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Wavelet analysis is now frequently used to extract information from ecological

and epidemiological time series. Statistical hypothesis tests are conducted on

associated wavelet quantities to assess the likelihood that they are due to a

random process. Such random processes represent null models and are gener-

ally based on synthetic data that share some statistical characteristics with the

original time series. This allows the comparison of null statistics with those

obtained from original time series. When creating synthetic datasets, different

techniques of resampling result in different characteristics shared by the syn-

thetic time series. Therefore, it becomes crucial to consider the impact of the

resampling method on the results. We have addressed this point by compar-

ing seven different statistical testing methods applied with different real and

simulated data. Our results show that statistical assessment of periodic pat-

terns is strongly affected by the choice of the resampling method, so two

different resampling techniques could lead to two different conclusions

about the same time series. Moreover, our results clearly show the inadequacy

of resampling series generated by white noise and red noise that are neverthe-

less the methods currently used in the wide majority of wavelets applications.

Our results highlight that the characteristics of a time series, namely its Fourier

spectrum and autocorrelation, are important to consider when choosing the

resampling technique. Results suggest that data-driven resampling methods

should be used such as the hidden Markov model algorithm and the

‘beta-surrogate’ method.
1. Introduction
Numerous studies in ecology and epidemiology consist of analysing time series

to extract information and to identify scales of different patterns. However,

ecological processes are typically not stationary, and there are an increasing

number of papers that that highlight the non-stationary features of population

dynamics (see [1]), so that a global timescale decomposition may not be

appropriate. Grenfell et al. [2] introduced wavelet analysis for characterizing

non-stationary epidemiological time series. Wavelet analysis performs a local

timescale decomposition of the signal, i.e. the estimation of its spectral charac-

teristics as a function of time [3–7] or space [8]. During the past decade, wavelet

analysis has been successfully applied in ecology and epidemiology, and it appears

particularly attractive given the non-stationary nature of both ecological and

environmental time series and the relationships between these series.

As reviewed in the electronic supplementary material, table S1, increasing

numbers of works have used wavelet analysis to analyse ecological and

epidemiological time series. Some of these papers were concerned with the deter-

mination of the characteristics of time series and the analysis of their possible

association with environmental signals. The use of wavelets is of great interest

in the case of the analysis of very long populational and environmental time

series such as those that come from the rich China archives [9–12]. It is clear

that the probability of finding marked non-stationarities increases with the

length of the time series. This is also true for spatial analysis where the length

of the analysed spatial signal can be important [13]. Wavelet analysis can also

reveal an abrupt shift in the cyclic dynamics of population [14] or [15]. A major
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breakthrough from wavelet analysis is linked to the existence of

transient or discontinuous association between the fluctuations

of population and climatic variables [16]. The recent develop-

ment of wavelet clustering for multiple time series analysis

represents another major innovation [17]. Other works have

used the wavelet approach to compare different analysis tech-

niques [18] or [19] and another important interest of wavelet

analysis consists of comparing the frequency characteristics

from observations and model simulations [20,21]. It has been

demonstrated that wavelet analysis can be a powerful comp-

lementary approach when comparing modelling predictions

to the ever-increasing abundance of in situ data [22]. Other ana-

lyses investigated the phenomenon of population synchrony

where wavelets are used to extract the phase of the time-

series [23–25]. Wavelet analysis was also applied to the analy-

sis of spatial patterns in vegetation systems, but most of these

works dealt with discrete wavelet (DW) transforms [8,13,26].

However, important questions concerning the wavelet tech-

niques remain unresolved. One issue is illustrated by the

following two examples, concerning the significance of wavelet

quantities. The first example concerns the phase computation.

Johnson et al. [24] computed the phase of numerous time

series of larch budmoth based on wavelet decomposition for

the period 1961–1998. They compared the phase differences

between all time series for the full period or for different periods

even after 1985 where the time series are flat without variability

(see the electronic supplementary material of Johnson et al. [24]).

This example illustrates the need for the adequate statistical test

of the wavelet spectrum before extracting the phase. The second

example concerns Johansson et al. [27], who examined the

dynamic relationship between climate variables and the inci-

dence of dengue in Thailand, Mexico and Puerto Rico using

wavelet analysis. One of the main findings of Johansson et al.
[27] is that dengue incidence oscillations are dominated by a

marked seasonal component in these three countries. These

results contradict previous published works where the role of

the 2–3 year periodic components is highlighted [16,28]. Never-

theless, the results obtained by Johansson et al. [27] showed the

strong dependence of the wavelet analysis on a null hypothesis

using AR( p) stochastic process.

These examples clearly show that the interpretation of wave-

let analysis results depends on adequate statistical testing of the

wavelet quantities. Statistical hypothesis testing involves two

components: a discriminant wavelet quantity, and a null hypoth-

esis, against which observations are tested. If the null hypothesis

is too simple, the explanation that we seek for analysing the data

can appear inadequate. Because statistical tests cannot easily be

calculated analytically for signals with time-varying spectrum,

resampling techniques are frequently employed and a white

noise or red noise null hypothesis is used. As for all Monte

Carlo resampling techniques, the choice of the null model is cen-

tral for defining adequate significance regions and then can affect

the potential conclusions. Nevertheless, less work has also been

done on comparing bootstrap, synthetic or surrogate data in the

case of wavelet analysis (but see [7] or [8]). The validity of any test

of wavelet quantities would depend heavily on the consistency

of the generated synthetic data with the chosen null hypothesis

and the associated stochastic process.

Here, we tested the consistency of different resampling

techniques. These resampling schemes incorporate some of

the key components of a time series: mean, variance and dis-

tributions of values in both time and frequency domains. By

incorporating some of these components, we were able to
incorporate some degree of similarity in the synthetic time

series generated by the sampling schemes and then tested

different null hypothesis.

Our comparisons between the different null hypothesis and

associated resampling schemes were based on the distribution of

the time-series values, the classical Fourier spectrum and the

wavelet power spectrum. The influence of these resampling

techniques on the significance of wavelet quantities was then

analysed. The performances of these resampling techniques

were evaluated on the monthly reported cases of dengue hae-

morrhagic fever (DHF) in Thailand, and on two simulated

time series.
2. Material and methods
2.1. Time series analysed
To test different null hypothesis, we have based our demonstration

on the analysis of three very different non-stationary time series

(figure 1). To characterize these series, we have computed the dis-

tribution of the values of these time series and their classical

Fourier spectrum. These characteristics are displayed in figure 1;

figure 1a–c shows the original time series; figure 1d–f displays

the amplitude distributions of the time series and the Fourier

spectrum are depicted in figure 1g–i. The three analysed series are

(i) the monthly number of reported cases of DHF in Bangkok

(figure 1a). Figure 1d displays the distribution of the time-

series values. On average, the oscillations of the dengue inci-

dence time series are dominated by the annual mode (figure

1g), but they also have a statistically significant common

mode of oscillation around a 2–3 year period [16,28].

(ii) an AR(2) time series with two parameter sets in a reasonable

ecological range as proposed in the classical work of Royama

[30]. The two sets of parameters are chosen to obtain

dynamics with two periodic components. Figure 1b shows

n ¼ 100 data points, figure 1e shows the distribution of

these data points and figure 1h its Fourier spectrum. One

can observe the abrupt variation of the main periodicity

around ts ¼ 60, and the period is ca eight iterations before

ts, and ca four iterations after.

(iii) the time series of infectious individuals from a chaotic

SEIR (susceptible–exposed–infectious–removed) model

with transient dynamics [29]. Figure 1b shows the time

series, and figure 1e shows the distribution of the values

of this time series. Figure 1h displays the classical Fourier

spectrum of this time series showing large peaks at a

period of 1, 2 and 3–4 years.

2.2. Wavelet analysis
Wavelet analysis is based on the wavelet transform that decom-

poses signals over dilated and translated functions called ‘mother

wavelets’, cðtÞ that can be expressed as the function of two par-

ameters, one for the time position t, and the other for the scale of

the wavelets a:

Wxða; tÞ ¼
1ffiffiffi
a
p

ð1

�1

xðtÞc� t� t

a

� �
dt;

where the asterisk denotes the complex conjugate form and x(t)
the signal.

As in most wavelet applications of wavelets in ecology and

epidemiology, we use the Morlet wavelets:

cðtÞ ¼ p�1=4 expð�i 2v 0 tÞ exp
�t2

2

� �
:
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Figure 1. Analysed time series and their characteristics, the Fourier spectrum and the distribution of the values. (a) Monthly number of reported cases of dengue
haemorrhagic fever in Bangkok for the time period 1987 – 2005. (b) AR(2) time series. The AR(2) model is: yðtÞ ¼ ai þ bi yðt � 1Þ þ ci yðt � 2Þ þ 1i . With
parameters defined for the time period between t0 ¼ 0 and ts ¼ 60 as: a1 ¼ 1.5, b1 ¼ 1.2, c1 ¼ 20.9, 11 a random Gaussian component with 0 mean and
variance s2

1 ¼ 0:15; and after ts as: a2 ¼ 4, b2 ¼ 0.1, c2 ¼ 21, s2
2 ¼ 0:05; n ¼ 100 data points have been used. (c) Time series of the infectious population

generated by a chaotic SEIR model [29]:

dS=dt ¼ m� bðtÞSI � mS

dE=dt ¼ bðtÞSI � ðmþ aÞE
dI=dt ¼ aE � ðmþ gÞI
dR=dt ¼ gI � mR

bðtÞ ¼ b0ð1þ b1 cos 2ptÞ

with the parameters values a ¼ 35:84; m ¼ 0:02; g ¼ 100; b0 ¼ 1800;b1 ¼ 0:28. (d–f ) The distribution of the value of the three analysed time series.
(g – i) The Fourier spectrum of the three analysed time series, (a – c) respectively.
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Some discussion on the choice of the mother wavelet can be

found in Cazelles et al. [6,7].

An important point with the continuous wavelet (CW) is that

the relationship between the wavelet frequency and the wavelet

scale that can be derived analytically (see [3]). For the Morlet
wavelet, the relation between wavelet frequencies and wavelet

scales is given by

1

f
¼ 4p a

v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ v2

0

q :
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When v0 � 2p, the wavelet scale a is inversely related to the

frequency, f � 1=a. This greatly simplifies the interpretation of

the wavelet analysis and one can replace, on all equations, the

scale a by the period 1/f.
In some sense, the wavelet transform can be regarded as a

generalization of the Fourier transform and by analogy with

spectral approaches one can compute the local wavelet power

spectrum:

Sxð f ; tÞ ¼ kWxð f ; tÞ k2 :

CWs yield a redundant decomposition in the sense that the

information extracted from a given scale slightly overlaps that

extracted from neighbouring scales. Nevertheless, CWs are

more robust to noise when compared with other decomposition

schemes. DWs have the advantage of fast implementation, but

the number of scales and the time invariant property (a filter is

time invariant if shifting the input in time correspondingly

shifts the output) strongly depend on the data length (see [7]

for a comparison of CWs and DWs in an ecological context).

2.3. Null hypothesis tested and associated synthetic
series

As with other time-series methods, it is crucial to assess the stat-

istical significance of the patterns exhibited by the wavelet

analysis. Our aim here is to test whether the wavelet-based quan-

tities (e.g. the spectra, co-spectra, coherence or phase) observed at

a particular position on the timescale plane are not due to a

random process. One starts with the observed time series,

which are to be tested against the hypothesis of control datasets

referred to as the synthetic or surrogate data, which share some

statistical properties with the original series, but which are

generated by different random processes.

There exists a large range of null hypotheses and associated re-

sampling procedures, including (i) independent and identically

distributed noise; (ii) linearly filtered noise; or (iii) a monotonic

nonlinear transformation of linearly filtered noise. Further details

of the algorithms can be found in [31]. We want to generate surro-

gate time series, associated with our null hypothesis, such that

they mimic some key features of the raw dataset, but with some

restrictions. Then, the resampling schemes used respect some of

the key constituents of the time series: (i) their mean, (ii) their

variance, (iii) the distribution of their values and (iv) their auto-

correlation function that describes the time distribution of the

variance (or the Fourier spectrum that equivalently defines the

frequency distribution of the time-series variance).

Here, we have tested seven different null hypotheses with

the same mean and variance as the raw time series but with

different degree of similarity with the key components of the

raw time series:

(i) The first synthetic time series are simple bootstrapped

series that can be assimilated to series generated by a

white noise process, granting a flat power spectrum

[32]. The null hypothesis tested is then: the observed
values of the wavelet quantities are identical to those that
can be generated by a white noise process. In this case, just

the mean and the variance of the raw series are identical.

The distributions of the raw value and the variance are,

however, substantially different in many cases.

(ii) Making the assumption of a white noise process is

generally not appropriate for ecological data, while an

autoregressive process with red noise characteristics, e.g.

an AR(1), can be an acceptable model in numerous cases

for both ecological and environmental data [33]. These syn-

thetic time series are generated with an AR(1) stochastic

process where the parameter of the model is fitted on the

raw time series. The null hypothesis tested states that the
significant periodic characteristics are identical to those of a red
noise generated by an AR(1) process. The synthetic series gen-

erated have the same mean, the same variance, a Gaussian

distribution of their values and the autocorrelation func-

tion of an AR(1) process.

(iii) As suggested by Johansson et al. [27], we have also used

synthetic series generated by an AR( p) with p . 1. Fitting

different models and selecting the best one based on an

information criterion such as the AIC determine the p
order. The null hypothesis is identity between periodic charac-
teristics of the observed time series and those of an AR( p) process.

The synthetic series generated have the same mean, the

same variance, a Gaussian distribution of their values

and the autocorrelation function of an AR( p) process.

(iv) Ecological time series display a large variety of auto-

correlation structures that can be described by neither a

white noise, nor an autoregressive process [33,34]. For

this reason, we used the synthetic series proposed by

Rouyer et al. [17], called ‘beta-surrogates’, which display

a similar autocorrelation structure to the original time

series and the same relative distribution of frequencies.

This allows the dominance of low frequencies often dis-

played by ecological time series to be taken into account.

Using this approach, we obtain surrogates that mimic

the shape of the original ecological time series by dis-

playing a power spectrum with the same slope in the

log scale, but without exactly reproducing it (figure 2).

In this case, the synthetic series have identical mean, var-

iance and value distribution; moreover, the time

distribution of the variance is similar to those of the

raw series. The null hypothesis associated with this

resampling scheme states: the observed time series can be
generated by a stochastic processes, such that it keeps the
same distribution of values and similar Fourier spectrum.

(v) To preserve the short-term temporal correlations, a resam-

pling scheme based on a Markov process has been used.

These synthetic series are computed in the following way

(see [35] or [36]): the raw time series are binned to form a

frequency histogram of b equal-sized bins; a transition

matrix M that describes the transition from values of bini

to value in binj is then estimated based on the actual relative

frequencies of the data. This transition matrix is then used

to generate surrogate time series of the same length as the

original data. The null hypothesis underlying this synthetic

series stipulates that the observed significant values of the wave-
let quantities are identical to those that can be generated by a
stochastic process that has the same distribution of the values
and identical short-term autocorrelation structure. Then, the

synthetic series have identical mean, variance and value

distribution. For their variance distribution, they just

mimic the high-frequencies components.

(vi) The block bootstrap is the most general method to

improve the accuracy of bootstrap for dependent data as

time series mainly because it can preserve the original

time series structure within a block [37]. We have used

block bootstrap but with random block length. As there

is no proper diagnostic tool to choose the optimal block

length, we have defined a mean block length in accord-

ance with the main periodicity of the raw time series.

This sampling scheme generated synthetic series with

identical mean, variance, value distribution, but just the

dominant period is respected. This scheme is associated

with a null hypothesis defined by: the time order of quasi-
identical periodic components has no consequential influence
on the significance of the time distribution of the variance.

(vii) The last surrogate datasets correspond to the amplitude-

adjusted Fourier transform (AAFT) algorithm proposed

by Theiler et al. [38]. This algorithm generates synthetic
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time series preserving the mean, the variance and both the

value distribution and the autocorrelation function of

the original time series. The AAFT algorithm approximates

the sample power spectrum based on a phase randomiz-

ation of the raw spectrum and a back transformation

with the inverse Fourier transform producing the surro-

gate data [38]. The null hypothesis associated is then: the
significant periodic components are identical to those of a
stochastic processes that has the same distribution of the values
and identical Fourier spectrum.

The details of the non-classical synthetic methods (iv, v, vii) are

described in the electronic supplementary material.

For each synthetic series, the wavelet transform and ‘related

quantities’ are computed. As the process is repeated ns times,

the distribution of these ‘wavelet quantities’ under each null
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hypothesis is constructed. We can compare the wavelet quan-

tities of the raw series with their distribution under the null

hypothesis, extracting, for instance, the 95th or the 99th percen-

tiles of this distribution. We are then able to determine how

strongly significant periodic components compared with those

generated by the null hypothesis.
3. Results
Our main results are presented in figures 3 and 4 and in the

electronic supplementary material, figure S1.
3.1. Consistency between synthetic and observed time
series

Considering the spectral characteristic of the synthetic series, our

analyses show that the simple method (simple bootstrapping

and AR(1)) generates synthetic series with an inadequate Fourier

spectrum (figures 3a,b and 4a,b and the electronic supplementary

material, figure S1A,B). This is also verified for the AR(0)

synthetic series (not shown). On the other extremity of the

complexity of the resampled series, the AAFT synthetic series

have a quasi-identical Fourier spectrum (figures 3g and 4g and
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the electronic supplementary material, figure S1G). Between

these two extremes, the spectra of the series generated by the

AR( p) process (except in the case of AR(2) analysed series

(figure 4c)) are not strongly in accordance with the spectra of

the raw series (figure 3c and the electronic supplementary

material, figure S1C). Surprisingly, this is also the case for the

‘beta-surrogate’ (figures 3d and 4d and the electronic supplemen-

tary material, figure S1D). This last point underlines the difficulty

of fitting a linear model on an observed Fourier spectrum (figure

2). Conversely, block bootstrap and HMM synthetic series have

Fourier spectrum more in accordance with the observed spec-

trum but with an interesting variability that will generate

synthetic series different from the raw series (figures 3e,f and

4e,f and the electronic supplementary material, figure S1E,F).

We observe from the third column of figures 3 and 4 and

electronic supplementary material, figure S1 that the distri-

butions of the values generated based on AR(1) or AR( p)

processes are Gaussian and not consistent with those of the

analysed time series. This is also the true for synthetic series
generated with a white noise process define by an AR(0) pro-

cess (not shown). A visual investigation of the realizations of

the different synthetic series (electronic supplementary

material, figure S2) stress the inadequacy of simple bootstrap

as well of the series generated by AR(1) and AR( p) processes

for null hypothesis tests. Further, these simple inspections of

the basic features of the different synthetic time series clearly

demonstrate the inadequacy of surrogate series generated by

white noise and red noise that are nevertheless currently

used in the vast majority of wavelets applications.
3.2. Significance of wavelet power spectrum
Concerning the significance of the wavelet power spectrum,

clearly the white noise series give more significant patterns

at all the major periodic components, whereas a ‘stricter’

null hypothesis gave few significant patterns. This is illustrated

for the AAFT method where few areas are significant

(figures 3a and 4a and the electronic supplementary material,
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figure S1A). In this case, as the synthetic data have on average

the same Fourier spectrum and the same variance repartition

in the full period range, the regions that appear significant

are those that have characteristics higher than the average

(figures 3g and 4g and electronic supplementary material,

figure S1G). Similar observation can be done for the AR(2) ana-

lysed series when the synthetic time series are generated with

AR( p) processes, as the analysed process and the synthetic

time series are too close, few areas are significant (figure 4c).

Overfitting to real data greatly reduces the significant periodic

patterns. For very simple time series, such as the AR(2) models,

any resampling scheme gives very similar significant patterns

mainly, because removing the order of the time series is

enough to give significance. Nevertheless, for more complex

data, the significant patterns depend both on the null hypoth-

esis and on the spectral properties of the analysed series. Thus,

it is difficult to generalize the different conclusions for more

complex and realistic time series. Specifically, for DHF, the

white noise model yields significant periodic components for

both 1 and 2–3 years, whereas the red noise model give

more significance on the seasonal component (figure 3a).

More consistent synthetic series based on HMM or block boot-

strap resampling give a high significance to the seasonal

component, and also to the 2–3 years components (figure 3e,f).
4. Discussion
Wavelet analysis can help us to interpret multi-scale, non-

stationary time-series data and reveal features that could

not otherwise be seen [6–8]. Wavelet analysis is thus becom-

ing an important tool for analysing time series, and has

important practical applications in environmental sciences

(see electronic supplementary material, table S1). Moreover,

wavelets also appear as an interesting tool for characterizing

and validating simulations of models of biological and

environmental processes [20–22]. Nevertheless, the test of

significance of ‘wavelet quantities’ is critical to enhance the

contribution of wavelet analysis for producing reliable results

rather than just producing colourful images.

In this work, we proposed a comparison of different

null models for wavelet testing. The associated resampling

schemes incorporated some of the key components of the time

series and then some degree of similarity with the observed

data. The performance of the different tests with their associated

resampling techniques is evaluated through three criteria: the

distribution of the raw value, the Fourier power spectrum and

the significant region in the wavelet power spectrum. We

have tested a large range of null hypothesis and resampling

techniques for simple random shuffling to more elaborated sur-

rogate series. It is clear that a simple random shuffling of data

appears as a ‘weak’ null hypothesis that could be easily rejected.

At the other extreme, the surrogate by Theiler et al. [38] rep-

resents a ‘hard’ null hypothesis that could be rejected with

difficulty as these synthetic time series have the same Fourier

spectrum as the raw time series.

First, one can note that for very short time series, most of the

null hypotheses and associated resampling schemes reach simi-

lar conclusions. A possible explanation of this weak sensitivity

to the choice of the resampling scheme for short time series may

be related to the fact that the results from the statistical tests may

mainly be affected by the breakdown of the time order.
Our results clearly show that the use of resampled time

series under the white noise hypothesis is insufficient. Our

findings also demonstrate that the red noise hypothesis

(AR(1) process) generates resampled time series with charac-

teristics that are not in agreement with those of the raw time

series. These two methods can give inadequate significant

areas in the wavelet power spectrum that must be interpreted

carefully. Nevertheless, these two methods are currently used

in the vast majority of wavelets applications. Similarly, AR( p)

(with p [ @þ) processes give, in most cases, synthetic series

with inappropriate characteristics.

Contrarily, methods driven by the data generated synthetic

time series that have characteristics more in accordance with

those of the raw time series. AR( p) with higher order consider-

ably reduce the discrimination power of the hypothesis testing

in case of pseudo-periodic data and are not adequate in the

case of more complex periodic components such as chaotic

time series (see electronic supplementary material, figure S1C).

With stochastic processes, our proposed 1/f b process or

‘beta-surrogate’ [17] gives importance to larger periodic

bands in greater accordance with the apparent reality (figure 2).

The AAFT algorithm produces synthetic time series that are

highly similar to raw data, so that significant regions in the

wavelet power spectrum are sparse and the null hypothesis

appears very hard to reject. Nevertheless, with this hypothesis,

one can clearly obtain information about when the spectral

characteristics of the time series differ from the mean character-

istics. This is the case not only for very large values of the

power spectrum but also for the regions where there is a

large changing frequency behaviour (figure 4g). This can be a

particular advantage when the objective is to characterize

marked regime shifts or turning points.

Overall, the bootstrap algorithm and test based on simple

stochastic processes led to smallest efficiency results in terms

of characteristics of the generated resampled series and ident-

ified structure in the time-frequency analysis, whereas the

HMM algorithm and the bootstrapping by block gave con-

sistently good results. However, the accuracy of the block

bootstrap is sensitive to the choice of the block length, and

the optimal block length depends on the sample size, the

data-generating process and the statistic considered. To

date, there is no proper diagnostic tool to select the optimal

block length and it still remains as an unsolved question

for future studies. This appears particularly troublesome for

time series with complex spectra.

We conclude that using data-driven resampling techniques

to generate synthetic time series with characteristics in agree-

ment with those of the empirical dataset is often preferable

when wavelet approaches are applied. Considering the

difficulty in bootstrapping by block, the use of the HMM

algorithm ([35] or [36]) is an interesting compromise. It

worth noting that these methods (HMM, bootstrap by block

and beta-surrogate) are data-driven approaches and carry no

a priori assumptions about the intrinsic processes generating

these data, they just display similar statistical properties

of the raw data. This conclusion can be moderated by the

fact the statistical test used may also be dictated by the research

question underlying the analysis of a time series. This is the

case in the regime shift studies for which we have shown

that the test associated with the AAFT algorithm has the prin-

cipal characteristic of focusing mainly on the time position of

significant ‘wavelet quantities’ (figure 4g). A regime shift can

be found by demonstrating a marked modification of the
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periodic components at a given time (see [14] or [15]), but the

use of the AAFT algorithm would be successful for confirming

the time of the shift without exploring the significance of the

other part of the spectrum.

Wavelets present other limitations and weakness (see

Maraun & Kurths [39]). One of these weaknesses is related to

the different normalization methods used. Contrary to Fourier

analysis, in wavelet analysis, there are difficulties in obtaining

adequate normalization that preserves all interesting features,

namely a flat spectrum for white noise and an identical

spectrum for sine waves of same amplitude but different fre-

quency. In most applications, one uses the normalization

proposed by Torrence & Compo [5], which preserves a flat

white noise spectrum but sine waves of equal amplitude exhibit

different integrated power proportional to their oscillation scale.

Nevertheless, Kaiser [40] has suggested other normalizations,

which only preserve one of the mentioned features.

Considering its growing use (see electronic supplementary

material, table S1), wavelet analysis is an important addition to
time-series methods with practical applications to population

biology and ecology. The wavelet approach can be used along-

side other time series tools to examine directly the relationship

(association, dependence, synchrony) between studied time-

series. We believe that wavelet analysis can contribute to

future advances in our understanding of ecological or epide-

miological processes in our changing world, but this cannot

be done without adequate statistical testing. We suggest

favouring statistical significance tests based on resampling

techniques for wavelet-based quantities and hope that our

present analyses will favour this development.
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