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ABSTRACT

The k-opioid receptor (KOR)-dynorphin system has been
implicated in the control of affect, cognition, and motivation,
and is thought to be dysregulated in mood and psychotic
disorders, as well as in various phases of opioid dependence.
KOR agonists exhibit analgesic effects, although the adverse
effects produced by some KOR agonists, including sedation,
dysphoria, and hallucinations, have limited their clinical use.
Interestingly, KOR-mediated dysphoria, assessed in rodents as
aversion, has recently been attributed to the activation of the p38
mitogen-activated protein kinase pathway following arrestin
recruitment to the activated KOR. Therefore, KOR-selective G
protein—biased agonists, which do not recruit arrestin, have
been proposed to be more effective analgesics, without the
adverse effects triggered by the arrestin pathway. As an initial

step toward identifying novel biased KOR agonists, we applied
a multifaceted screening strategy utilizing both in silico and
parallel screening approaches. We identified several KOR-
selective ligand scaffolds with a range of signaling bias in vitro.
The arylacetamide-based scaffold includes both G protein—and
B-arrestin-biased ligands, while the endogenous peptides and
the diterpene scaffolds are G protein biased. Interestingly, we
found scaffold screening to be more successful than library
screening in identifying biased ligands. Many of the identified
functionally selective ligands are potent selective KOR agonists
that are reported to be active in the central nervous system. They
therefore represent excellent candidates for in vivo studies aiming
at determining the behavioral effects mediated by specific KOR-
mediated signaling cascades.

Introduction

The k-opioid receptor (KOR)-dynorphin system has been
implicated in the pathogenesis and pathophysiology of
affective disorders, drug addiction, and psychotic disorders
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(Sheffler and Roth, 2003; Bruchas and Chavkin, 2010). KOR
and dynorphin are highly expressed in regions of the brain
implicated in the modulation of reward, mood, cognition, and
perception (ventral tegmental area, nucleus accumbens,
prefrontal cortex, hippocampus, striatum, amygdala, and
hypothalamus) (Land et al., 2008; Schwarzer, 2009; Knoll
and Carlezon, 2010; Tejeda et al., 2012). Accordingly, drugs
directed at KOR as antagonists or partial agonists have
potential utility for a number of indications, especially as
antidepressants and anxiolytics (Carlezon et al., 2009).
Additionally, KOR agonists are gaining attention as potential
antiaddiction medications and analgesics without a high
abuse potential (Tao et al., 2008; Wee and Koob, 2010;
Prevatt-Smith et al., 2011). However, the adverse effects
produced by many centrally active KOR agonists, including
sedation, dysphoria, and hallucinations, have limited their
clinical development (Pfeiffer et al., 1986). Dysphoria has
been considered the best surrogate marker of KOR agonism,
while the hallucinogenic effects of KOR agonists have been
relatively unexplored, except in the case of salvinorin A (Roth
et al., 2002; White and Roth, 2012).

KOR stimulation leads to the activation of the canonical Go;
signaling cascade, the recruitment of B-arrestin, and
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activation of p38 mitogen-activated protein kinase and an array
of other downstream effectors (Appleyard et al., 1997; Bruchas
et al., 2006; Land et al., 2009). It has been hypothesized that the
dysphoric effects of KOR agonism is mediated through the
arrestin-dependent activation of p38 mitogen-activated protein
kinase, while the analgesic effects of KOR agonism are mediated
only through G protein signaling (Bruchas et al., 2007). This
suggests the potential for functionally selective ligands of KOR
as analgesics devoid of dysphoric effects. Ligands that differen-
tially stimulate canonical and noncanonical transduction path-
ways are considered to be “functionally selective” (Urban et al.,
2007), and their differential engagement in signaling is referred
to as “biased.” Identifying functionally selective KOR agonists
with extreme signaling bias will be useful for determining which
signal transduction pathways are important for therapeutic
efficacy and which signaling cascades contribute to the side
effects (Allen et al., 2011). Due to the diverse structure of KOR
ligands, there is the potential to discover a variety of functionally
selective ligands that can be used to probe KOR signaling, as
well as to improve KOR-based therapeutics. The goal of this
study was to identify a range of chemotypes of functionally
selective KOR ligands using a parallel in vitro screening
approach accompanied by in silico selection.

KOR agonists can be classified into five chemotypes: the
endogenous peptides (dynorphins), the benzodiazepines (tiflua-
dom), the benzomorphans (ketazocine), the arylacetamides
(U69593; (+)-(5a,7a,88)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxas-
piro[4.5]dec-8-yl]-benzeneacetamide), and the diterpenes (salvi-
norin A). Dynorphins (Dyns) have been implicated in addiction
and drug-seeking, mood disorders, and the stress response
(Bruchas and Chavkin, 2010). The benzomorphans, such as
bremazocine, have limited KOR selectivity but show strong
analgesic effects. However, despite their low dependence
potential, they were removed from clinical development due
to psychotomimetic and dysphoric effects (Dortch-Carnes and
Potter, 2005). It was originally thought that the negative side
effects of KOR agonists were due to off-target effects, and a new
class of selective KOR agonists—the arylacetamide derivatives
such as U69593—was developed to circumvent these potential
shortcomings. However, some arylacetamides are also reported
to produce hallucinations and aversion (Millan, 1990). The
diterpenes, represented by salvinorin A (which is the main
psychoactive compound in Salvia divinorum), represent a novel
scaffold of highly potent and selective KOR agonists with no
appreciable affinity for any other known neurotransmitter
system or receptor (Roth et al., 2002).

Functionally selective ligands at other targets have been
identified by screening derivatives of known ligand scaffolds in
a parallel fashion, in which libraries of analogs are screened
simultaneously against multiple downstream effector pathways

(see, for instance, Huang et al., 2009; Allen et al., 2011; Chen
et al., 2012; Wacker et al.,, 2013). The extent of functional
selectivity of those compounds, or bias factor, can be quantified
using the operational model (Black and Leff, 1983; Kenakin
et al., 2012; Kenakin and Christopoulos, 2013; Wacker et al.,
2013). Accordingly, we sought to identify and quantify the degree
of bias for representative scaffolds that maintain high affinity
and selectivity for KOR.

Materials and Methods

Drugs. The National Institutes of Health Clinical Collection (NCC)
library used here is a publicly available library consisting of Food and
Drug Administration—approved drugs we have previously used to identify
biologically active drugs (Huang et al., 2009, 2011). The synthesis of the RB
family of salvinorin derivatives used here has been previously described:
22-chlorosalvinorin A (RB 48), 22-thiocyanatosalvinorin A (RB 64), 22-
bromosalvinorin A (RB 50), (22R,S)-22-chloro-22-methylsalvinorin A (RB
55), (22S)-22-chloro-22-methylsalvinorin A (RB 55-1), (22R)-22-chloro-
22-methylsalvinorin A (RB 55-2), 22-cyanosalvinorin A (RB 59), and
22-methoxysalvinorin A (RB 65) (Yan et al., 2009). Salvinorin A was
isolated from dried leaves of S. divinorum purified as previously
reported (Kutrzeba et al., 2009) and hydrolyzed to salvinorin B, which
was a starting material for the synthesis of all analogs.

Dynorphin 1-13, dynorphin 1-11, dynorphin 1-9, and dynorphin 1-8
are all obtained from the National Institute on Drug Abuse drug supply
program. U69593, (=)-(5a,7a,88)-3,4-dichloro-N-methyl-N-[7-(1-pyrrolidinyl)-
1-oxaspiro[4.5]dec-8-yl|benzeneacetamide mesylate salt (spiradoline,
U62066), 17-cyclopropylmethyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-
6,7,2',3'-indolomorphinan (naltrindole), L-N-cyclobutylmethyl-3,14-
dihydroxymorphinan (+)-tartrate salt (butorphanol), and 17-
(cyclobutylmethyl)-4,5-epoxymorphinan-3,6,14-triol hydrochloride
hydrate (nalbuphine) were purchased from Sigma-Aldrich (St. Louis,
MO). 4+([3,4-Dichlorophenyl]acetyl)-3-(1-pyrrolidinylmethyl)-1-piperazinecar-
boxylic acid methyl ester fumarate salt (GR89696), 2-(3,4-dichlorophenyl)-N-
methyl-N-([1S]-1-phenyl-2-[1-pyrrolidinyl]ethyl)acetamide hydrochlo-
ride (ICI 199,441), trans-(—)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclo-
hexyl]lbenzeneacetamide hydrochloride [(—)U50,488], trans-(+)-3,4-
dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide
hydrochloride [(+)U50,488], 2-(3,4-dichlorophenyl)-N-methyl-N-
([1S]-1-[3-isothiocyanatophenyl]-2-[1-pyrrolidinyl]ethyl)acetamide
hydrochloride (DIPPA), (+)-1-(3,4-dichlorophenyl)acetyl-2-(1-
pyrrolidinyl)methylpiperidine hydrochloride (BRL 52537), N-methyl-
N-([1S]-1-phenyl-2-[1-pyrrolidinyl]ethyl)phenylacetamide hydrochlo-
ride (N-MPPP), (RS)-[3-[1-[[(3,4-dichlorophenyl)acetyllmethylamino]-
2-(1-pyrrolidinyl)ethyllphenoxylacetic acid hydrochloride (ICI 204,448),
and dynorphin A were purchased from Tocris Bioscience (Bristol, UK).
3-(Cyclopropylmethyl)-6,11-dimethyl-1,2,3,4,5,6-hexahydro-2,6-
methano-3-benzazocin-8-0l (cyclazocine) and (5a,7a)-17-(cyclopropyl-
methyl)- 4,5-epoxy-18,19-dihydro-3-hydroxy-6-methoxy-« ,a-dimethyl-6,14-
ethenomorphinan-7-methanol (diprenorphine) were acquired from the
drug supply program of the National Institute on Drug Abuse.

The synthesis of N-naphthoyl-B-naltrexamine (3-NNTA), 6'-guanidino-17-
(cyclopropylmethyl)-6,7-didehydro-4,5«-epoxy-3,14-dihydroxyindolo[2’,3":6,

ABBREVIATIONS: 5'-GNTI, 5’-guanidino-17-(cyclopropylmethyl)-6,7-didehydro-4,5«-epoxy-3,14-dihydroxyindolo[2’,3":6,7]morphinan; 6’-GNTI,
6’-guanidino-17-(cyclopropylmethyl)-6,7-didehydro-4,5«-epoxy-3,14-dihydroxyindolo[2',3":6,7]Jmorphinan; B-NNTA, N-naphthoyl-B-naltrexamine;
BRET, bioluminescence resonance energy transfer; BRL 52537, (+)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl)methylpiperidine hydrochloride;
DIPPA, 2-(3,4-dichlorophenyl)-N-methyl-N-([1S]-1-[3-isothiocyanatophenyl]-2-[1-pyrrolidinyl]lethyl)acetamide hydrochloride; Dyn, dynorphin;
GPCR, G protein-coupled receptor; GR89696, 4-([3,4-dichlorophenyl]acetyl)-3-(1-pyrrolidinylmethyl)-1-piperazinecarboxylic acid methyl ester
fumarate salt; ICl 199,441, 2-(3,4-dichlorophenyl)-N-methyl-N-([1S]-1-phenyl-2-[1-pyrrolidinyllethyl)acetamide hydrochloride; ICI 204,448, (RS)-
[3-[1-[[(3,4-dichlorophenyl)acetyllmethylamino]-2-(1-pyrrolidinyl)ethyl]phenoxylacetic acid hydrochloride; KOR, x—opioid receptor; NCC, National
Institutes of Health Clinical Collection; N-MPPP, N-methyl-N-([1S]-1-phenyl-2-[1-pyrrolidinyl]ethyl)phenylacetamide hydrochloride; (+)U50,488,
trans-(+)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide hydrochloride; (—)U50,488, trans-(—)-3,4-dichloro-N-methyl-N-
[2-(1-pyrrolidinyl)cyclohexyllbenzeneacetamide hydrochloride; U62066, (*)-(5«,7«,88)-3,4-dichloro-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-
8-yllbenzeneacetamide mesylate salt; U69593, (+)-(5a,7«,88)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide.




7lmorphinan (6'-GNTI), and 5'-guanidino-17-(cyclopropylmethyl)-
6,7-didehydro-4,5a-epoxy-3,14-dihydroxyindolo[2’,3":6,7]mor-
phinan (5’-GNTI) (Supplemental Methods).

Measurement of G Protein Activation. A genetically engi-
neered firefly luciferase cAMP biosensor (GloSensor; Promega, Madi-
son, WI) was used to quantify Ga;-mediated activity as described
previously (Allen et al., 2011; Chen et al., 2012; Thompson et al., 2012;
Wu et al., 2012; Wacker et al., 2013). Details are available online at the
National Institute of Mental Health’s Psychoactive Drug Screening
Program site (http:/pdsp.med.unc.edu/PDSP%20Protocols%2011%
202013-03-28.pdf). In brief, human embryonic kidney cells were
transfected with the biosensor and KOR at a 1:1 ratio. The next day,
the cells were plated into Greiner white 384-well plates (catalog no.
655098). The cells were incubated with the test compound for 20-30
minutes before addition of the GloSensor reagent (luciferin) and
isoproterenol (Allen et al., 2011). Luminescence is quantified 10 minutes
after the addition of GloSensor reagent and isoproterenol. The Z' score
for this assay using salvinorin A is 0.89 (Zhang et al., 2000).

Measurement of Arrestin Recruitment. Two assays were used
to assess B-arrestin translocation: the Tango assay as described
previously (Barnea et al., 2008; Wu et al., 2012), and a biolumines-
cence resonance energy transfer (BRET)-based assay as an ortholo-
gous confirmatory assay as described previously (Rives et al., 2012).
The Tango assay requires the fusion of a transcription factor to the C
terminus of KOR via linker that contains a tobacco etch virus (TEV)
protease cleavage site. Activation of KOR leads to the recruitment of
B-arrestin-2 fused with TEV protease, which releases the transcrip-
tion factor, making it available for induction of luciferase expression.
The BRET assay requires cotransfection of KOR fused with Renilla
luciferase, Venus-tagged B-arrestin-2, and G protein—coupled recep-
tor kinase 2. The cells were distributed on 96-well plates 1 day prior to
assay. The Z’' scores using salvinorin A are 0.716 and 0.95 for the
Tango assay and the BRET assay, respectively.

Virtual Screening for Biased Ligands. Upon identification of
a potential scaffold with signaling bias, we then identified analogs as
detailed previously (Huang et al., 2011) using the ZINC database
(Irwin and Shoichet, 2005; Irwin et al., 2012). Compounds identified
were purchased and screened as described above.

Quantifying Bias. We used the method developed by Kenakin
and Christopolous to quantify the biased signaling of ligands
(Kenakin et al., 2012, Kenakin and Christopoulos, 2013). After
generating concentration-response curves, we fit the data to a math-
ematical model based on the Black and Leff operational model to
generate log(7/KA) values. The log(7/KA) value is a transduction
coefficient that represents the affinity and efficacy of a ligand for
a specific signaling pathway, in this case either G protein activation or
arrestin mobilization. This model also incorporates the receptor
density and coupling within a system, and therefore is receptor-
expression independent. The log(7/KA) of each test ligand is then
compared with the log(7/KA) of a reference ligand, in this case
salvinorin A, for both G protein activation and arrestin recruitment.

TABLE 1
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Fig. 1. NCC library screening results. (A) Depiction of the parallel
screening approach used. (B) Scatter plot showing the results of the
screening of the NCC library in the arrestin assay. 1, Bestatin; 2, GR8969;
3, 2-(2-aminoethyl) pyridine; 4, N-cyano-N'-(1,1-dimethylpropyl)-N'’-3-
pyridinylguanidine; 5, brucine; 6, doxapram; 7, diphenoxylate.

Salvinorin A was chosen as the reference ligand because it has very
similar ECs, values for both the G protein and arrestin pathways and
displays full efficacy at both pathways. Because agonists activate different
signaling pathways with different efficacies and potencies, ligand bias
is quantified by comparing the activity of an agonist in one assay to the
agonist’s relative activity in another assay, using the same reference
ligand in both assays. This method reduces observation or assay bias, as
well as system bias innate to the assays used (Kenakin and Christopoulos,
2013). Generating a single number that incorporates agonist affinity and
efficacy is useful for identifying which ligands to use in future studies.

Affinity and potency values for arylacetamides using GloSensor and Tango

Arylacetamides G Protein EC5o G Protein E .y Arrestin ECsq Arrestin E .« Bias Factor
nM nM

Salvinorin A 5.183 (—8.29 = 0.10) 99.7 5.75 (—8.24 + 0.06) 97.2 1

ICI 199,441 1.63 (—8.79 = 0.07) 101 0.428 (—9.37 * 0.05) 84.8 4 Arrestin
ICI 204,448 4.22 (—8.38 = 0.09) 111 3.28 (—8.48 * 0.06) 77.4 2 Arrestin
U69593 5.89 (—8.23 += 0.07) 109 6.42 (—8.19 * 0.09) 89.3 1
GR89696 0.970 (—9.01 = 0.11) 96.4 0.259 (—9.60 =+ 0.06) 92.8 5 Arrestin
U62066 1.01 (—9.00 = 0.05) 103 6.21 (—8.21 = 0.10) 92.7 6 G protein
(+)U50,488 246 (—6.61 = 0.12) 102 959 (—6.02 = 0.08) 92.3 8 G protein
(-)U50,488 0.858 (—9.06 = 0.07) 95.5 0.822 (—9.09 = 0.09) 94.6 2 Arrestin
DIPPA 14.5 (—7.84 = 0.09) 111 8.49 (—8.07 = 0.07) 68.5 1
N-MPPP 4.45 (—8.35 = 0.09) 109 2.41 (—8.62 = 0.06) 79.7 1
BRL 52537 1.85 (—8.73 = 0.07) 112 1.35 (—8.87 = 0.05) 88.9 1
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TABLE 2

Affinity and potency values for dynorphin peptides using GloSensor and Tango assays

Peptides G Protein EC5q G Protein E,ax Arrestin EC5o Arrestin E,,,,x ~ Bias Factor
nM nM
Salvinorin A 5.183 (—=8.29 = 0.10) 99.7 5.75 (—8.24 = 0.06) 97.24 1
Dynorphin A 8.12 (—=8.09 = 0.07) 101 268 (—6.57 = 0.11) 74.8 34 G protein
Dyn 1-8 57.7 (=724 = 0.05) 106 720 (—6.14 = 0.11) 89.9 4 G protein
Dyn 1-9 10.2 (=7.99 = 0.06) 101 600 (—6.22 + 0.09) 64.7 16 G protein
Dyn 1-11 3.26 (—8.49 = 0.08) 101 450 (—6.35 = 0.09) 75.8 44 G protein
Dyn 1-13 2.07 (—8.68 = 0.07) 96.6 97.8 (=7.01 = 0.07) 72.4 34 G protein
Results KOR ligands having a biased signaling profile relative to

Screening for Biased Ligands Using G Protein
Activation and Arrestin Recruitment Assays. To iden-
tify KOR ligands with signaling bias, we screened in parallel
the NCC library of approved medications at a concentration of
3 uM using a split luciferase cAMP assay (GloSensor) and
a genetically encoded arrestin recruitment assay (Tango).
Seven “actives” from this screen were further analyzed by full
concentration-response studies (Fig. 1; Supplemental Table 1).
GR89696 was the only compound from the NCC library
identified as a potent biased ligand for KOR (Supplemental
Table 1). The concentration-response analyses of “actives”
from the NCC library screen yielded two low-potency agonists:
2-(2-aminoethyl)-pyridine and N-cyano-N'~(1,1-dimethylpropyl)-
N"’'-3-pyridinylguanidine. Because few compounds in this library
were known or predicted to bind to KOR, we continued our
screening efforts with scaffolds known to have affinity for KOR.
We focused on screening scaffold derivatives of arylacetamides,
dynorphins, morphinans, benzomorphans, and salvinorins.
Tables 1-5 depict the potencies and efficacies of these ligands
for G protein activation and arrestin mobilization (Tango) as
well as the calculated bias factors.

All the arylacetamides tested are potent agonists at KOR with
varying degrees of bias (Table 1). ICI 204,448 and BRL 52537
were identified from a virtual screen using the ZINC database
(Irwin and Shoichet 2005; Irwin et al., 2012) as potentially
biased ligands based on the structure of GR89696. GR89696 and
ICI 199,441 displayed modest arrestin bias (bias factors 5 and
4, respectively) while ICI 204,448 and (—)U50,488 are only
very weakly biased for arrestin (bias factors 2 for each compound).
In contrast, U62066 and (+)U50,488 are slightly G protein—
biased (bias factors 6 and 8, respectively). Lastly, we found that
U69593, DIPPA, N-MPPP, and BRL 52537 are all unbiased
agonists.

The dynorphin peptides tested displayed varying degrees of
G protein bias (Table 2). Dyn A, Dyn 1-13, and Dyn 1-11 have
the highest degree of bias (34, 34, and 44, respectively), while
Dyn 1-8 and Dyn 1-9 are more moderately biased (4 and 16,
respectively). This represents the first report of endogenous

TABLE 3

salvinorin A, which equally stimulates G protein and arrestin
pathways. Furthermore, the tested morphinans (Table 3) and
benzomorphans (Table 4) tested displayed very little bias.
Only 6’-GNTI displayed a slight G protein bias (bias factor of
6), consistent with previous studies (Rives et al., 2012; Schmid
et al., 2013). Also, we found that the antagonist JDTic has
no agonistic activity in either G protein or arrestin assays
(Table 4).

Additionally, we tested several C-2-modified salvinorin
derivatives and found them to display a wide range of G
protein bias (Table 5). Of this family, RB 64 and RB 48 are the
most potent in activating G protein signaling and have a high
degree of bias (35 and 25, respectively). RB 59, RB 55-2, and
RB 50 also have high G protein bias factors (95, 33, and 69,
respectively). RB 55-1 and RB 65 are lower potency ligands
but still have a strong bias (bias factors 22 and 29, respec-
tively). RB 55 has a slight bias factor of 8, while salvinorin B,
a metabolite of salvinorin A, has a bias factor of 4.

Figure 2 depicts the G protein activation (Fig. 2A) and
arrestin mobilization (Fig. 2B) concentration-response curves
for the compounds found to be the most potent and the most
biased, along with relevant controls. The “bias plot” indicates
the signaling bias of each compound by showing the response
in the arrestin recruitment assay as a function of the corre-
sponding response in the G protein activation assay (Kenakin
and Christopoulos, 2013) (Fig. 2C). Thus, ICI 199,441 and
GR89696 are arrestin biased, whereas RB 64 and RB 48 are
G protein—biased.

Orthologous Arrestin Assay. To confirm our results from
the Tango arrestin recruitment assay, we used a BRET-based
arrestin-recruitment assay (Rives et al.,, 2012) to further
analyze the compounds displaying the highest degree of bias.
Salvinorin A displayed very similar potency values for the
Tango and BRET assays (5.56 and 5.63 nM, respectively)
(Tables 1 and 6). Also, the potencies of GR89696 and ICI
199,441 were very similar, based on comparison of results
obtained from the Tango and BRET arrestin assays. U62066
has a slightly higher potency in the BRET assay compared
with the Tango assay (19.8 and 6.21 nM, respectively). This

Affinity and potency values for morphinans using GloSensor and Tango assays

Morphinans G Protein ECso G Protein E . Arrestin ECsxq Arrestin E,,,,  Bias Factor
nM nM
Salvinorin A 5.18 (—=8.29 = 0.10) 99.7 5.75 (—8.24 + 0.06) 97.2 1
B-NNTA 0.305 (—=9.52 = 0.12) 97.0 0.268 (—9.57 = 0.12) 84.5 1
6" GNTI 4.74 (—8.32 = 0.09) 96.5 7.38 (—8.13 = 0.12) 34.7 6 G protein
5" GNTI Antagonist — Antagonist —
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Affinity and potency values for benzomorphans using GloSensor and Tango assays

Benzomorphans G Protein ECj5q G Protein E .« Arrestin ECj5q Arrestin E Bias Factor
nM nM

Salvinorin A 3.63 (—8.29 + 0.10) 103 6.67 (—8.18 = 0.05) 99.42 1

Naltrindole Antagonist — Antagonist —

Diprenorphine 0.960 (—9.02 =+ 0.08) 88.3 3.3 (—8.48 = 0.14) 87.0 2 G protein

Nalbuphine 61.5(—=7.21 = 0.11) 81.3 47.2 (=7.33 = 0.08) 74.1 3 Arrestin

Butorphanol 1.82 (—8.74 £ 0.07) 94.3 1.70 (—8.77 = 0.06) 59.2 2 G protein

Cyclazocine 1.19 (—8.92 * 0.09) 102 0.806 (—9.09 = 0.03) 81.7 1

JDTic Antagonist — Antagonist —

shift in potency has a modest effect on the bias factor
calculated with the BRET data as compared with the Tango
data, but both assays suggest a slight G protein bias for
U62066 (Supplemental Table 2). Furthermore, RB 64, RB 48,
RB 59, RB 55, Dyn 1-13, Dyn 1-9, Dyn 1-11, and Dyn A all
have slightly higher potencies in the BRET arrestin assay than
the Tango assay, while Dyn 1-8 has a slightly more potent
effect in Tango than BRET.

Despite modest potency differences between the Tango and
BRET assays, if a ligand was identified as biased in the Tango
assay then it was also identified as biased using the BRET
arrestin assay. A comparison of bias factors generated from
the BRET arrestin assay and the Tango assay is shown in
Supplemental Table 2, and the log(7/KA) values are listed in
Supplemental Table 3.

Discussion

Recent structural evidence suggests that G protein—coupled
receptors (GPCRs) adopt multiple conformations and that
different ligands can stabilize distinct conformations leading
to diverse signaling profiles (Liu et al., 2012; Wacker et al.,
2013; Nygaard et al., 2013; Vardy and Roth, 2013; Kenakin,
1995). Additionally, signaling partners including arrestins
(Gray et al., 2003) and G proteins (Yan et al., 2008; Nygaard
et al., 2013) can allosterically modulate agonist affinities and
overall receptor conformations. This bidirectional modulation
from both the ligand and the intracellular effector might affect
its signaling.

In this study we sought to identify KOR-selective function-
ally selective ligands, as such ligands have been proposed to
potentially function as analgesics with fewer adverse side
effects (e.g., sedation and dependence). Our attempts to
identify biased KOR agonists were aided by: 1) a wealth of

TABLE 5

diverse chemical matter reported to be KOR-selective; 2)
assays that are both readily available and scalable; and 3) the
availability of a KOR crystal structure (Wu et al., 2012). The
diverse KOR chemotypes and structural information will be
useful as we attempt to further optimize this structurally
diverse catalog of biased ligands. Additionally, there is in-
creased interest in developing KOR antagonists for both
depression and addiction disorders, and for developing KOR
agonists as analgesics with a low abuse potential (Tao et al.,
2008; Wee and Koob, 2010; Prevatt-Smith et al., 2011).
However, KOR agonists also cause aversion, hallucinations,
and psychotomimetic effects (Pfeiffer et al., 1986). To develop
KOR agonists that can be used as analgesics, we must
understand how KOR mediates these negative side effects
and explore the use of functionally selective ligands toward
KOR therapies with minimal side effects. Additionally,
understanding which KOR-dependent signaling cascades
mediate hallucinations will provide insight into how KOR
activation affects cognition. Therefore, the first step in under-
standing the diverse KOR behavioral effects is to identify
a range of functionally selective ligands that are potent and
selective for KOR. In this study, we identify multiple centrally
active KOR-selective biased ligands (RB 64, RB 48, ICI 199,441,
and GR89696) that have the potential for probing KOR sig-
naling pathways in vivo (Ravert et al., 2002; Terner et al., 2005;
Yan et al., 2009).

Significantly, an unbiased screen of a small library of
known drugs yielded only a single KOR-biased ligand
(GR89696), although it is possible that larger screens
encompassing greater chemical diversity could yield addi-
tional scaffolds. Intriguingly, when we focused our investiga-
tion on analogs of known KOR ligands, we were able to rapidly
identify additional KOR ligands with varying degrees of bias.
This suggests that screening scaffold derivatives is a reliable

Affinity and potency values for the RB family of salvinorin derivatives using GloSensor and Tango assays

RB Salvinorins G Protein EC5o G Protein E .

Bias Factor

Arrestin EC5o Arrestin Eppax

G Protein
nM nM

Salvinorin A 5.183 (—8.29 * 0.10) 99.7 5.75 (—8.24 * 0.06) 97.2 1
Salvinorin B 73.4 (=7.13 = 0.08) 95.9 428 (—6.37 = 0.07) 115 4 G protein
RB-64 5.29 (—8.27 * 0.06) 101 391 (—6.41 *= 0.05) 104 35 G protein
RB-48 8.82 (—8.05 = 0.07) 101 143 (—-6.84 = 0.09) 63.2 25 G protein
RB-55_1 119 (-6.93 = 0.07) 101 1492 (—5.83 = 0.15) 52.2 22 G protein
RB-55_2 142 (—-6.84 * 0.10) 105 2284 (—5.64 *= 0.09) 56.8 33 G protein
RB 55 31.3 (=7.50 *= 0.08) 103 229 (—6.64 = 0.07) 86.9 8 G protein
RB 50 166 (—6.78 = 0.10) 103 3812 (—5.42 = 0.21) 89.2 69 G protein
RB 59 35.8 (—7.45 = 0.10) 95.7 4290 (—5.37 = 0.13) 76.6 95 G protein
RB 65 145 (—6.83 = 0.10) 95.9 2767 (—5.56 = 0.13) 42.7 29 G protein
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Fig. 2. Arrestin mobilization and G protein activation dose-response
curves of candidates for in vivo studies. The dose-response curves of
candidate ligands for arrestin recruitment were measured via Tango (A),
G protein activation (B), and the bias plot (C). These ligands all have
similar potency and efficacy values for G protein signaling, yet the potency
values for arrestin mobilization differ greatly. The bias plot highlights the
differences in potency and efficacy values for each ligand in both G protein
and arrestin pathways.

approach for identifying biased ligands, and mirrors our
results reported for D2 arrestin—biased drug discovery (Allen
et al., 2011). After identifying a scaffold from the NCC screen,
for instance, we tested compounds that were similar in
structure to the initial arylacetamide hit. Additionally, we
performed a similarity search using the ZINC database and
found an additional biased ligand possessing the arylaceta-
mide scaffold (ICI 204,448). We found arylacetamide ligands
to be either weakly G protein— or arrestin-biased.

TABLE 6
BRET arrestin affinity and potency values
Compound ECs5o Enax
nM

Salvinorin A 5.55 (—8.25 = 0.05) 98.84
GR89896 0.265 (—9.58 = 0.03) 104
ICI 199,441 0.461 (—9.34 * 0.07) 100
U62066 19.8 (=7.70 = 0.07) 101
RB 64 118 (—6.93 = 0.06) 105
RB 48 45.0 (—7.35 = 0.06) 101
RB 55 196 (—-6.71 = 0.03) 78.9
RB 59 3560 (—5.44 + 0.18) 177
Dyn 1-13 78.2 (—7.11 + 0.13) 86.3
Dyn 1-11 132 (—6.87 = 0.16) 86.9
Dyn 1-9 253 (—-6.59 = 0.11) 92.8
Dyn 1-8 1070 (-5.97 = 0.11) 102
Dynorphin A 112 (-6.95 = 0.13) 99.2

We also tested varying lengths of the endogenous KOR
peptide ligand, dynorphin, and found them all to be G protein
biased. Additionally, we tested the RB family of salvinorin
derivatives that were originally synthesized to covalently
bind to KOR. Future studies will be needed to investigate
how those ligands interact with the receptor and potentially
identify residues mediating the signaling bias observed. The
RB family of compounds constitutes the first identified KOR G
protein—biased ligands that are centrally active and can
therefore be used for in vivo probing of KOR-mediated G
protein signaling (Yan et al., 2009).

To further investigate our biased ligands, we tested arrestin
recruitment in an orthologous assay using bioluminescence
resonance energy transfer. In general, ligands tested in the
BRET assay displayed similar potencies and efficacies when
compared with results obtained with the Tango assay. RB 48
and RB 59, by contrast, possess the largest differences in bias
factors quantified using Tango versus BRET assays. Notably,
the incubation time is much longer for the Tango assay (16
hours), and proteolysis of the transcription factor, entry into
the nucleus, and transcription and translation are required
downstream of arrestin recruitment, whereas only arrestin
recruitment is assayed in the BRET assay (5 minutes).
However, all ligands that we originally found to be biased
using the Tango assay were also found to be biased using the
BRET assay. Thus, we can infer that these compounds are
functionally selective ligands for KOR—at least in human
embryonic kidney cells.

This is the first report of KOR-selective biased ligands that
may ultimately be useful in vivo to discover which KOR
signaling cascades are responsible for various KOR-mediated
behavioral effects. Although 6'-GNTI was previously identi-
fied as a biased ligand, it has a fixed charge and therefore does
not readily cross the blood-brain barrier (Rives et al., 2012).
Additionally, while the log(/KA) method of quantifying bias
is useful for calculating the bias in vitro, further studies are
necessary for investigating the in vivo effect of these ligands,
as efficacies and potencies in vitro may not correlate with
those obtained in other cell types in vivo. Nonetheless, using
a similar strategy, we have been able to successfully advance
arrestin-biased D2 agonists to in vivo testing and demon-
strate that they retain substantial apparent bias in vivo
(Allen et al., 2011; Chen et al., 2012).

Finally, the phenomenon of GPCR functional selectivity is
not limited to arrestin mobilization and G protein activation.



For example, we have identified 5-HT5, inverse agonists
which can induce receptor internalization and downregula-
tion in vitro and in vivo without activating either G protein
signaling or arrestin translocation (Bhatnagar et al., 2001;
Xia et al., 2003; Yadav et al., 2011). In future studies, it will be
useful to combine in vivo behavioral studies and a global
study of intracellular signaling with functionally selective
ligands, to fully understand which signaling cascades con-
tribute to the various behavioral effects of KOR agonism. The
present study suggests that simply screening available
scaffolds represents a facile method for identifying function-
ally selective ligands with good drug-like properties. The
rapid increase in GPCR structural and dynamic information
and our expanded understanding of functional selectivity
have enhanced the potential for designing more selective
therapies with fewer side effects for a multitude of diseases
and conditions. In the future, screening compounds for a more
global activation of pathways in addition to those activated by
G proteins should allow for a better understanding of how
these ligands affect physiology, and how functionally selective
compounds might have beneficial therapeutic value.
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