likelihood estimates and a bootstrap procedure. We conduct simulations to assess the
performance of our estimates and compare our approach with the first principal component from a
principal component analysis. The proposed method is applied to a real world sample of
individuals with preclinical AD to combine measures from two cognitive domains. The combined
cognitive marker is finally used to design future clinical trials on preclinical AD, demonstrating a
significant improvement in reducing the sample sizes needed to power such trials when compared
with individual markers alone.
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1. Introduction
Alzheimer’s disease (AD) is an age-related brain-damaging disorder that results in
progressive cognitive impairment and death. Accumulating research evidence suggests that
neurodegenerative processes associated with AD begin years prior to the symptomatic onset
of AD when the disease is clinically at the early prodromal stage or even the latent stage
(Katzman, 1976). Many recent clinicopathologic studies have also suggested a time window
prior to the symptomatic onset of AD during which no clinical diagnosis could be rendered,
but neuropathological changes of AD, notably senile plaques and neurofibrillary tangles,
have accumulated (Price et al. 2009, Bennett et al. 2006, Morris and Price 2001). These
observations have led to the concept of “preclinical AD”, i.e., AD brain pathology develops
prior to clinical symptoms. This model suggests an early and insidious pathogenesis of AD,
the clinical manifestation of which becomes apparent only after substantial neuronal death
and synaptic loss have taken place. To date, there are no pharmaceutical treatments that
reverse the pathological processes of AD. A recent report on the neuropathological follow-
up of patients with AD who had entered a phase I randomized, placebo-controlled trial of
immunization with Aβ42 (AN1792, Elan Pharmaceuticals) indicated that, although the
immunization resulted in clearance of amyloid plaques in the brain, this clearance did not
prevent progressive neurodegeneration (Holmes et al., 2008), suggesting that it may be too
late for such treatments to have an effect when given to persons with diagnosed AD (St
George-Hyslop and Morris, 2008). Hence, it will be critically important to design
randomized clinical trials (RCTs) of individuals at the earliest clinical stages, i.e., mild
cognitive impairment (MCI, Petersen et al., 2001), or even preclinical AD prior to the
substantial development of clinical symptoms since this is the group of individuals in which
targeted therapies may have the greatest chance of preserving normal brain function.

However, because AD markers including cognitive tests and biomarkers have been
traditionally designed to track the disease progression after symptomatic onset and to
identify cases of fully developed AD, they only exhibit subtle changes during the very early
stage or the preclinical stage of AD. Several recent RCTs using existing instruments (e.g.,
the Alzheimer’s Disease Assessment Scale-Cognitive subscale; Mohs et al., 1997) failed to
detect significant decline in placebo groups with mild cognitive impairment. Especially for
RCTs on early stage or preclinical stage of AD, the lack of progression on existing markers
has become an important challenge to the feasibility of such trials because of the need for a
huge number of individuals over many years to guarantee that meaningful statistical
conclusions can be drawn (Ringman et al., 2009, DeKosky et al., 2006, Launer et al., 2006).
Large, long-duration RCTs are time-consuming and prohibitively costly. Whereas emerging
cerebrospinal fluid (CSF) markers and neuroimaging markers (Hampel et al., 2010; Fagan et
al., 2007; Shaw et al., 2009; Mintun et al., 2006; Chen et al., 2004) have been reported to
show early changes in a greater magnitude than existing markers, a major analytic challenge
is to combine existing and emerging AD markers in an optimum way so that the rate of
longitudinal progression on disease markers can be optimally detected, especially during the
very early stages of AD. Appropriate combinations of markers across multiple modalities
may improve the feasibility of RCTs on early stage AD.

The purpose of this article is to find a way to combine multiple AD markers so that the
longitudinal rate of progression can be improved. We will employ a general linear mixed
model for each marker and link the models across multiple markers through a set of
correlated random effects. Assuming the disease progression is associated with a decreased
level of each marker over time, we will derive the linear combination of multiple markers
such that the probability that the combined marker is decreased over time is maximized. We
will then provide estimates to the weights of the proposed linear combination as well as
confidence intervals to the resulting rate of progression. We will also conduct simulation
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studies to compare the rate of progression over time on the combined marker using our
proposed method and the traditional approach with a principal component analysis (PCA).
Finally, we will demonstrate the proposed methodology by estimating the combined rate of
progression through a combination of two cognitive domains using longitudinal data from
Washington University (WU) Alzheimer’s Disease Research Center (ADRC), and assess the
improvement in reducing the sample size of future RCTs on the preclinical stage of AD
when the optimum combination of multiple markers is used as the primary efficacy
endpoint.

2. Method
We assume a total of m disease markers to be longitudinally assessed on individuals. For
marker i, i=1, 2, …, m, we use yj

i (t) to represent the observed value at time t for a randomly
selected individual j and assume a simple linear longitudinal progression:

(1)

Let  (T=matrix transpose), where  is the vector of

intercepts and  is the vector of slopes. We assume a random intercept
and slope model across m biomarkers, i.e., μj follows a 2m-dimensional normal distribution

with mean vector  and covariance matrix

Further, we assume that { , t≥ 0} is a stationary Gaussian process with  and

the autocovariance function given by , h≥ 0. Notice that

. If γi (h) is a constant when h>0, it corresponds to the compound symmetry

covariance structure in longitudinal models (Diggle et al., 2002). If  when
h>0, it corresponds to the autoregressive covariance structure in longitudinal models (Diggle

et al., 2002). We also assume that, conditional on μj,  and  are independent

Gaussian processes for i1 ≠ i2. Thus, conditional on μj, 
follows another m-dimensional multivariate normal distribution with 0 mean vector and
covariance matrix

Finally, we assume that μj and ej are independent. Thus, 

follows a normal distribution with mean μ0
T+μ1

T t and covariance matrix ,
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where , and Im is the m by m identity matrix. Likewise,

 follows a normal distribution with mean
μ0

T+μ1
T (t+1) and covariance matrix Ωt+1 = At+1ΣAt+1

T+ R, where .

For a vector of constant weights C = (c1,c2,…,cm), we form the linear combination

. At t+1, . Without loss of generality, we assume
that at the population level, each marker is decreased over time, i.e., μ1 < 0 componentwise.
Consider the probability that the combined marker decreases over a time interval of 1 unit
for a randomly selected individual, i.e.,

(2)

where Ω = At+1ΣAt
T + R1, R1 is the diagonal matrix with the i-th diagonal element equal to

γi(1), and Φ is the distribution function of the standard normal distribution. This probability
depends on the weight vector C = (c1,c2,…,cm). One optimum choice of the weight vector is
to make the combined marker decrease from t to t+1 for as many individuals as possible,
i.e., we will maximize P(C) as a function of C. Intuitively, our ultimate goal is to choose
weight vector C = (c1,c2,…,cm) such that the expected slope of the combined marker Uj(t) is
maximized and at the same time, the variance of the slopes minimized. However,
mathematically, these two things can not happen at the same time because if we naively
make the weights arbitrarily large so that the mean slope can be enlarged, the standard
deviation (SD) of slopes on Uj(t) will be enlarged proportionally at the same time. As a
matter of fact, what drives the power of a clinical trial is not the mean or the standard
deviation of the slopes individually, but the ratio between them. In another word,
maximizing the ratio between the mean and standard deviation of the slopes over all the
possible choices of weight vectors will lead to improvement in designing clinical trials, i.e.,
the most reduced sample sizes. Because Φ is a strictly increasing function, the maximization
of P(C) is equivalent to maximizing the ratio between the mean and standard deviation of
the slopes over all the possible choices of weight vectors, i.e.,

Notice here we assumed that μ1 < 0 and C>0 componentwise. Because Cμ1
T< 0, maximizing

P(C) is equivalent to maximizing

It is well known (Noble and Daniel, 1977) that the maximum is achieved when C is an
eigenvector C0 corresponding to the largest eigenvalue of (Ωt+Ωt+1 − 2Ω)−1 μ1

T μ1. The
maximizing value of Q(C) is the largest eigenvalue λ0 of (Ωt + Ωt+1 − 2Ω)−1 μ1

T μ1, which
then implies that the maximum probability that the combined marker decreases from t to t+1
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is . Notice that (Ωt + Ωt+1 − 2Ω) = Σ1 + 2R − 2R1 = Δ. Because Δ−1μ1
Tμ1

is a matrix of rank 1, the largest eigenvalue of the matrix is its trace, i.e., λ0 = μ1Δ
−1μ1

T.
Further, it is straightforward to verify that C0 = −μ1Δ

−1 is an eigenvector corresponding to
the largest eigenvalue (unique up to a constant). Therefore, the rate of progression from the
combined marker is given by (up to a constant)

(3)

The eigenvector C0 is unique if it is normalized, i.e., . As an example, if
we assume a compound symmetry (CS, Diggle et al., 2002) structure for the autocovariance

function of each marker, i.e.,  for h > 0, or an autoregressive

(AR, Diggle et al., 2002) structure, i.e.,  for h > 0, then Δ = Σ1 +
2(R − ρR), where ρ is the diagonal matrix with entries ρi, and ρR is the Hadamard product or
componentwise product between ρ and R.

Example 1: combining 2 markers
In the simple case of combining 2 markers when the autocovariance function for the error
process of each biomarker is 0 for h>0, i.e., with independent errors over times, let μ1 =

(μ11, μ12), , i=1, 2, and

The optimum weights are given by , where

 and . The rate of progression (i.e.,
the slope) using these weights as given by (3) is

Example 2: combining markers with independent rates of progression

Now we assume that Σ1 is a diagonal matrix with entries , i=1,2,…, m, representing the
variances of the slopes from the m markers. Let μ1i be the slope from the i-th marker.
Assuming an autoregressive (AR) covariance structure for the error process for each marker,

i.e., , the optimum weights are given by C0
T = −Bμ1

T, where B is the diagonal

matrix with entries , i=1,2,…, m. The combined rate of progression (i.e.,
the slope) as given by (3) is then
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3. Estimation and Inferences
We now assume that for a random sample of n individuals, the m markers are longitudinally

assessed. Let  denote the observation of individual j (j=1,2,..,n) for marker i, i=1,2,…,
m, at time tjk. Assume a random intercept and random slope model described above for

, where k=0,1,2,…, Kj, indicates times when the

markers are assessed for individual j. The random effects  can be
interpreted as the variations of the intercept and slope across individuals. A multivariate
random effects model (Shah, Laird, and Schoenfeld, 1997; Fieuws and Verbeke, 2004; Gao
et al., 2006) can be fitted to these data, and the maximum likelihood estimates (MLEs) to

, Σ, and γi (h),i=1,2,…, m, can be obtained. Let θ denote the set of variance/
covariance parameters including these from Σ1 and γi (h),i=1,2,…, m. Let μ̂1 be the
maximum likelihood estimate of μ1, and θ̂ the MLE of θ obtained from fitting the
multivariate random coefficients model. If we require that ||C0||=1, then the eigenvector C0
is unique and is a function of μ1 and θ. Let μopt = f (μ1, θ). The MLE to the rate of
progression with the optimum weights is μ̂opt = Ĉ0μ̂1

T = f(μ̂1, θ̂). The sampling distribution
of μopt is complicated to obtain. However, because Ĉ0 is a continuous function of matrix Δ =
Σ1 + 2(R − ρR) and vector μ1, μ̂opt = Ĉ0μ̂1

T is a strongly consistent estimator of μopt due to
the strong consistency of the MLEs in the mixed model. Assume that

is the estimated Fisher information matrix of (μ̂1, θ̂) after fitting the multivariate random
coefficients model, then asymptotically, (μ̂1, θ̂) follows a multivariate normal distribution
N((μ1, θ),Λ̂−1/n). A simple application of the Delta method implies that μopt = f(μ̂1, θ̂)
follows an asymptotically normal distribution with mean μopt and variance

, where Df is the column vector of the first order derivatives of f
evaluated at the MLE (μ̂1, θ̂). This then leads to an asymptotic 100(1 − α)% (0 < α < 1)
confidence interval (CI) for the combined rate of progression as

(4)

where zα/2 is the upper 50α% percentile of the standard normal distribution.

To compute the confidence interval estimate to the combined rate of progression, the
estimated covariance matrix Λ̂μ1θ has to be available after fitting the multivariate random
coefficient model. In standard computer output such as that from PROC MIXED/SAS
(Littell et al., 1996), Λ̂μ1 and Λ̂θ are readily available, but Λ̂μ1θ is not. Given that the closed
form of Λ̂μ1θ is not available, we propose to obtain an estimate through a bootstrap
resampling procedure (Davison and Hinkley, 1997):

1. Generate B bootstrap samples (say, B=200) from the observed data with
replacement such that each bootstrap sample is of the same sample size of the
original sample;
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2. Fit the multivariate random coefficients model for each bootstrap sample, and

obtain the MLEs (μ̂1, θ̂). Compute the covariance matrix Λ̂μ1, θ (called ) from
these MLEs;

3. Return back to the original observed data set, use  and the estimated Λ̂μ1 and
Λ̂ θ to compute the CI estimate to μopt.

Example 1 revisited: CI of the combined rate of progression when combining 2 markers
The MLE to the combined rate of progression (i.e., the slope) is

An asymptotic 100(1 − α)% (0 < α < 1) CI to the combined rate of progression is

, where Df is the column vector of derivatives of f and

, i =
1,2, and

.

4. Simulation Results
We ran an extensive simulation study to examine the effect of combining multiple disease
markers on the rate of progression over time. Our ultimate goal is to improve the rate of
progression utilizing multiple markers and assess how the combined rate will improve the
estimated sample sizes of future clinical trials, especially in the early stage of AD. Our
method requires, first, estimating the optimum weights to combine multiple markers, and
then estimating the combined rate of progression. Using a multivariate random coefficients
model, we have proposed a method of estimating the combined rate of progression as well
as the associated standard errors. Our proposed estimator is based on a combination of
standard asymptotic theory on MLEs and a bootstrap procedure.

Another intuitive way to combine multiple markers is by using the principal components
analysis (PCA). Our goal is to improve the rate of progression, so the PCA is conducted on
the covariance or correlation matrix of the slopes across multiple markers, i.e., Σ1. Because
Σ1 is conceptualized on the latent (i.e., not directly observed) slopes, the PCA has to apply
to the estimated Σ1 after fitting the multivariate random coefficients model. Both our
proposed approach and the PCA approach use an eigenvector to estimate weights to
combine markers, and the weights are only unique up to a constant. Therefore, potentially
different scales can be used in the linear combination of multiple markers across different
approaches. Hence, a valid comparison on the rate of progression between these two
combined markers has to be based on the ratio between the estimated rate of progression and
the corresponding standard deviation (SD) or standard error (SE).

Our first simulation study intends to answer the question of which approach, our proposed
method, or the simple PCA, provides larger rate of progression over time. Because the
intercept parameter of the random coefficients model does not contribute to the rate of
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progression through combinations of markers, we used a random slopes model (i.e., with all
intercept=0) to generate longitudinal data. We chose two markers (m=2) for the simulation
study. The simulated longitudinal study has 6 evenly spaced follow-up occasions for all
subjects, i.e., k=0,1,2,3,4,5. The true slope vector was μ1 = (− 0.8, − 0.8 + δ), δ = −0.3, 0,
0.3, and the true covariance matrix on slopes was

where d (d=1, 2) is the variance of latent slope of the second marker, and c is the correlation
between rates of progression from two markers. We further assumed that the error processes
are i.i.d. for both markers and with equal within-subject variances:

. For the selected set of parameters, the true weights C0
(normalized so that ||C0||=1) for combining the two markers with our proposed approach are
presented in the forth column of Table 1. Using these true weights, we then computed the
combined marker on the longitudinal data simulated from the bivariate random slopes model
for 500 subjects. Finally, we fitted a univariate random slope model on the combined marker
to estimate the slope. This process was repeated for 500 independently simulated
longitudinal data sets, each with a sample size of 500. The ratios between the mean and
standard deviation (SD) from 500 independently estimated slopes of the combined marker
are given in the sixth column of Table 1. For comparison purposes, we repeated the same
process using the weights from the simple PCA, which clearly did not take into account of
the difference in mean slopes from two markers (i.e., δ) or the within-subject variances (i.e.,

). The PCA weights with the assumed parameters are presented in the fifth column of
Table 1, indicating the same weight to both markers. The ratios between the mean and
standard deviation (SD) from 500 independently estimated slopes of the combined marker
with weights from the PCA are given in the seventh column of Table 1. For comparison
purpose, we have also computed the ratios between the mean and standard deviation (SD)
from 500 independently estimated slopes of the combined marker with equal weights in the
eighth column of Table 1. Results from Table 1 show that, when δ= 0, i.e., the two markers
have the same mean slope, and the variances of slopes from the two markers are the same,
i.e., d=1, the weight vector from our proposed approach is the same as that from the PCA
which gives the same weight to combine two markers, resulting in the same ratio between
the mean and standard deviation (SD) of the slopes on the two combined markers. On the
other hand, when δ = −0.3 or 0.3, i.e., the two markers have different slopes, regardless of
the equal variances (d=1) or different variances (d=2) of slopes from the two markers, our
proposed weight vector puts more weight on the marker with larger slope (in magnitude),
and provides larger ratio in magnitude between the mean and standard deviation (SD) of the
slopes than the weights from the PCA. Compared to the equal weights to combine two
markers (i.e., with normalized weight vector C=(0.707, 0.707)), when δ = −0.3 or 0.3, i.e.,
the two markers have different slopes, and regardless of the equal variances (d=1) or
different variances (d=2) of slopes from the two markers, our proposed weight vector also
provides larger ratio in magnitude between the mean and standard deviation (SD) of the
combined slopes except for one occasion. When d=2 and = −0.3, the ratio between the mean
and standard deviation (SD) of the estimated slopes δ from the combined marker with equal
weights is slightly larger in magnitude (maximum difference=0.324) than that from our
proposed weights. The reason behind this remains unknown, and further investigation is

needed. Further, Table 1 indicates that as the within-subject variance  increases, if the
variances of slopes from the two markers are the same, i.e., d=1, our proposed weight on the
marker with smaller absolute slope slightly increases, whereas our proposed weight on the
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marker with larger absolute slope slightly decreases. These weights eventually stabilize
when the within-subject variance reaches approximately 5 times that of the slopes (i.e.,

) in the assumed model. If the variances of slopes from the two markers are different,

i.e., d=2, as the within-subject variance  increases, our proposed weight on the marker
with smaller variance on the slopes slightly decreases, whereas our proposed weight on the
marker with larger variance on the slopes slightly increases, regardless of the differences on
the slopes of the two markers (i.e., for all δ = −0.3, 0, or 0.3).

It is important to note that the combined rate of progression (i.e., the slope) by combining
the two markers can not be measured directly in real world studies or clinical trials. Instead,
it has to be estimated by the repeated measures of both markers over time. The estimated
weights from our method depend not only on the covariance matrix Σ1 of individual slopes,

but also on the within-subject (i.e., across times) variances .

Therefore, the variation associated with estimates to the combined rate of progression has to
be taken into account when assessing the power of combining markers.

For a selected sample size n, we generated 200 pairs of data sets of the same size. Each pair
contains a training data set and another independent validation data set. For each data set in

the pair, we initially simulated n observations of slope vectors  from the
bivariate normal distribution N2(μ1,Σ1). We then simulated n observations of the error

vectors  so that the components were i.i.d. with a normal distribution

 for i=1,2, and were independent of . Finally we computed the

simulated markers by  for tjk = 0, 1, …, 5.

For each simulated training data set over 2 markers, we then fitted a bivariate random slopes

model and estimated the parameters μ1,Σ1, , i=1,2. These estimated parameters were used
to estimate the optimum weight vector Ĉ0 = (ĉ1, ĉ2). These weights were next applied to the

validation data set to combine the two markers as  for each
individual at each time point. We then fitted another random slopes model in the validation
data set to obtain the estimated slope on the combined marker and the associated SE. From
these results, we obtained the ratio of the slope and its standard error. To compare our
proposed weights and those from the PCA on the longitudinal rate of progression from the
combined markers, we repeated the same process by applying the PCA on the training data
set to obtain weights first and then using these weights to combine the markers in the
validation data to estimate the rate of progression. Finally, to assess how the variation in the
estimated weights affects the estimate to the longitudinal rate of progression on the
combined markers, we repeated the same process by applying the true weights from our
method and the PCA (computed from the true model parameters) to the validation data set,
and estimated the slope on the combined marker and the associated SE as well as their ratio.

Table 2 presents the mean (SD) of the ratios (i.e., the estimated slope divided by the
estimated SE) across 200 independent validation data sets for the combined marker using
one of the four sets of weights: our proposed weights estimated by the training data set
(column 2), our proposed true weights using true parameters in the model (column 3),
weights from the first principal component of the PCA estimated from the training data set
(column 4), and true weights from the first principal component of the PCA using the true

parameters (column 5). The parameters assumed in Table 2 are d=1, , δ = 0.3, and c =
0.5. Results in Table 2 suggest that our proposed weights to combine markers can be
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estimated accurately in the training data set and then applied to the validation data set
because the mean ratios between the estimated slope and the estimated SE were very close
to those when the true weights were used. Further, at least in the simulated scenarios, our
proposed weights provide faster rate of decline for the combined marker when compared to
that using the weights of the PCA.

Because our model conceptualizes a distribution of subject-specific rates of progression for
multiple markers, it is straightforward that the rate of progression from the combined marker
depends on the correlations between rates of progression across multiple markers. In
traditional regression analyses, multicollinearity can be a potential problem in combining
multiple highly correlated markers. Thus, it is necessary to assess the performance of our
proposed estimate to the combined rate of progression as a function of the correlation
between rates of progression, especially when that correlation is large. Further, because the
subject-specific rate of progression can not be directly observed and has to be estimated
through repeated measures, within-subject variances around the rate of progression

( ) also impact the estimation of the rate of progression from the combined
marker. It is therefore also important to further assess the performance of our proposed
procedure to estimate the combined rate of progression as a function of within-subject
variances. To address these, we conducted another simulation study. We used the same
model and parameters as above to generate 1000 independent data sets with each selected
sample size n. We chose a wide range of correlation between two rates of progression

(c=0.1, 0.5, and 0.9) and within-subject variances (  and 3). For each simulated data
set over 2 markers, we fitted the bivariate random slopes model and estimated the

parameters μ1, Σ1, ,i=1,2. We used these estimates to estimate the rate of progression for
the combined marker as in the last set of simulations described earlier. We obtained the
estimated SE for the estimated combined rate of progression using the bootstrap procedure
described in Section 3. More specifically, for each data set, 200 bootstrap samples of the
same size were obtained, and the same bivariate random slopes model were run on these
samples to obtain 200 MLEs (μ̂1, θ̂), where θ is the set of variance/covariance parameters.

From these bootstrap estimates of (μ̂1, θ̂), we computed the covariance matrix  and used
it with the original estimates Λ̂μ1 and Λ̂θ from the original sample to compute the CI
estimate to μopt as given by (4). Table 3 presents the empirical coverage of the 95% CI
estimate to the true combined rate of progression across 1000 independent simulated data
sets for our proposed combination of 2 markers. These coverage probabilities are presented

as a function of sample size, the within-subject variance , and the correlation c on the
slopes between two biomarkers. Results in Table 3 indicate that across a wide range of
correlation between two rates of progressions and within-subject variances, our proposed
asymptomatic confidence interval estimate (through an embedded bootstrap procedure) to
the combined rate of progression achieved a coverage probability close to the nominal 95%,
especially when the sample size was relatively large (i.e., >50). On the other hand, the
empirical coverage probability showed more variation when sample size was relatively
small (i.e., n=30).

5. Application to Designing Future Clinical Trials on Preclinical AD
We demonstrate the increased power of the proposed method by applying it to estimate
required sample sizes for future clinical trials to evaluate the effectiveness of a hypothetical
treatment for preclinical AD. Clinical trials on AD usually require a cognitive outcome as
the primary efficacy endpoint. A major challenge in designing modern clinical trials of
preclinical or early stage AD is that cognitive outcomes such as the Alzheimer’s Disease
Assessment Scale for Cognition (ADAS-Cog, Mohs et al., 1997) were designed for AD
trials rather than for preclinical stages, and thus they may be relatively insensitive at
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preclinical stages. The sample sizes required to adequately power such trials are therefore
formidable. We hoped that our proposed combination of multiple markers will improve the
feasibility of clinical trials on preclinical AD by reducing the sample sizes needed to
adequately power these trials.

Several recent studies have reported that cognitive decline begins to accelerate several years
prior to the onset of symptomatic AD (Hall et al., 2000; Johnson et al., 2009). Because there
are no well established criteria as yet for prospectively identifying at screening a cohort of
subjects who are destined to develop AD, we propose to evaluate a hypothetical clinical trial
among a population that, without an intervention, is somehow known to be 3 years prior to
the onset of symptomatic AD. Existing literature has suggested that several cognitive
domains including episodic memory and visuospatial ability are especially sensitive to
preclinical progression of AD (Johnson et al. 2009, Hall et al. 2007). We therefore focus on
these domains. Our design will be based on real longitudinal data on these cognitive
domains from the WU ADRC. Elderly individuals aged at least 65 years from the WU
ADRC went through annual clinical and cognitive assessments. The clinical and cognitive
assessment procedures have been described previously (Morris et al., 2006; Johnson et al.,
2008). From the longitudinal database of the WU ADRC, we identified a total of 180
individuals who were cognitively normal at baseline and subsequently developed AD
(defined as receiving a Clinical Dementia Rating (Morris, 1993) of at least 0.5 with a
diagnosis of dementia of Alzheimer type) during the longitudinal follow-ups. These
individuals all had at least 2 longitudinal assessments 3 years prior to the symptomatic onset
of AD, which was our operational definition of the preclinical stage of AD (Johnson et al.,
2009). For those with longer follow-up periods, only data points within 3 years of the
symptomatic onset of AD were included in the analysis. At baseline, i.e., the assessment 3
years prior to the symptomatic onset of AD, the subjects had a mean age of 81.89 years
(SD=7.78 years) and a mean education of 14.31 years (SD=3.41 years). 61% of the sample
were female, and 94% were white. Out of 164 subjects with data on apolipoprotein E
(APOE) genotype, 33.54% of them had the ε4 allele of apolipoprotein E (APOE4), a major
genetic risk factor of AD.

Longitudinal cognitive measures from two domains were available for these individuals: a
composite visuospatial score (VS) and the Logical Memory (LM) score from the Wechsler
Memory Scale (WMS, Wechsler and Stone, 1973). The visuospatial (VS) composite score
included scores from the Wechsler Adult Intelligence Scale Block Design and Digit Symbol
subtests (Wechsler, 1955) and Trailmaking A and B (Armitage, 1946). Scores on the four
individual tests were converted to z scores using the reference group described previously
(Johnson et al., 2009) and then averaged to form the composite. LM was scored according to
the Russell criteria (Russell, 1975). Both VS and LM scores were further converted to z-
scores using the baseline mean and standard deviation in the current sample.

We fitted a bivariate random slopes model to the longitudinal data on both VS and LM three
years prior to the symptomatic onset of AD. We assumed the error processes are i.i.d. for
both LM and VS. Table 4 includes the estimated rate of progression (i.e., slopes) as well as

the other variance and covariance parameters in the model (i.e., μ1,Σ1, ,i=1,2) along with
their estimated SEs. Based on these estimates, the proposed combination of VS and LM was
estimated as 0.6070*VS+ 0.7947*LM (the weight vector C normalized to ||C||=1). The
estimate to the combined rate of change was – 0.1367 per year. Conditional on the estimated
weights, an estimated variance for the subject-specific rate of progression for the combined
marker was 0.2938, and an estimated within-subject variance for the combined marker was
0.7732.
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We used the parameter estimates from these analyses on our pilot data to estimate sample
sizes for a future clinical trial among people with preclinical AD. We assumed a future two-
arm clinical trial that will be designed for 1.5 years with quarterly assessments for people
with preclinical AD. The objective is to detect the difference on the rate of decline between
a novel treatment and the placebo on the two cognitive markers, VS and LM. The effect size
is expressed as the percentage of improvement on the rate of decline for the treatment arm as
compared to the placebo arm. Assuming a sample size ratio of 1:1 for the trial, Table 5
presents the sample size per arm required with 80% statistical power to detect a set of effect
sizes using each of the individual cognitive markers as well as using the combined marker
with the weights estimated by our proposed method and by the PCA. A significance level of
5% is assumed in the test of efficacy hypothesis. The power analyses were based on a
standard normal test on the rate of progression between the treated arm and the placebo arm
(Xiong, Zhu, and Yu, 2008). Results from Table 5 indicate that our proposed combination of
two cognitive scores significantly reduces the sample sizes needed to adequately power a
future clinical trial on people with preclinical AD. More specifically, across the range of
effect sizes in Table 5, about 55% and 23% reduction on the sample size can be achieved if
our combined marker is used in comparison to the VS and the LM, respectively. For
example, with 20% effect size in Table 5, the percentage of sample size reduction with the
combined marker is (34163-15442)/34163=54.8% when compared to marker VS, and is
(20170-15442)/20170=23.44% when compared to marker LM. We also point out that,
compared to individual cognitive scores, the combined marker with weights from the PCA
also reduces the sample sizes needed in future clinical trials on preclinical AD, albeit the
sample size reduction is to a lesser degree than the combined marker with our proposed
approach. Finally, compared to the weights from the PCA, our proposed weights only
modestly improve the sample sizes needed for clinical trials on preclinical AD.

Finally, it is clear from Table 4 that cognitive progression in visuospatial and episodic
domains is very subtle during the preclinical stage of AD. Hence, although our proposed
combination of multiple cognitive scores improves the sample size of future clinical trials on
preclinical AD, the required sample size remains very large. These results support the utility
of other novel biomarkers than cognitive tests such as CSF and neuroimaging biomarkers in
future clinical trials on preclinical AD (Fox et al. 2000).

6. Discussion
There is currently a major conundrum in the search of effective treatments of AD. On the
one hand, accumulating research evidence indicates that neurodegenerative processes
associated with AD begin years prior to the symptomatic onset of AD (Price et al. 2009,
Bennett et al. 2006, Morris and Price 2001), suggesting that the optimum time window for
treatment interventions is when the disease is clinically at the early prodromal stage or even
the latent or preclinical stage. On the other hand, the lack of detection of progression by
currently used disease markers makes the sample size for clinical trials on preclinical AD a
formidable task to achieve. This challenge can be partially surmounted by combining
multiple markers to optimize the antecedent rate of progression in patients who are at
preclinical stage of AD. Of course, these methods could be used in any setting where there
was theoretical rationale to combine multiple indicators of change over time.

We proposed a novel methodology to combine data from multiple longitudinal disease
markers. We did so by maximizing the probability that the combined marker will be
decreased over time across individuals (assuming at the population level, each marker is
decreased over time). Because this combination assures a decline as much as possible, it
could provide an improvement of estimating the rate of progression across multiple
biomarkers. We mathematically derived the optimal combination (i.e., using the optimum
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weights) and the combined rate of progression. We further provided both point and
confidence interval estimates to the combined rate of progression through the maximum
likelihood method. Because the inferential procedure required the estimated covariance
matrix between the estimated fixed effects and estimated variance and covariance
parameters which is not directly available from standard statistical software such as PROC
MIXED/SAS (Littell et al., 1996), we proposed a bootstrap procedure to first estimate the
covariance matrix and then proceed to set up the confidence interval estimate for the
combined rate of progression.

PCA is another popular approach used to reduce multiple markers into a few principal
components that capture most of the variation in the multivariate distributions. Because the
PCA is solely based on the covariance structure, it does not involve the mean structure of the
multivariate distribution. Given that our main objective is to improve the longitudinal rate of
progression across multiple markers, i.e., to achieve larger slope in magnitude by combining
multivariate markers, the PCA might be ill-equipped to carry the task. We ran several
simulation studies to compare our approach with the PCA approach in terms of providing
faster rate of progression and to assess how our proposed confidence interval estimate to the
combined rate of progression performs as a function of sample size, within-subject
variances, and the correlation between the subject-specific rates of progression across
markers. Our simulation was done through a cross-validation approach in which a training
data set was used to estimate the weights and an independent validation data set was then
used to estimate the optimum combination of markers and its rate of progression. The results
indicated that, except for the case when the two markers have exactly the same mean and SD
for the slopes as well as the same within-subject variances, our proposed method of
combining markers provided faster rate of progression than the PCA approach. The
simulation results also indicated that, except for one occasion, our proposed method of
combining markers provided faster rate of progression than the combination with equal
weights. Further, we found that across a range of within-subject variances and correlations,
the empirical coverage probability of our proposed CI estimate to the combined rate of
progression was close to the nominal 95%, even when the sample size was as small as 30.
As expected, we also observed more variation on the coverage probability when the sample
size was small.

Finally, we applied the proposed method to a real world sample of individuals with
preclinical AD, and estimated the individual rate of progression in a composite visuospatial
score and the score from the WMS Logical Memory (Wechsler and Stone, 1973). We
estimated the variance/covariance parameters associated with the rate of progression. We
then used these estimates to obtain sample sizes needed for a future clinical trial on
preclinical AD. Although the preclinical cognitive progression prior to the onset of AD is in
general very slow and hence a large sample is required to power clinical trials on preclinical
AD with the cognitive endpoints, our proposed combination of two markers provided a
significant improvement in reducing the sample sizes needed to power such trials when
compared to each individual marker alone, highlighting the potential use of our proposed
methodology in future clinical trials on preclinical AD.

With more progressive novel biomarkers such as CSF and imaging markers (Fox et al.
2000), it is likely that our proposed methodology will provide much more reasonable sample
sizes for future clinical trials on preclinical AD. However, our power analyses for a future
clinical trial on preclinical AD need to be interpreted with caution. It is well known that the
power analysis for any clinical trial depends on the best parameter estimates from existing
pilot data available at the designing stage of the trial. Whereas we implemented a
retrospective definition of preclinical AD to obtain best estimates to crucial parameters on
people who were truly at the preclinical stage of AD, it is very important for trialists to
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select subjects with preclinical AD prospectively in future clinical trials. Given that there are
no well established criteria as yet to prospectively identify at screening a cohort of subjects
who are destined to develop AD, our power analysis has its limitations. Namely, our power
analysis will only be valid and provide the improved estimate of the sample sizes in
designing a future prospective clinical trial on preclinical AD if prospective data to be
collected from the future prospective clinical trial suggest consistent estimates to model
parameters as obtained by our pilot data on the retrospectively defined cohort of preclinical
AD. Finally, it is important to compare our power analysis results to those with a more
standard cognitive endpoints such as ADAS-cog (Mohs et al. 1997). However, a lack of data
from the WU ADRC database on ADAS-cog prevented us from doing so. Further
investigation is needed using other databases such as those from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).

In order to use the proposed methodology to pre-define a better cognitive endpoint for future
clinical trials on preclinical AD, weights have to be first estimated to combine multiple
cognitive measures. Notice that these weights can not be estimated directly from the
unobserved rates of progression (i.e., slopes) in real world studies or clinical trials. Instead,
they have to be estimated by the repeated measures of cognitive markers over time. The
estimation of these weights hence requires normative and longitudinal data on a
comprehensive cognitive battery administered on a large sample of individuals with
preclinical AD. For example, the Uniform Data Set (UDS) that National Alzheimer’s
Coordinating Center (NACC) has been collecting since 2005 can serve as an excellent
normative database for this purpose. Application of our proposed methodology to the
longitudinal NACC cognitive database on a very large cohort of cognitively normal
individuals have the potential to offer a much improved and pre-defined cognitive endpoint
that is a linear combination of the entire UDS cognitive battery for future clinical trials on
preclinical AD, especially if the stage of preclinical AD can be well defined and
operationalized to allow prospective identification of individuals who are truly at the
preclinical stage of AD in the NACC database.
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Table 2

Mean (SD) ratio between the estimated slope and the estimated SE from 200 simulations for the two combined
markers (N=sample size)
(Assumptions for Table 2: d=1,  = within-subject variance=3, c=correlation on the slopes of 2 markers=0.5)

N Proposed weights estimated from
training data sets

True proposed weights PCA weights estimated from training
data sets

True PCA weights

30 −4.244 (1.235) −4.488 (1.186) −4.060 (1.240) −4.268 (1.178)

50 −5.392 (1.196) −5.752 (1.176) −5.154 (1.200) −5.484 (1.157)

100 −7.664 (1.212) −7.937 (1.127) −7.333 (1.213) −7.577 (1.134)

150 −9.338 (1.136) −9.617 (1.129) −8.938 (1.144) −9.179 (1.126)

200 −10.904 (1.188) −11.060 (1.151) −10.415 (1.195) −10.554 (1.123)

250 −12.265 (1.183) −12.311 (1.084) −11.708 (1.186) −11.741 (1.059)

300 −13.436 (1.203) −13.467 (1.079) −12.829 (1.199) −12.845 (1.037)
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Table 4

MLEs to the individual rate of progression per year (i.e., slope) on VS and LM and other variance and
covariance parameters

Model parameter MLE Standard Error for MLE

Slope of VS (i.e., μ11) −0.0822 0.0528

Variance for the slope of VS ( )

0.1652 0.0381

Within-subject variance for VS ( )

0.7390 0.0583

Slope of LM (i.e., μ12) −0.1093 0.0529

Variance for the slope of LM ( )

0.1608 0.0374

Within-subject variance for LM ( )

0.7931 0.0608

Covariance on the slopes of VS and LM (σ12) 0.1362 0.0283
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Table 5

Sample size per arm for a 1:1 clinical trial on preclinical AD using individual cognitive scores (LM or VS)
and the combined score

Effect size (% of the slope in the control arm) VS LM Combination: Proposed approach Combination: PCA

20% 34,163 20,170 15,442 15811

25% 21,865 12,909 9,883 10119

30% 15,184 8,965 6,863 7028

35% 11,156 6,586 5,043 5163

40% 8,541 5,043 3,861 3953

45% 6,749 3,985 3,051 3124

50% 5,467 3,228 2,471 2530

55% 4,518 2,668 2,042 2091

60% 3,796 2,242 1,716 1757

65% 3,235 1,910 1,462 1497

70% 2,789 1,647 1,261 1291

75% 2,430 1,435 1,099 1125

80% 2,136 1,261 966 989
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