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Abstract
A tertiary stereogenic center that bears two different aryl substituents is found in a variety of
bioactive compounds, including medicines such as Zoloft™ and Detrol™. We have developed an
efficient method for the synthesis of enantioenriched 1,1-diarylalkanes from readily available
racemic benzylic alcohols. Formation of a benzylic mesylate (which is not isolated), followed by
treatment with an arylzinc reagent, LiI, and a chiral nickel/bis(oxazoline) catalyst, furnishes the
Negishi cross-coupling product in high ee and good yield. A wide array of functional groups (e.g.,
an aryl iodide, a thiophene, and an N-Boc-indole) are compatible with the mild reaction
conditions. This method has been applied to a gram-scale synthesis of a precursor to Zoloft™.

Because an array of bioactive compounds bear a tertiary stereocenter with two aryl
substituents, including medicines such as Zoloft™, Detrol™, and Condylox™,1 the
development of methods for the enantioselective synthesis of 1,1-diarylalkanes has been the
focus of substantial effort. A variety of strategies that exploit asymmetric catalysis have
been pursued, such as the hydrogenation of 1,1-diarylalkenes2 and the 1,4-addition of aryl
nucleophiles to α,β-unsaturated carbonyl compounds.3 An alternative approach, the
enantioconvergent cross-coupling of a racemic benzylic electrophile with an arylmetal
reagent, has not yet been accomplished, although impressive progress has been recorded in
the stereoselective coupling of enantioenriched benzylic electrophiles with aryl nucleophiles
using an achiral catalyst.4,5 In this report, we describe nickel-catalyzed asymmetric Negishi
reactions of racemic benzylic electrophiles with arylzinc reagents that generate a broad
spectrum of 1,1-diarylalkanes in good ee (eq 1).
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(1)

We have recently pursued the development of an array of enantioconvergent cross-couplings
of racemic alkyl electrophiles.6,7 Most relevant to the objective described herein, we have
reported two nickel-catalyzed methods for asymmetric Negishi reactions of benzylic halides
with alkylzinc reagents.6a,8 Unfortunately, neither of these procedures proved effective
when an arylzinc was employed as the nucleophile.9

An ongoing challenge in the field of stereoconvergent cross-coupling is the use of alkyl
electrophiles that bear oxygen, rather than halogen, leaving groups. The significance of this
objective arises in part from the fact that the conversion of alcohols to more-reactive
oxygen-based leaving groups is generally accomplished under Brønsted-basic conditions,
whereas their conversion to alkyl halides is often achieved under Brønsted-acidic conditions.
In 2012, we described a nickel/pybox-catalyzed enantioconvergent Negishi arylation of
propargylic carbonates.6d However, this method was not effective for a racemic benzylic
carbonate.

We next turned our attention to a different family of oxygen leaving groups: readily
accessible mesylates.10 Because benzylic mesylates are highly reactive electrophiles,11 we
chose to employ them without isolation. As depicted in entry 1 of Table 1, under the
appropriate conditions, a nickel/bis(oxazoline) catalyst can achieve the net arylation of a
benzylic alcohol to generate a 1,1-diarylalkane with high enantioselectivity and in good
yield.

Essentially no carbon–carbon bond formation occurred in the absence of NiBr2•diglyme
(Table 1, entry 2), whereas a small amount of the cross-coupling product was formed in the
absence of bis(oxazoline) ligand L (entry 3). Two families of ligands that are useful for
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other asymmetric Negishi arylation reactions (1 and 2)12 were not useful under these
conditions (<2% yield; entries 4 and 5), and a commercially available 2,2′-linked
bis(oxazoline) (3) that is related to ligand L furnished somewhat lower ee, but comparable
yield (entry 6). The omission of LiI led to a loss in enantioselectivity and yield (entry 7),
whereas use of LiBr instead provided very good ee, but only a modest quantity of the
desired cross-coupling product (entry 8). When the asymmetric Negishi arylation was
conducted with less catalyst, less nucleophile, or at a higher temperature, inferior results
were obtained relative to the best conditions (entries 9–12 vs. entry 1).

With an effective method for the catalytic asymmetric synthesis of a model 1,1-diarylalkane
in hand, we examined the scope with respect to the electrophile (Table 2). For alkyl
substituents (R) that range in size from methyl to cyclobutyl, the Negishi arylations
proceeded with consistently good enantioselectivities (entries 1–6).13 Furthermore,
asymmetric cross-couplings could be achieved in the case of aryl substituents (Ar) that are
either electron-rich14 or electron-poor (e.g., entries 15–24).15 A wide array of functional
groups are compatible with the cross-coupling conditions, including an olefin (entry 9), a
silyl ether (entry 10), an acetal (entry 11), an alkyl ester (entry 12), a ketone (entry 13), a
nitrile (entry 14), an aryl fluoride (entries 15 and 24), an aryl chloride (entry 16), an aryl
bromide (entry 17), an aryl ether (entries 19 and 21), an aryl ester (entry 20), an aryl amine
(entry 23), a furan (entry 26), and a thiophene (entries 27 and 28). On a gram scale (1.40 g
of product), the enantioconvergent Negishi arylation illustrated in entry 2 proceeded in 95%
ee and 89% yield.

The scope is also fairly broad with respect to the nucleophile (Table 3). Thus, an array of
para- and meta-functionalized arylzinc reagents are suitable cross-coupling partners (entries
1–12), including one that bears an aryl iodide (entry 6).16 Furthermore, an indolylzinc
reagent can be employed as the nucleophile (entry 15).

As indicated in entry 7 of Table 1, under our optimized asymmetric arylation conditions, the
presence of LiI is important for the formation of the desired 1,1-diarylalkane in high ee and
good yield. We hypothesize that a nucleophilic iodide reacts with the benzylic mesylate to
generate a benzylic iodide in situ, and this is the electrophile that engages with the nickel
catalyst in the cross-coupling process.17 Indeed, we have determined that a benzylic
mesylate does react with LiI in CH2Cl2/THF at −45 °C to generate a benzylic iodide.
Furthermore, cross-couplings of a benzylic mesylate and the corresponding benzylic iodide
proceed with similar ee and yield (eq 2).18

(2)

To illustrate the utility of this catalytic asymmetric method for the formation of 1,1-
diarylalkanes, we applied it to a gram-scale synthesis of (S)-sertraline tetralone (B; eq 3), a
precursor of sertraline hydrochloride (Zoloft™, a leading antidepressant drug).1a,19 Thus,
enantioconvergent Negishi arylation of racemic benzylic alcohol A in the presence of 4.5%
of the chiral nickel catalyst, followed by an intramolecular Friedel-Crafts reaction, furnished
tetralone B in good ee (92%) and 75% overall yield from the alcohol.
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(3)

In conclusion, we have developed a nickel-catalyzed stereoconvergent Negishi cross-
coupling of racemic benzylic electrophiles with arylzinc reagents that affords valuable
enantioenriched 1,1-diarylalkanes from readily available alcohols in high ee and good yield.
Carbon–carbon bond formation occurs under mild conditions that are compatible with a
range of functional groups. This method represents an unusual example of the use of an
oxygen-based electrophile in an enantioconvergent, nickel-catalyzed cross-coupling,
although mechanistic studies are consistent with the possibility that the species that
undergoes oxidative addition may be a benzylic iodide that is generated in situ under the
reaction conditions. Regardless, this process provides a straightforward approach to
enantioenriched 1,1-diarylalkanes from benzylic alcohols, as exemplified by its application
to an asymmetric synthesis of (S)-sertraline tetralone, a precursor of Zoloft™. Ongoing
studies are focused on the development of additional nickel-catalyzed methods for cross-
coupling alkyl electrophiles, including enantioselective reactions and mechanistic
investigations.
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Table 1

Influence of Reaction Parameters on the Catalytic Asymmetric Synthesis of a 1,1-Diarylalkanea

entry variation from the “standard” conditions ee (%) yield (%)b

1 none 94 93

2 no NiBr2• diglyme – <2

3 no L – 11

4 1 instead of L – <2

5 2 instead of L – <2

6 3 instead of L 82 94

7 no LiI 66 22

8 LiBr instead of LiI 92 36

9 4.5% NiBr2• glyme, 6.5% L 94 51

10 1.2 p-anisyl–ZnI 93 51

11 0 °C 87 61

12 r.t. 79 33

a
All data are the average of two experiments.

b
The yields were determined through GC analysis with the aid of a calibrated internal standard.
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Table 2

Catalytic Asymmetric Synthesis of 1,1-Diarylalkanes from Racemic Benzylic Alcohols: Scope with Respect
to the Alcohola

entry benzylic alcohol ee (%) yield (%)b

1 R =Me 88 88

2 Et 94 92

3 n-Pr 94 90

4 n-Bu 95 83

5 i-Bu 95 77

6 cyclobutyl 94 51

7c 95 80

8 88 90

9 86 59

10d 94 77

11 92 84

12 94 84

13 95 88

14 94 75

15 X = F 93 87

16 Cl 90 88

17 Br 91 79

18 Ph 92 78

19e X = OMe 95 94
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entry benzylic alcohol ee (%) yield (%)b

20c,e OPiv 84 84

21e X = OMe 94 94

22c CF3 89 63

23e 92 88

24 81 66

25 91 79

26 93 88

27 83 54

28 94 93

a
All data are the average of two experiments.

b
Yield of purified product.

c
Reaction temperature: −35 °C.

d
Nucleophile: (p-tolyl)ZnI.

e
Nucleophile: PhZnI.
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Table 3

Catalytic Asymmetric Synthesis of 1,1-Diarylalkanes from Racemic Benzylic Alcohols: Scope with Respect
to the Nucleophilea

entry Ar1 ee (%) yield (%)b

1 X = H 94 96

2c Me 93 91

3 F 94 95

4 Cl 94 95

5 Br 94 87

6c I 94 66

7 CF3 94 98

8d CO2Et 93 91

9d CN 92 83

10 X = CF3 94 96

11d CO2Et 93 92

12 93 87

13e 92 93

14d 94 87

15d 93 77

a
All data are the average of two experiments.

b
Yield of purified product.

c
Equivalents of arylzinc reagent: 1.5.
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d
Benzylic alcohol coupling partner: 1-phenylpropanol.

e
Reaction temperature: −30 °C.
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