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ABSTRACT Human liver cytochrome P-450NF is the form
of cytochrome P-450 responsible for the oxidation of the
calcium-channel blocker nifedipine, which has been reported to
show polymorphism in clinical studies. By screening a
bacteriophage Xgtll expression cDNA library, we isolated two
clones: NF95 with an insert length of 0.8 kilobases which gave
a stable fusion protein and NF25 with an insert length of 2.2
kilobases. The two clones were both sequenced and shown to be
identical in their overlapping section. The sequence of NF25 is
77% similar to that reported for a rat cytochrome '"P-45OPCN"
cDNA (PCN = pregnenolone-16a-carbonitrile). The similarity
decreases to 45-53% when the sequence is compared to human
cytochromes P-450 belonging to other families [i.e., "pH
P-450(1)," "P1-450," "P3-450," and "P-45OMP." The de-
duced amino acid sequence is 73% similar to that of rat
cytochrome P-45OPCN, and the first 21 amino acids are identical
to those reported for human liver cytochrome "P-450p."
Sections of these clones were nick-translated and used as probes
for analyses of human mRNA and genomic DNA. The number
and size of bands indicate that P-45ONF belongs to a multigene
family, the so-called pregnenolone-16a-carbonitrile-inducible
family.

Cytochrome P-450 (P-450) plays an important role in the
oxidation of drugs and carcinogens as well as endogenous
substrates. Interindividual variation in oxidative metabolism
can be attributed, at least in part, to the composition of
individual P-450 forms, and these differences are partly due
to genetic factors. Since 1977, several genetic polymorphisms
of drug oxidation have been demonstrated (1-3), and in some
cases the involved form of P-450 has been identified in
humans (4, 5). Recently Kleinbloesem et al. (6) reported that
oxidation of nifedipine, a vasodilator and calcium-channel
blocker, was distributed in a polymorphic manner-17% of
the Dutch population studied were phenotypically poor
metabolizers. Recently we identified and purified the human
liver P-450 form that is responsible for this oxidation of
nifedipine (7). This protein, P-45ONF, was shown to be related
or identical to P-450s previously isolated from human liver in
this laboratory (8). To better understand the mechanism
underlying this polymorphism, we used polyclonal and
monoclonal antibodies to screen a human liver bacteriophage
Xgtll cDNA expression library. The selected clones were
analyzed, sequenced, and used to prepare nick-translated
probes for the analysis of mRNA and genomic DNA.

MATERIALS AND METHODS
Enzymes and Antibodies. Human livers were obtained

through the Nashville Regional Organ Procurement Agency,

and protocols were approved by the Vanderbilt Committee
for the Protection of Human Subjects. Livers were perfused
immediately after circulatory arrest, chilled on ice, and
brought to the laboratory. The livers were cut in small pieces,
frozen in liquid nitrogen, and stored at -70°C (8).

P-45ONF was purified as described, and polyclonal and
monoclonal antibodies were produced (7, 9). These antibod-
ies recognized a single band migrating with purified P-45ONF
when human liver microsomes were electrophoresed and
immunoblotted (7, 9). Before use in screening the Xgtll
library, antibodies were adsorbed twice overnight at 4°C with
Escherichia coli (BNN97) (10) lysate bound to CNBr-acti-
vated Sepharose 4B (Pharmacia, Piscataway, NJ) in order to
eliminate reaction with E. coli proteins; after immunoadsorp-
tion, the antibody reactivity toward P-45ONF and toward E.
coli was assayed.

Library Screening. The human liver cDNA phage Xgt11
expression library was a gift of G. A. Ricca and W. Drohan,
Meloy Laboratories (Springfield, VA). It was screened with
both polyclonal and monoclonal antibodies basically as
described by Young and Davis (10); the nitrocellulose filters
were developed with an immunochemical technique (11)
using 4-chloro-1-naphthol in place of 3,3'-diaminobenzidine
(12). Antisera or ascites fluids were used at dilutions of about
1:50. Positive plaques were checked and plaque-purified by
at least two additional rounds of dilution and screening.
High-titer phage stocks were purified through CsCl step and
equilibrium gradients (13). Xgtll DNAs were prepared for
restriction mapping and subcloning in phage M13 (14).
Lysogens were prepared by infection of Y1089 E. coli with
Xgtll phage clones, and colonies were selected for growth at
30°C and not 42°C. Fusion proteins were produced by initially
growing cells in exponential phase at 30°C, heat-shocking
them at 42°C for 15 min, and then growing them at 37°C in the
presence of 10mM isopropyl-,3-D-thiogalactose until the A600
stabilized (between 0.5 and 2 hr). Cells were then collected by
centrifugation at 104 x g for 10 min, and the pellet was
solubilized for electrophoresis, with subsequent visualization
of bands by silver staining or immunoblotting.

Subcloning and Sequencing. Xgtll DNA containing inserts
was digested with EcoRI, HindIII, Sac I, or HindIII/Sac I
and was subcloned in M13 phage as described (15), except
that the UT481 strain was used instead of JM101 or JM103.
E. coli UT481 was constructed by and obtained from C. Lark
(Salt Lake City, UT). M13 plaques containing inserts were
plaque-purified, and single- and double-stranded DNAs were
prepared as described (15); the orientation was checked by
asymmetric restriction digestion (i.e., Pst I or BamHI).

Single-stranded M13 DNA was used as a template forDNA
sequencing by the dideoxy termination method (16). DNA
sequencing kits were obtained from New England Nuclear
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FIG. 1. Restriction map of
clones NF95 and NF25 and se-
quencing strategy. The hatched
region is the coding sequence.
Arrows indicate the direction
and extent of sequence deter-
mined for cDNA fragments
subcloned in M13mp19 or M13-
mpl8. Recognition sites for re-
striction nucleases are indicat-
ed. Except for Taq I, these were
all determined experimentally
and confirmed by computer anal-
ysis of the sequence.

and used according to the supplier's instructions except that
the incubation temperature was 370C and no NaCl was
included in the buffer. Additional sequencing primers were
18-mers or 20-mers synthesized with a BioSearch Sam-One
Series II DNA Synthesizer; oligonucleotides were purified as
described by Lloyd et al. (17). Sequences were compared
with the aid of computer access to the protein sequence data
base of the National Biomedical Research Foundation.t

Blotting Analysis of RNA and DNA. Genomic DNA and
total RNA were isolated from the same preparation by using
the CsCl cushion method described by Chirgwin et al. (18).
The RNA was collected as a pellet on the bottom of the
centrifuge tube, dissolved in water, and precipitated with 0.1
vol of sodium acetate and 2 vol of ethanol. The DNA was
collected as a viscous solution at the interface between the
CsCl and the homogenate. This solution was extracted once
with phenol/CHCl3, 1:1 (vol/vol) and once with CHCl3 and
then was precipitated with ethanol. The DNA was dissolved
in 10 mM Tris HCl buffer, pH 8.0/1 mM EDTA, treated with
proteinase K (50 pg/ml) in 0.1% sodium dodecyl sulfate, and
reextracted with phenol/CHCl3 and CHCl3 as above. The
purified DNA was then precipitated with ethanol. For South-
ern blots, 20 jug of genomic DNA was cut with various
restriction enzymes and electrophoresed through a 0.8%
agarose gel. The gel was processed by the Wahl et al. (19)
modification of the Southern (20) procedure. The DNA was
transferred to GeneScreenPlus (New England Nuclear) and
processed as suggested by the supplier. For RNA blot
analyses, 15 /ig of RNA was submitted to agarose/
formaldehyde electrophoresis as described (21). RNA was
then transferred to GeneScreenPlus (New England Nuclear)
and processed as suggested by the supplier. DNA and RNA
blots were probed with nick-translated DNA inserts (=108
dpm/,tg). DNA fragments were purified from agarose gels
basically as described (22). Hybridization and washings were
performed as described by the supplier. Filters were then
autoradiographed with Kodak XAR film (Kodak) with two
screens from 3 to 7 days at -70'C.

RESULTS AND DISCUSSION

Isolation and Characterization of cDNA Clones. A human
liver cDNA expression library in bacteriophage Xgtll was
screened with polyclonal and monoclonal antibodies raised
against P-45ONF. After the screening of a total of 3 x 105
plaques, 15 clones were positively identified by both anti-
bodies. These clones were characterized by insert length and
by the presence of fusion proteins in lysogen preparations.
Two clones were selected: NF25, the insert ofwhich was long
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FIG. 2. (A and B) Electrophoresis and immunoblotting of Xgtll
lysogen proteins: immunoblotting with anti-P-45ONF (A) and silver-
staining of the gel (B). Lanes: X, E. coli lysogen infected with Xgtl1
bacteriophage without insert; 95, E. coli lysogen infected with Xgtll
clone 95; -, cells grown at 30TC pelleted and electrophoresed; +,
cells grown at 30TC, heat-shocked 15 min at 42TC, and treated with
isopropyl-p-D-thiogalactose. Molecular mass is shown in KDa. P-450
and Gal indicate the migration positions of P-45ONF and 3-galact-
osidase, respectively. The arrowhead at the right indicates the
migration of the fusion protein. Clone NF25 gave results similar to
those in lanes X. Development of immunoblots with anti-(3galac-
tosidase visualized 3-galactosidase in lane X+ and the fusion protein
with a higher molecular mass in lane 95+. (C) Various amounts of
purified P-45ONF (from sample HL 93) (7) were spotted on nitrocel-
lulose with a "dot" apparatus, incubated with a 1:50 dilution ofrabbit
antibody raised against /-galactosidase/clone NF 95 fusion protein
(see text), and developed as described (11, 12).
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FIG. 3. Nucleotide and deduced amino acid sequences of NF25 (upper line) and comparison with rat P-45OPCN sequence (24) (lower line).Only the differences from NF25 are indicated in the rat P-450pcN sequence. Initiation and termination codons are boxed. The cysteine-containingpeptide thought to bind heme (25) is underlined. Dashes indicate the three-nucleotide gap introduced to increase the base and amino acid match.

enough to code for the entire protein (Fig. 1), and NF95, the length of the insert (Fig. 2 A and B). Antibodies were
which gave a very strong antibody response and produced a raised against the fusion protein from NF95 by transferring
fusion protein recognized by both anti-p3-galactosidase and the fusion protein to nitrocellulose paper, solubilizing the
monoclonal and polyclonal anti-P-450NF antibodies (Figs. 1 nitrocellulose in dimethylsulfoxide, and injecting this mate-
and 2). The increase in molecular weight of the fusion protein rial into rabbits (23). These antibodies recognized P-45ONF
(compare p-galactosidase) correlated well when compared to (Fig. 2C). NF25 contained two internal EcoRI sites, which
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were used for subcloning into M13, while NF95 did not
contain any internal EcoRI sites. Three probes were prepared
by nick-translation of restriction fragments of insert DNA
(probes 1, 2, and 3; see Fig. 1) obtained after subcloning in
M13. These were used to confirm the alignment of the
subinserts of NF25 by Southern blotting of Xgt11 DNA that
had been cut with EcoRI and electrophoresed through a 1%
agarose gel. Probe 1 recognized the same subinsert as probe
2 (data not shown). All other Xgtl1 clones selected with
antibodies were recognized by probe 1.
Sequence Analysis of NF95 and NF25. NF25 and NF95, in

phage M13, were sequenced by the dideoxy termination
method (16) using the strategy indicated in Fig. 1. Each region
represented by an arrow was sequenced between three and
eight times. The sequence is shown in Fig. 3 along with the
deduced amino acid sequence. The NF25 insert is 2.2
kilobases (kb) long and the sequenced portion represents
1606 nucleotides, including 68 nucleotides in the 5' untrans-
lated region, 29 nucleotides in the 3' noncoding region, and
an open reading frame of 1509 nucleotides, which corre-
sponds to a protein of 503 residues. The termination codon is
TGA, the most common termination codon published in
known human and mouse sequences (26). The position -3
upstream from the initiation codon is a purine, as for all
known eukaryotic sequences (27).
The deduced amino acid sequence was compared to those

of two P-450s, rat P-45OPCN (24) (PCN = pregnenolone-16a-
carbonitrile) and human P-450p (28); the latter is known to be
highly similar or identical to P-45ONF by comparison of the
procedures of purification (8, 28) and by immunochemical
cross-reactivity (7, 28). The first 21 amino acids for NF25
(deduced sequence) and P-450p (28) are identical (Fig. 4).
P-45OPCN (24) and NF25 share 77% nucleotide similarity, and
only a one-codon gap has to be introduced (P-45OPCN has 504
amino acids instead of 503 for NF25). The NF25 nucleotide
sequence shares 53%, 45%, 45%, and 47% similarity, respec-
tively, with human pH P-450(1) (31), P1-450 (26), P3-450 (32),
and P-450MP cDNA coding sequences (D.R.U., R.S.L., and
F.P.G., unpublished results) (5), respectively, as analyzed
with these programs, indicating that P-45ONF belongs to a
family different from the phenobarbital- and 3-methylchol-
anthrene-inducible families-the rat and rabbit PCN-indu-
cible P-450 gene family (25). A more extensive comparison of
the sequences of the N-terminal region and C-terminal
cysteine-containing peptide, a highly conserved region, is
shown in Fig. 4. All P-450s of the PCN-inducible family

(human P-45ONF, rat P-450p, rat P-45OPCN, and rabbit P-450
LM3c) have similar N-terminal sequences, but they are not
similar to human P1-450 and P-450MP. The heme ligand
cysteine-containing peptide is more conserved within the
gene families than within species: the nucleotide sequence
similarity in this region can reach 96% within a family
(P-45ONF versus P-45OPCN, Fig. 4). The cDNA-deduced ami-
no acid composition was compared with the one obtained
with purified P-45ONF (7); the difference index of 7.5 shows
that they fit well (33). The amino acids that show the greatest
deviation (glycine and alanine) are those that are known to
generally yield discrepancies between amino acid analysis
and cDNA-predicted sequences (34). Comparison of rat
P-450PCN and P-45ONF compositions gave a difference index
of 3.7, confirming the strong relationship between the two
proteins. The deduced molecular weight of the P-45ONF
protein is slightly higher than the one estimated by sodium
dodecyl sulfate/polyacrylamide gel electrophoresis, as is the
case for other hydrophobic P-450s, which may bind more
sodium dodecyl sulfate than soluble proteins (34). A complete
restriction map was obtained by computer analysis of the
sequence and fitted perfectly with the experimental map
(BamHI, Cla I, EcoRI, HindIII, Kpn I, Pst I, Pvu I, Sac I,
and Sal I). NF95 was also sequenced and, in the overlapping
region with NF25, no differences were seen, indicating that
both clones were probably derived from the same mRNA.
mRNA and Genomic DNA Analysis. Genomic DNA was cut

with three different restriction enzymes, and the fragments
were analyzed by Southern blotting (Fig. 5). Several bands
were obtained with the three different cuts and the two
nonoverlapping probes used (probes 2 and 3), even when
relatively high-stringency hybridization conditions were
used, indicating that P-45ONF very likely belongs to a
multigene family. The size (50-60 kb with the two probes)
and the numbers ofbands practically exclude the existence of
a single gene. Liver samples HL 32 and HL 34 showed some
small differences in Southern blotting patterns (Fig. SA);
comparison with three other liver DNAs has not shown any
specific pattern for poor or extensive metabolizers to date.
The multiplicity ofP-45ONF genes was confirmed by North-

ern blot analysis (Fig. SB), which shows that probe 1
recognizes three or four bands, indicating that there are
several transcripts, the sizes of which (=2-4 kb) are all
compatible with the size of the protein and the lengths of
other P-450 mRNAs (25). Clearly the major size class is about
2.0 kb, although the number of distinct transcripts within this
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FIG. 4. Comparison of de-
duced amino acid sequences in
two regions: N-terminal region
(A) and the heme-binding cys-
teine-containing peptide (B) (25).
Important similarities between
the sequences are boxed. Amino
acid sequences were obtained
from the following sources in pa-
rentheses: rat P-45OPCN (24), rat
P-450p (29), rabbit P450 LM3c
(30), human P-450p (28), pH
P450(1) (31), human P1-450 (26),
human P3-450 (32), human P-
450Mp (D.R.U., R.S.L., and
F.P.G.-unpublished results).
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c from the cDNA is identical to that of P-45ONF. However, the
cloning and sequence determination should provide a basis
for further studies on the basis of regulation of activities
related to this P-450 in humans.
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FIG. 5. DNA and RNA analysis by blotting. Microsomes pre-
pared from human liver samples HL 32 (lanes a) and HL 34 (lanes b)
oxidized nifedipine at rates of 0.88 and 0.65 nmol of product formed
per min/nmol of P-450, respectively. (A and B) Southern DNA blots.
DNA was loaded (20 ,ug) and hybridized with probe 3 (A) and probe
2 (B). (C) RNA blots. RNA was loaded (15 ,ug) and hybridized with
probe 1. Probes 1 and 2 gave similar results. Restriction enzymes
used are indicated at the tops of the lanes. Ribosomal RNA markers
are indicated at 18S and 28S. Sizes are shown in kb.

zone is unknown, and we do not know conclusively which
mRNA size-class codes for the protein. Our previous work
suggested that catalytic activity is related to the amount of
immunochemically detectable P-45ONF (7), and these results
have been confirmed. Analysis ofmRNA levels in nine liver
samples (with probe 2) showed a 20-fold variation [after
normalization of mRNA hybridization with an oligomer
(50-mer) complementary to the 5' end of human serum
albumin mRNA (35)]. However, the mRNA levels could not
be correlated to either levels of nifedipine oxidase activity or
immunochemically determined P-45ONF in microsomes pre-
pared from this set of samples.

CONCLUSIONS

While cDNA clones have been previously obtained for
human P-450s (26, 31, 32), in no case has a sequence been
obtained that is related to a P-450 protein that has been
isolated and characterized in terms of physical properties and
catalytic activity. We obtained a sequence for a cDNA
related to a major human liver P-450 that appears to be
involved in an oxidation polymorphism where a significant
population is affected (6). The protein has been suggested to
be inducible in humans (28), and other work in our laboratory
indicates that P-45ONF is involved in a number of reactions,
including 6,8-hydroxylation of testosterone and androste-
nedione, estradiol 2- and 4-hydroxylation, aldrin epoxidation
(7), benzphetamine N-demethylation (7, 8), quinidine 3- and
N-oxidation (36), and the oxidation of nifedipine and 17 other
dihydropyridine analogs to pyridine compounds (37). Several
related sequences are found in this gene family, and we

cannot state with certainty that the coding sequence deduced
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