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Wavelet analysis is now frequently used to extract information from ecological
and epidemiological time series. Statistical hypothesis tests are conducted on
associated wavelet quantities to assess the likelihood that they are due to a
random process. Such random processes represent null models and are gener-
ally based on synthetic data that share some statistical characteristics with the
original time series. This allows the comparison of null statistics with those
obtained from original time series. When creating synthetic datasets, different
techniques of resampling result in different characteristics shared by the syn-
thetic time series. Therefore, it becomes crucial to consider the impact of the
resampling method on the results. We have addressed this point by compar-
ing seven different statistical testing methods applied with different real and
simulated data. Our results show that statistical assessment of periodic pat-
terns is strongly affected by the choice of the resampling method, so two
different resampling techniques could lead to two different conclusions
about the same time series. Moreover, our results clearly show the inadequacy
of resampling series generated by white noise and red noise that are neverthe-
less the methods currently used in the wide majority of wavelets applications.
Our results highlight that the characteristics of a time series, namely its Fourier
spectrum and autocorrelation, are important to consider when choosing the
resampling technique. Results suggest that data-driven resampling methods
should be used such as the hidden Markov model algorithm and the
‘beta-surrogate” method.

1. Introduction

Numerous studies in ecology and epidemiology consist of analysing time series
to extract information and to identify scales of different patterns. However,
ecological processes are typically not stationary, and there are an increasing
number of papers that that highlight the non-stationary features of population
dynamics (see [1]), so that a global timescale decomposition may not be
appropriate. Grenfell et al. [2] introduced wavelet analysis for characterizing
non-stationary epidemiological time series. Wavelet analysis performs a local
timescale decomposition of the signal, i.e. the estimation of its spectral charac-
teristics as a function of time [3—7] or space [8]. During the past decade, wavelet
analysis has been successfully applied in ecology and epidemiology, and it appears
particularly attractive given the non-stationary nature of both ecological and
environmental time series and the relationships between these series.

As reviewed in the electronic supplementary material, table S1, increasing
numbers of works have used wavelet analysis to analyse ecological and
epidemiological time series. Some of these papers were concerned with the deter-
mination of the characteristics of time series and the analysis of their possible
association with environmental signals. The use of wavelets is of great interest
in the case of the analysis of very long populational and environmental time
series such as those that come from the rich China archives [9-12]. It is clear
that the probability of finding marked non-stationarities increases with the
length of the time series. This is also true for spatial analysis where the length
of the analysed spatial signal can be important [13]. Wavelet analysis can also
reveal an abrupt shift in the cyclic dynamics of population [14] or [15]. A major
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breakthrough from wavelet analysis is linked to the existence of
transient or discontinuous association between the fluctuations
of population and climatic variables [16]. The recent develop-
ment of wavelet clustering for multiple time series analysis
represents another major innovation [17]. Other works have
used the wavelet approach to compare different analysis tech-
niques [18] or [19] and another important interest of wavelet
analysis consists of comparing the frequency characteristics
from observations and model simulations [20,21]. It has been
demonstrated that wavelet analysis can be a powerful comp-
lementary approach when comparing modelling predictions
to the ever-increasing abundance of in situ data [22]. Other ana-
lyses investigated the phenomenon of population synchrony
where wavelets are used to extract the phase of the time-
series [23—-25]. Wavelet analysis was also applied to the analy-
sis of spatial patterns in vegetation systems, but most of these
works dealt with discrete wavelet (DW) transforms [8,13,26].

However, important questions concerning the wavelet tech-
niques remain unresolved. One issue is illustrated by the
following two examples, concerning the significance of wavelet
quantities. The first example concerns the phase computation.
Johnson et al. [24] computed the phase of numerous time
series of larch budmoth based on wavelet decomposition for
the period 1961-1998. They compared the phase differences
between all time series for the full period or for different periods
even after 1985 where the time series are flat without variability
(see the electronic supplementary material of Johnson et al. [24]).
This example illustrates the need for the adequate statistical test
of the wavelet spectrum before extracting the phase. The second
example concerns Johansson et al. [27], who examined the
dynamic relationship between climate variables and the inci-
dence of dengue in Thailand, Mexico and Puerto Rico using
wavelet analysis. One of the main findings of Johansson et al.
[27] is that dengue incidence oscillations are dominated by a
marked seasonal component in these three countries. These
results contradict previous published works where the role of
the 2—-3 year periodic components is highlighted [16,28]. Never-
theless, the results obtained by Johansson et al. [27] showed the
strong dependence of the wavelet analysis on a null hypothesis
using AR(p) stochastic process.

These examples clearly show that the interpretation of wave-
let analysis results depends on adequate statistical testing of the
wavelet quantities. Statistical hypothesis testing involves two
components: a discriminant wavelet quantity, and a null hypoth-
esis, against which observations are tested. If the null hypothesis
is too simple, the explanation that we seek for analysing the data
can appear inadequate. Because statistical tests cannot easily be
calculated analytically for signals with time-varying spectrum,
resampling techniques are frequently employed and a white
noise or red noise null hypothesis is used. As for all Monte
Carlo resampling techniques, the choice of the null model is cen-
tral for defining adequate significance regions and then can affect
the potential conclusions. Nevertheless, less work has also been
done on comparing bootstrap, synthetic or surrogate data in the
case of wavelet analysis (but see [7] or [8]). The validity of any test
of wavelet quantities would depend heavily on the consistency
of the generated synthetic data with the chosen null hypothesis
and the associated stochastic process.

Here, we tested the consistency of different resampling
techniques. These resampling schemes incorporate some of
the key components of a time series: mean, variance and dis-
tributions of values in both time and frequency domains. By
incorporating some of these components, we were able to

incorporate some degree of similarity in the synthetic time n

series generated by the sampling schemes and then tested
different null hypothesis.

Our comparisons between the different null hypothesis and
associated resampling schemes were based on the distribution of
the time-series values, the classical Fourier spectrum and the
wavelet power spectrum. The influence of these resampling
techniques on the significance of wavelet quantities was then
analysed. The performances of these resampling techniques
were evaluated on the monthly reported cases of dengue hae-
morrhagic fever (DHF) in Thailand, and on two simulated
time series.

2. Material and methods

2.1. Time series analysed

To test different null hypothesis, we have based our demonstration
on the analysis of three very different non-stationary time series
(figure 1). To characterize these series, we have computed the dis-
tribution of the values of these time series and their classical
Fourier spectrum. These characteristics are displayed in figure 1;
figure la—c shows the original time series; figure 1d—f displays
the amplitude distributions of the time series and the Fourier
spectrum are depicted in figure 1g—i. The three analysed series are

(i) the monthly number of reported cases of DHF in Bangkok
(figure 1a). Figure 1d displays the distribution of the time-
series values. On average, the oscillations of the dengue inci-
dence time series are dominated by the annual mode (figure
1g), but they also have a statistically significant common
mode of oscillation around a 2-3 year period [16,28].

(ii) an AR(2) time series with two parameter sets in a reasonable
ecological range as proposed in the classical work of Royama
[30]. The two sets of parameters are chosen to obtain
dynamics with two periodic components. Figure 1b shows
n =100 data points, figure le shows the distribution of
these data points and figure 1/ its Fourier spectrum. One
can observe the abrupt variation of the main periodicity
around f; = 60, and the period is ca eight iterations before
t,, and ca four iterations after.

(iii) the time series of infectious individuals from a chaotic
SEIR (susceptible—exposed —infectious—removed) model
with transient dynamics [29]. Figure 1b shows the time
series, and figure le shows the distribution of the values
of this time series. Figure 11 displays the classical Fourier
spectrum of this time series showing large peaks at a
period of 1, 2 and 3-4 years.

2.2. Wavelet analysis

Wavelet analysis is based on the wavelet transform that decom-
poses signals over dilated and translated functions called “mother
wavelets’, §(t) that can be expressed as the function of two par-
ameters, one for the time position 7, and the other for the scale of
the wavelets a:

Wala,) = = JZ x(t) (t - T) d,

where the asterisk denotes the complex conjugate form and x(t)
the signal.

As in most wavelet applications of wavelets in ecology and
epidemiology, we use the Morlet wavelets:

)
W(t) = 7 V4 exp(—i2wg ) exp (Tt)
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Figure 1. Analysed time series and their characteristics, the Fourier spectrum and the distribution of the values. (@) Monthly number of reported cases of dengue
haemorrhagic fever in Bangkok for the time period 1987—2005. (b) AR(2) time series. The AR(2) model is: y(t) = a; + by (t — 1) + ¢y(t — 2) + &;. With
parameters defined for the time period between t, = 0 and t; = 60 as: a; = 1.5, b; = 1.2, ¢ = —0.9, &; a random Gaussian component with 0 mean and
variance a% = 0.15; and after t;as: 0, = 4, b, = 0.1, o = —1, ol2 = 0.05; n = 100 data points have been used. (c) Time series of the infectious population
generated by a chaotic SEIR model [29]:

ds/dt = w— B(t)SI — uS
dE/dt = B(D)SI — (w + )E
dl/dt = af — (. + )l
dR/dt = yl — uR

B) = By(1 + By os 2m)

with the parameters values ov = 35.84, u = 0.02, y = 100, 3, = 1800, 3, = 0.28. (d—f) The distribution of the value of the three analysed time series.
(g—1) The Fourier spectrum of the three analysed time series, (a—c) respectively.

Some discussion on the choice of the mother wavelet can be wavelet, the relation between wavelet frequencies and wavelet
found in Cazelles et al. [6,7]. scales is given by
An important point with the continuous wavelet (CW) is that 1 dma
the relationship between the wavelet frequency and the wavelet e ——"
scale that can be derived analytically (see [3]). For the Morlet f wo + /2 + @
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When wy ~ 27, the wavelet scale a is inversely related to the
frequency, f ~ 1/a. This greatly simplifies the interpretation of
the wavelet analysis and one can replace, on all equations, the
scale a by the period 1/f.

In some sense, the wavelet transform can be regarded as a
generalization of the Fourier transform and by analogy with
spectral approaches one can compute the local wavelet power
spectrum:

Se(fo) =1l Walf,7) II2 -

CWs yield a redundant decomposition in the sense that the
information extracted from a given scale slightly overlaps that
extracted from neighbouring scales. Nevertheless, CWs are
more robust to noise when compared with other decomposition
schemes. DWs have the advantage of fast implementation, but
the number of scales and the time invariant property (a filter is
time invariant if shifting the input in time correspondingly
shifts the output) strongly depend on the data length (see [7]
for a comparison of CWs and DWs in an ecological context).

2.3. Null hypothesis tested and associated synthetic
series

As with other time-series methods, it is crucial to assess the stat-
istical significance of the patterns exhibited by the wavelet
analysis. Our aim here is to test whether the wavelet-based quan-
tities (e.g. the spectra, co-spectra, coherence or phase) observed at
a particular position on the timescale plane are not due to a
random process. One starts with the observed time series,
which are to be tested against the hypothesis of control datasets
referred to as the synthetic or surrogate data, which share some
statistical properties with the original series, but which are
generated by different random processes.

There exists a large range of null hypotheses and associated re-
sampling procedures, including (i) independent and identically
distributed noise; (ii) linearly filtered noise; or (iii) a monotonic
nonlinear transformation of linearly filtered noise. Further details
of the algorithms can be found in [31]. We want to generate surro-
gate time series, associated with our null hypothesis, such that
they mimic some key features of the raw dataset, but with some
restrictions. Then, the resampling schemes used respect some of
the key constituents of the time series: (i) their mean, (ii) their
variance, (iii) the distribution of their values and (iv) their auto-
correlation function that describes the time distribution of the
variance (or the Fourier spectrum that equivalently defines the
frequency distribution of the time-series variance).

Here, we have tested seven different null hypotheses with
the same mean and variance as the raw time series but with
different degree of similarity with the key components of the
raw time series:

(i) The first synthetic time series are simple bootstrapped
series that can be assimilated to series generated by a
white noise process, granting a flat power spectrum
[32]. The null hypothesis tested is then: the observed
values of the wavelet quantities are identical to those that
can be generated by a white noise process. In this case, just
the mean and the variance of the raw series are identical.
The distributions of the raw value and the variance are,
however, substantially different in many cases.

(ii) Making the assumption of a white noise process is
generally not appropriate for ecological data, while an
autoregressive process with red noise characteristics, e.g.
an AR(1), can be an acceptable model in numerous cases
for both ecological and environmental data [33]. These syn-
thetic time series are generated with an AR(1) stochastic
process where the parameter of the model is fitted on the
raw time series. The null hypothesis tested states that the

(i)

(iv)

\

(vi)

(vii)

significant periodic characteristics are identical to those of a red
noise generated by an AR(1) process. The synthetic series gen-
erated have the same mean, the same variance, a Gaussian
distribution of their values and the autocorrelation func-
tion of an AR(1) process.

As suggested by Johansson et al. [27], we have also used
synthetic series generated by an AR(p) with p > 1. Fitting
different models and selecting the best one based on an
information criterion such as the AIC determine the p
order. The null hypothesis is identity between periodic charac-
teristics of the observed time series and those of an AR( p) process.
The synthetic series generated have the same mean, the
same variance, a Gaussian distribution of their values
and the autocorrelation function of an AR(p) process.

Ecological time series display a large variety of auto-
correlation structures that can be described by neither a
white noise, nor an autoregressive process [33,34]. For
this reason, we used the synthetic series proposed by
Rouyer et al. [17], called ‘beta-surrogates’, which display
a similar autocorrelation structure to the original time
series and the same relative distribution of frequencies.
This allows the dominance of low frequencies often dis-
played by ecological time series to be taken into account.
Using this approach, we obtain surrogates that mimic
the shape of the original ecological time series by dis-
playing a power spectrum with the same slope in the
log scale, but without exactly reproducing it (figure 2).
In this case, the synthetic series have identical mean, var-
iance and value distribution; moreover, the time
distribution of the variance is similar to those of the
raw series. The null hypothesis associated with this
resampling scheme states: the observed time series can be
generated by a stochastic processes, such that it keeps the
same distribution of values and similar Fourier spectrum.

To preserve the short-term temporal correlations, a resam-
pling scheme based on a Markov process has been used.
These synthetic series are computed in the following way
(see [35] or [36]): the raw time series are binned to form a
frequency histogram of b equal-sized bins; a transition
matrix M that describes the transition from values of bin;
to value in bin; is then estimated based on the actual relative
frequencies of the data. This transition matrix is then used
to generate surrogate time series of the same length as the
original data. The null hypothesis underlying this synthetic
series stipulates that the observed significant values of the wave-
let quantities are identical to those that can be generated by a
stochastic process that has the same distribution of the values
and identical short-term autocorrelation structure. Then, the
synthetic series have identical mean, variance and value
distribution. For their variance distribution, they just
mimic the high-frequencies components.

The block bootstrap is the most general method to
improve the accuracy of bootstrap for dependent data as
time series mainly because it can preserve the original
time series structure within a block [37]. We have used
block bootstrap but with random block length. As there
is no proper diagnostic tool to choose the optimal block
length, we have defined a mean block length in accord-
ance with the main periodicity of the raw time series.
This sampling scheme generated synthetic series with
identical mean, variance, value distribution, but just the
dominant period is respected. This scheme is associated
with a null hypothesis defined by: the time order of quasi-
identical periodic components has no consequential influence
on the significance of the time distribution of the variance.

The last surrogate datasets correspond to the amplitude-
adjusted Fourier transform (AAFT) algorithm proposed
by Theiler et al. [38]. This algorithm generates synthetic
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Figure 2. The ‘beta-surrogate’ synthetic time series. On each graph, the black line is the Fourier spectrum of the raw time series on a log—log scale, the black
dashed line is the slope of the Fourier spectrum, and the grey area is the envelop of the Fourier spectrum of 1000 synthetic time series. (a) Monthly number of
reported cases of dengue haemorrhagic fever in Bangkok (figure 1a). (b) AR(2) time series (figure 1b). (c) Time-series of the infectious population generated by a
chaotic SEIR model (figure 1¢). (For the online colour figure: on each graph, the red line is the Fourier spectrum of the raw time series on a log—log scale, the black
dashed line is the slope of the Fourier spectrum and the blue area is the envelop of the Fourier spectrum of 1000 synthetic time series.) (Online version in colour.)

time series preserving the mean, the variance and both the
value distribution and the autocorrelation function of
the original time series. The AAFT algorithm approximates
the sample power spectrum based on a phase randomiz-
ation of the raw spectrum and a back transformation
with the inverse Fourier transform producing the surro-
gate data [38]. The null hypothesis associated is then: the
significant periodic components are identical fo those of a

stochastic processes that has the same distribution of the values
and identical Fourier spectrum.

The details of the non-classical synthetic methods (iv, v, vii) are
described in the electronic supplementary material.

For each synthetic series, the wavelet transform and ‘related
quantities” are computed. As the process is repeated 7, times,
the distribution of these ‘wavelet quantities’” under each null
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Figure 3. Wavelet analysis of the monthly number of reported cases of dengue haemorrhagic fever in Bangkok and characteristic of both the raw data and the synthetic time
series used for each statistical test. (a) Test with simple bootstrapped time series. (b) Red noise test with an AR(1) process. (c) Test AR( p) process withp > 1, p is determined
by the optimal AIC value of different models. (d) ‘Beta-surrogates test'. (e) Test with HMM synthetic series. (f) Test with block bootstrap with random block length. (g) Test
with AAFT synthetic series. Three panels compose each line. The first panel is the wavelet power spectrum of the raw series for each statistical test. The colours code for power
values from white (low values) to dark grey (high values). The bold black lines show the 5% significant levels computed based on 1000 synthetic series. Dotted white lines
represent the maxima of the undulations of the wavelet power spectrum, and the large white line indicates the cone of influence that delimits the region not influenced by
edge effects. The second panel corresponds to the Fourier spectrum of the raw time series in black and the 1000 synthetic series in grey. The third panel is the distribution of
the values of the 1000 synthetic time series. (For the online colour figure: in the first panel the colours code for power values from white (low values) to dark red (high values).
The second panel corresponds to the Fourier spectrum of the raw time series in red and the 1000 synthetic series in blue.) (Online version in colour.)

hypothesis is constructed. We can compare the wavelet quan-
tities of the raw series with their distribution under the null
hypothesis, extracting, for instance, the 95th or the 99th percen-
tiles of this distribution. We are then able to determine how
strongly significant periodic components compared with those
generated by the null hypothesis.

3. Results

Our main results are presented in figures 3 and 4 and in the
electronic supplementary material, figure S1.

3.1. Consistency between synthetic and observed time
series

Considering the spectral characteristic of the synthetic series, our
analyses show that the simple method (simple bootstrapping
and AR(1)) generates synthetic series with an inadequate Fourier
spectrum (figures 3a,b and 44,b and the electronic supplementary
material, figure S1A,B). This is also verified for the AR(0)
synthetic series (not shown). On the other extremity of the
complexity of the resampled series, the AAFT synthetic series
have a quasi-identical Fourier spectrum (figures 3¢ and 4g and
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Figure 4. As figure 3 but for the AR(2) time series. (Online version in colour.)

the electronic supplementary material, figure S1G). Between
these two extremes, the spectra of the series generated by the
AR(p) process (except in the case of AR(2) analysed series
(figure 4c)) are not strongly in accordance with the spectra of
the raw series (figure 3c and the electronic supplementary
material, figure S1C). Surprisingly, this is also the case for the
‘beta-surrogate’ (figures 3d and 4d and the electronic supplemen-
tary material, figure S1D). This last point underlines the difficulty
of fitting a linear model on an observed Fourier spectrum (figure
2). Conversely, block bootstrap and HMM synthetic series have
Fourier spectrum more in accordance with the observed spec-
trum but with an interesting variability that will generate
synthetic series different from the raw series (figures 3e,f and
4e,f and the electronic supplementary material, figure S1E,F).
We observe from the third column of figures 3 and 4 and
electronic supplementary material, figure S1 that the distri-
butions of the values generated based on AR(1) or AR(p)
processes are Gaussian and not consistent with those of the
analysed time series. This is also the true for synthetic series

generated with a white noise process define by an AR(0) pro-
cess (not shown). A visual investigation of the realizations of
the different synthetic series (electronic supplementary
material, figure S2) stress the inadequacy of simple bootstrap
as well of the series generated by AR(1) and AR(p) processes
for null hypothesis tests. Further, these simple inspections of
the basic features of the different synthetic time series clearly
demonstrate the inadequacy of surrogate series generated by
white noise and red noise that are nevertheless currently
used in the vast majority of wavelets applications.

3.2. Significance of wavelet power spectrum

Concerning the significance of the wavelet power spectrum,
clearly the white noise series give more significant patterns
at all the major periodic components, whereas a ‘stricter’
null hypothesis gave few significant patterns. This is illustrated
for the AAFT method where few areas are significant
(figures 3a and 4a and the electronic supplementary material,
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figure S1A). In this case, as the synthetic data have on average
the same Fourier spectrum and the same variance repartition
in the full period range, the regions that appear significant
are those that have characteristics higher than the average
(figures 3¢ and 4¢ and electronic supplementary material,
figure S1G). Similar observation can be done for the AR(2) ana-
lysed series when the synthetic time series are generated with
AR(p) processes, as the analysed process and the synthetic
time series are too close, few areas are significant (figure 4c).
Overfitting to real data greatly reduces the significant periodic
patterns. For very simple time series, such as the AR(2) models,
any resampling scheme gives very similar significant patterns
mainly, because removing the order of the time series is
enough to give significance. Nevertheless, for more complex
data, the significant patterns depend both on the null hypoth-
esis and on the spectral properties of the analysed series. Thus,
it is difficult to generalize the different conclusions for more
complex and realistic time series. Specifically, for DHF, the
white noise model yields significant periodic components for
both 1 and 2-3 years, whereas the red noise model give
more significance on the seasonal component (figure 3a).
More consistent synthetic series based on HMM or block boot-
strap resampling give a high significance to the seasonal
component, and also to the 2—3 years components (figure 3e,f).

4. Discussion

Wavelet analysis can help us to interpret multi-scale, non-
stationary time-series data and reveal features that could
not otherwise be seen [6—8]. Wavelet analysis is thus becom-
ing an important tool for analysing time series, and has
important practical applications in environmental sciences
(see electronic supplementary material, table S1). Moreover,
wavelets also appear as an interesting tool for characterizing
and validating simulations of models of biological and
environmental processes [20—22]. Nevertheless, the test of
significance of ‘wavelet quantities’ is critical to enhance the
contribution of wavelet analysis for producing reliable results
rather than just producing colourful images.

In this work, we proposed a comparison of different
null models for wavelet testing. The associated resampling
schemes incorporated some of the key components of the time
series and then some degree of similarity with the observed
data. The performance of the different tests with their associated
resampling techniques is evaluated through three criteria: the
distribution of the raw value, the Fourier power spectrum and
the significant region in the wavelet power spectrum. We
have tested a large range of null hypothesis and resampling
techniques for simple random shuffling to more elaborated sur-
rogate series. It is clear that a simple random shuffling of data
appears as a ‘weak’ null hypothesis that could be easily rejected.
At the other extreme, the surrogate by Theiler et al. [38] rep-
resents a ‘hard’ null hypothesis that could be rejected with
difficulty as these synthetic time series have the same Fourier
spectrum as the raw time series.

First, one can note that for very short time series, most of the
null hypotheses and associated resampling schemes reach simi-
lar conclusions. A possible explanation of this weak sensitivity
to the choice of the resampling scheme for short time series may
be related to the fact that the results from the statistical tests may
mainly be affected by the breakdown of the time order.

Our results clearly show that the use of resampled time n

series under the white noise hypothesis is insufficient. Our
findings also demonstrate that the red noise hypothesis
(AR(1) process) generates resampled time series with charac-
teristics that are not in agreement with those of the raw time
series. These two methods can give inadequate significant
areas in the wavelet power spectrum that must be interpreted
carefully. Nevertheless, these two methods are currently used
in the vast majority of wavelets applications. Similarly, AR(p)
(with p € R") processes give, in most cases, synthetic series
with inappropriate characteristics.

Contrarily, methods driven by the data generated synthetic
time series that have characteristics more in accordance with
those of the raw time series. AR(p) with higher order consider-
ably reduce the discrimination power of the hypothesis testing
in case of pseudo-periodic data and are not adequate in the
case of more complex periodic components such as chaotic
time series (see electronic supplementary material, figure S1C).

With stochastic processes, our proposed 1//* process or
‘beta-surrogate” [17] gives importance to larger periodic
bands in greater accordance with the apparent reality (figure 2).

The AAFT algorithm produces synthetic time series that are
highly similar to raw data, so that significant regions in the
wavelet power spectrum are sparse and the null hypothesis
appears very hard to reject. Nevertheless, with this hypothesis,
one can clearly obtain information about when the spectral
characteristics of the time series differ from the mean character-
istics. This is the case not only for very large values of the
power spectrum but also for the regions where there is a
large changing frequency behaviour (figure 4g). This can be a
particular advantage when the objective is to characterize
marked regime shifts or turning points.

Overall, the bootstrap algorithm and test based on simple
stochastic processes led to smallest efficiency results in terms
of characteristics of the generated resampled series and ident-
ified structure in the time-frequency analysis, whereas the
HMM algorithm and the bootstrapping by block gave con-
sistently good results. However, the accuracy of the block
bootstrap is sensitive to the choice of the block length, and
the optimal block length depends on the sample size, the
data-generating process and the statistic considered. To
date, there is no proper diagnostic tool to select the optimal
block length and it still remains as an unsolved question
for future studies. This appears particularly troublesome for
time series with complex spectra.

We conclude that using data-driven resampling techniques
to generate synthetic time series with characteristics in agree-
ment with those of the empirical dataset is often preferable
when wavelet approaches are applied. Considering the
difficulty in bootstrapping by block, the use of the HMM
algorithm ([35] or [36]) is an interesting compromise. It
worth noting that these methods (HMM, bootstrap by block
and beta-surrogate) are data-driven approaches and carry no
a priori assumptions about the intrinsic processes generating
these data, they just display similar statistical properties
of the raw data. This conclusion can be moderated by the
fact the statistical test used may also be dictated by the research
question underlying the analysis of a time series. This is the
case in the regime shift studies for which we have shown
that the test associated with the AAFT algorithm has the prin-
cipal characteristic of focusing mainly on the time position of
significant ‘wavelet quantities’ (figure 4g). A regime shift can
be found by demonstrating a marked modification of the
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periodic components at a given time (see [14] or [15]), but the
use of the AAFT algorithm would be successful for confirming
the time of the shift without exploring the significance of the
other part of the spectrum.

Wavelets present other limitations and weakness (see
Maraun & Kurths [39]). One of these weaknesses is related to
the different normalization methods used. Contrary to Fourier
analysis, in wavelet analysis, there are difficulties in obtaining
adequate normalization that preserves all interesting features,
namely a flat spectrum for white noise and an identical
spectrum for sine waves of same amplitude but different fre-
quency. In most applications, one uses the normalization
proposed by Torrence & Compo [5], which preserves a flat
white noise spectrum but sine waves of equal amplitude exhibit
different integrated power proportional to their oscillation scale.
Nevertheless, Kaiser [40] has suggested other normalizations,
which only preserve one of the mentioned features.

Considering its growing use (see electronic supplementary
material, table S1), wavelet analysis is an important addition to
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