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Hepatocellular carcinoma (HCC) is the

third leading cause of cancer death and

the fifth most common solid tumor

worldwide [1,2]. Liver tumorigenesis is a

multistep process in which external stimuli

such as chronic inflammation or cirrhosis

lead to the development of clonal popula-

tions of dysplastic hepatocytes that accu-

mulate genetic changes and evolve into

malignant foci [2]. Among the most

common risk factors for HCC pathogen-

esis include viral hepatitis, alcoholism, and

obesity [1,3].

The same insults that predispose to

HCC are known to induce endoplasmic

reticulum (ER) stress pathways. One such

pathway, known as the unfolded protein

response (UPR), is triggered by the

accumulation of incompletely folded pro-

teins in the ER lumen [4–6]. Stimulation

of the UPR results in the activation of

three transmembrane proteins that induce

downstream effectors to alter gene expres-

sion and ultimately modulate ER function.

One of these UPR transmembrane pro-

teins is protein kinase RNA (PKR)-like ER

kinase (PERK), which phosphorylates

eIF2a, leading to a transient translational

blockade. A related pathway that shares

transcriptional targets with the UPR is the

integrated stress response (ISR) pathway.

When triggered by viral infection or

amino acid starvation the ISR also initiates

eIF2a-dependent signaling events [7].

Although the UPR and ISR pathways

are active in distinct human tumor types

and the UPR is implicated in HCC [8–

10], their relative contribution to the

pathogenesis of HCC has remained un-

characterized.

In this issue of PLOS Genetics, Rutkowski

and colleagues (DeZwaan-McCabe et al.,

[11]) sought to determine whether the

UPR pathway was induced in murine liver

tumors that developed in a Sleeping Beauty

(SB) transposon-induced insertional muta-

genesis screen [12,13]. The application of

transposon-based approaches to cancer

gene identification provides a powerful

opportunity to examine the consequences

of specific mutations in the context of in

vivo tumor development [14]. Whole

transcriptome sequencing of liver tumors

generated in an SB-mediated liver tumor-

igenesis screen identified an induction of

C/EBP Homologous Protein (CHOP), a

stress-regulated transcription factor, in

multiple SB-induced tumors. Upon further

analysis, components of the two PERK-

independent arms of the UPR pathway

were not altered at the transcript level,

leading the authors to further investigate

the role of the ISR and CHOP in HCC.

CHOP, which has a diverse repertoire

of transcriptional targets and modes of

transcriptional modulation, was previously

known to mediate apoptosis in response to

ER stress [15–17]. Accordingly, several

studies implicate CHOP as a putative

tumor suppressor. In contrast to this,

chromosomal translocations fusing CHOP

to FUS/TLS and EWS have been identi-

fied in several cancers, hinting that CHOP

may also play an oncogenic role in

tumorigenesis in certain contexts [18,19].

The Integrated Stress Response
in HCC: Not Just CHOPped Liver

Consistent with a pro-oncogenic role for

CHOP, McCabe et al. [11] hypothesized

that CHOP contributes to the pathogen-

esis of HCC in vivo by promoting apopto-

sis, inflammation, fibrosis, compensatory

proliferation, and development of liver

tumors (Figure 1). Consistent with this

hypothesis, global deletion of Chop in mice

attenuated these sequelae following treat-

ment with the chemical carcinogen

diethylnitrosamine (DEN). Following ad-

ministration of the hepatotoxin carbon

tetrachloride in wild-type mice, the au-

thors observed an association of CHOP-

positive foci with increased fibrosis. Stain-

ing of human HCC samples with a CHOP

antibody revealed CHOP-positive foci in

tumors and significantly less staining in

normal liver. These results suggest that

activation of CHOP promotes HCC

progression. Moreover, these findings

provide the first link between CHOP and

liver oncogenesis.

Gene expression profiling of liver

mRNA from Chop-null and wild-type mice

in the absence of hepatotoxic challenge

revealed that deletion of Chop reduced the

levels of basal inflammatory signaling

genes. This is consistent with an important

role for CHOP in promoting inflamma-

tion after liver injury. Interestingly, genes

encoding ribosomal proteins were signifi-

cantly increased in liver tumors derived

from DEN-treated Chop-null animals rela-

tive to tumors that developed in wild-type

animals. None of these genes harbored

canonical CHOP binding sites, leaving the

question of how this occurs unresolved.

This represents the first evidence that

CHOP can reduce translation by sup-

pressing expression of ribosomal proteins.

However, this is consistent with the

general role of the ISR as an inhibitor of

translation. Further studies are needed to

fully elucidate how CHOP affects the

translational machinery and the resulting

effects on translational output.

The authors of this study present several

lines of evidence consistent with an

oncogenic role for CHOP in promoting

HCC. Their findings suggest that induc-

tion of CHOP is a common feature of liver

cancer caused by viral infection, alcohol-

ism, and obesity. Recently, a novel

framework has been proposed suggesting

that cancer cells exhibit hallmarks of

chronic stress induced by DNA damage,

proteotoxic stress created by accumulation

of unfolded protein aggregates, metabolic

stress, and oxidative stress [20]. Additional

experiments are therefore warranted to

determine whether CHOP induction is a

causative event that promotes liver tumor-

igenesis and/or a consequence of the

immense cellular stress that cells are
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subjected to as hepatocytes acquire muta-

tions and undergo the multistep progres-

sion to HCC. This will require the

generation of inducible and tissue-specific

transgenic mouse models, which are

currently lacking. Temporal manipulation

of CHOP expression in the liver could also

tease out whether CHOP promotes the

initiation of HCC, or if it enhances

tumorigenesis after dysplastic liver nodules

form.

Given the resistance to HCC-associated

phenotypes observed in Chop-null animals

and the discovery of human HCC-associated

CHOP expression, this stress-responsive

transcription factor may serve as a useful

biomarker for liver cancer. However, several

important questions remain. For example, is

CHOP-mediated apoptosis of hepatocytes

the major initiating event that triggers the

cycle of subsequent inflammation, fibrosis,

and ultimately HCC initiation? Or does

hepatocyte-specific expression of CHOP

indirectly stimulate inflammation, perhaps

through cytokine release, initiating the in-

flammation-tumorigenesis sequence? The

analysis of CHOP target genes that mediate

these effects in HCC will shed light on these

issues. Perhaps most intriguingly, the identity

of the eIF2a kinase that leads to CHOP

induction in liver cancer remains unknown.

PERK is one candidate, and it would be

useful to determine whether PERK inhibi-

tors will blunt CHOP expression and

ameliorate HCC in mouse models. Thus,

further investigation of the pro- and anti-

oncogenic functions of CHOP is likely to

reveal important new insights into the

pathogenesis of liver cancer and other tumor

types.
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