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Brain tissue modelling has been an active area of research for years. Brain matter

does not follow the constitutive relations for common materials and loads

applied to the brain turn into stresses and strains depending on tissue local

morphology. In this work, a hyperviscoelastic fibre-reinforced anisotropic

law is used for computational brain injury prediction. Thanks to a fibre-

reinforcement dispersion parameter, this formulation accounts for anisotropic

features and heterogeneities of the tissue owing to different axon alignment.

The novelty of the work is the correlation of the material mechanical anisotropy

with fractional anisotropy (FA) from diffusion tensor images. Finite-element

(FE) models are used to investigate the influence of the fibre distribution for

different loading conditions. In the case of tensile–compressive loads, the com-

parison between experiments and simulations highlights the validity of the

proposed FA–k correlation. Axon alignment affects the deformation predicted

by FE models and, when the strain in the axonal direction is large with respect

to the maximum principal strain, decreased maximum deformations are detec-

ted. It is concluded that the introduction of fibre dispersion information into the

constitutive law of brain tissue affects the biofidelity of the simulations.
1. Introduction
The investigation of the mechanical behaviour of brain tissue has been an active

area of research for several years [1–8]. As brain matter does not follow the consti-

tutive relations for common engineering materials, identifying a constitutive law

able to accurately describe its behaviour is indeed difficult. Many researchers

have focused their studies on characterizing the response of the tissue to externally

applied mechanical loads. In a study by Brands et al. [3], linear and angular accel-

erations were applied to the skull and the brain was modelled with a nonlinear

viscoelastic constitutive equation such that the nearly incompressible behaviour

was represented with numerical accuracy; Prange & Margulies [9] studied the

corpus callosum and the corona radiata, finding that the shear modulus varied

depending on the shearing direction. Again, Velardi et al. [10] tested the tensile

behaviour of brain tissue and proposed an anisotropic constitutive equation.

Kleiven [5] suggested modelling the brain material using a second-order Ogden

hyperelastic law to account for differences in compression and tension.

The challenge of brain tissue modelling lies in the complexity of the brain,

which is made of multiple substructures marked by different mechanical prop-

erties. Understanding the correlation between the internal structure of the tissue

and the macroscopic mechanical properties is therefore important, especially

because loads applied to the brain turn into stresses and strains depending

on the local morphology and composition. In addition, experimental results

from different studies reveal a large discrepancy in the existing data [11]: this

lack of consistency is probably due to both the great intra- and intersubject

variability and the different experimental protocols. It seems, at present, not
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Table 1. Viscoelastic parameters for the brain tissue used in the head model.

parameter value

g1 for t1 ¼ 1026 s 0.7685

g2 for t2 ¼ 1025 s 0.1856

g3 for t3 ¼ 1024 s 0.0148

g4 for t4 ¼ 1023 s 0.0190

g5 for t5 ¼ 1022 s 0.0026

g6 for t6 ¼ 1021 s 0.0070

g1 0.0025
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feasible to propose a constitutive model of brain tissue suit-

able for all loading conditions [12]. Nonetheless, when it

comes to considering the tissue response to large strains,

which are distinctive of traumatic brain injury (TBI), exper-

imental results reveal inhomogeneous [13], nonlinear

[14,15], viscoelastic [16–19] and anisotropic mechanical

behaviour [9,10,20–22].

In particular, the integration of anisotropy into a constitutive

framework is crucial to ensure the reliability of calculations

in a computational head model aimed at TBI prediction:

in vitro analysis of brain injury mechanisms [23–26] suggests

stretching of white matter and the consequent local physiologi-

cal impairment of neuronal cells as a potential mechanism of

microstructural injury. The susceptibility of the tissue appears

to be the result of both viscoelastic properties and highly

organized structure in white matter tracts [24].

Consequently, classical tissue-based metrics may not be ade-

quate to describe the injury mechanism, especially when shear

strains or invariants of the strain tensor are used. For TBI predic-

tion, an accurate representation of the anisotropic behaviour is

needed. Unfortunately, this goal has not been achieved yet,

because current finite-element (FE) models incorporate only

isotropic homogeneous features into injury analysis [5,16,18,27].

This study aims at being the first step towards enhancing

brain injury predictions of FE head models. It is proposed to

assign a hyperviscoelastic fibre-reinforced anisotropic material

to the brain to account for time–rate and local morphological

dependence on the mechanical response. The alignment of the

axons plays an important role and is incorporated in the model

through the use of the mechanical parameter k [28,29] that

measures the level of dispersion of the fibres. To choose the

numerical value of this variable, a new correlation between k
and fractional anisotropy (FA) of diffusion tensor images

(DTIs) is proposed. Finally, this relationship is tested against

experimental data for tension and compression of brain tissue

and is used to assign values of k into a previously developed

head model.
2. A constitutive model for brain tissue
2.1. Anisotropic hyperviscoelastic formulation
As the experimental data show that the brain has inhomo-

geneous [13], nonlinear [14,15], viscoelastic [16–19] and

anisotropic mechanical behaviour [9,10,20–22], it is reasonable

to assign the brain tissue a hyperviscoelastic fibre-reinforced

anisotropic constitutive law. In this study, the model proposed

by Cloots et al. [28] is used to account for the anisotropy of the

brainstem and the corpus callosum. This material model is

capable of integrating information on tissue composition and

to describe time–rate dependence in the mechanical response.

The hyperelastic strain energy potential is given by

W ¼ G
2
ð~I1 � 3Þ þ K

J2 � 1

4
� 1

2
lnðJÞ

� �
þ k1

2k2
ðek2k~Eal2

� 1Þ;

ð2:1Þ

where the last term on the right-hand side is taken from the

Gasser–Ogden–Holzapfel (GOH) form [29] calculated for

only one fibre family

~Ea ¼ kð~I1 � 3Þ þ ð1� 3kÞð~I4a � 1Þ;
~I4a ¼ ~C : n0a � n0a:

9=
; ð2:2Þ
In this form, W defines the strain energy per unit of reference

volume, G represents the shear modulus, ~I1 is the first invariant

of the isochoric Cauchy–Green strain tensor, K stands for the

bulk modulus, J is equal to the determinant of the deformation

gradient and k1 and k2 describe the fibre stiffness. The defor-

mation of the fibres is described by the strain-like quantity ~Ea

that is the function of the isochoric Cauchy–Green strain

tensor (C̃), the fibre unit vector in the undeformed configuration

(n0a) and the dispersion parameter (k). Again, in this model

fibres contribute their mechanical strength only in tension and

not in compression [29]; by means of the Macaulay brackets

k:l, k ~Eal becomes zero if ~Ea is negative.

The Cauchy stress tensor is then expressed as

s ¼ sh þ sd; ð2:3Þ

where the hydrostatic part is defined as

sh ¼ K
2

J2 � 1

J
I; ð2:4Þ

while the deviatoric part is

sd ¼ 1

J
GB̃

dþ 2k1

XN

a¼1

ek2k~E
2

alk~EalðkB̃
dþ~I4að1� 3kÞðna� naÞdÞ

" #
;

ð2:5Þ

in which I represents the unit tensor and B̃
d

is the deviatoric

isochoric Finger tensor B̃ ¼ J�ð2=3ÞB. The viscoelastic behav-

iour is taken into account by adding time dependency on

the second Piola–Kirchhoff stress tensor (S) that is expressed

as follows:

SðtÞ ¼
ðt

0

g1 þ
X

i

gie
ð�ððt�tÞ=tiÞÞ

" #
@Sd

e

@t
dt; ð2:6Þ

where Sd
e is the deviatoric elastic second Piola–Kirchhoff

stress tensor as the volumetric behaviour is assumed to be

independent of time. t represents the time variable, g1 is

the long-term parameter recovering the role of G and k1 in

the limit, gi define the relaxation parameters of the visco-

elastic models and ti are the time constants. A summary of

the viscoelastic properties of the brain tissue can be found

in table 1. Numerical values for viscoelasticity are chosen in

agreement with Cloots et al. [28]; in turn, those parameters

were based on a study by Kleiven [5].

The constitutive variables G, k1, k2, K are assigned the

same values that Cloots et al. [28] proposed. A summary of

the material properties can be found in table 2. A value of

1214 Pa is assigned to the shear modulus G while 11 590 Pa
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Figure 1. Structure tensor H represented for different values of k. From left to right, the passage from a perfectly isotropic condition to a perfectly transversely
anisotropic one is illustrated: (a) k ¼ 1/3; (b) k ¼ 1/5; and (c) k ¼ 0. (Online version in colour.)
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Figure 2. Relation between FA and fibre-reinforcement dispersion parameter
(k). Refer to equation (2.21).

Table 2. Properties of brain tissue: parameters refer to the
hyperviscoelastic fibre-reinforced anisotropic formulation of equation (2.1).

parameter value

G (Pa) 1214

K (MPa) 50

k depending on FA

k1 (Pa) 11 590

k2 0

Table 3. Discretization of equation (2.21) (FA – k) for FE simulations.

FA range k-value

0.0 – 0.2 0.3333

0.2 – 0.3 0.2732

0.3 – 0.4 0.2500

0.4 – 0.5 0.2273

0.5 – 0.6 0.2000

0.6 – 0.7 0.1667

0.7 – 0.8 0.1282

0.8 – 0.9 0.0769

0.9 – 1.0 0.0000
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is assigned to the mechanical parameter k1 in respect of the

ratio of 0.105 experimentally identified by Ning et al. [20].

A value of 0 is chosen for k2 as the fibre contribution to the

stiffness is assumed to be linear [30]. The bulk modulus K,

even though experimental observations show that its magni-

tude is around 2.1 GPa, is instead assigned a value of 50 MPa

to prevent volumetric locking of the elements during the FE

simulation. As K is still much greater than the shear modulus,

the same pressure and strain response are found when the

bulk modulus is reduced by a couple of orders of magnitude.

As can be seen from table 2, to quantify the dispersion par-

ameter k a novel approach is proposed in this study (2.2).

Particular attention is paid to the level of fibre alignment in

the material in order to account for the internal load-carrying

mechanism of the individual constituents. To choose the

numerical value of this mechanical variable, a correlation

with DTI FA is established [31].

2.2. Connecting the fibre-reinforcement dispersion
parameter with fractional anisotropy

In this work, brain tissue is assumed to be a fibre-reinforced

material. According to the anatomy of the tissue [32], bundles

of axons connecting different parts of the nervous system
represent the fibres while neuron bodies, blood vessels,

glial cells and supportive cells constitute the matrix of the

material [33]. To quantify the value of k, a new relationship

with FA from DTIs is proposed and discussed. The idea

behind this formulation is that mechanical anisotropy and

diffusion anisotropy can be linked, being two distinct

expressions of the same property [34–36].

Consider first the mechanical dispersion parameter k. In

the hyperviscoelastic fibre-reinforced anisotropic constitutive

law, distributed fibres are represented in a continuum sense

by means of a generalized structure tensor H [29] that is

defined as

H ¼ 1

4p

ð
w
rðMðu;fÞÞMðu;fÞ �Mðu;fÞdw: ð2:7Þ
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(a) (b) (c)

Figure 3. Three-dimensional FE model of brain tissue samples. (a) The original configuration is shown (l ¼ 0). (b) A tension is applied and the new configuration
of the model is illustrated at 20 s (l ¼ 1.3). (c) A compression is applied and the new configuration of the model is presented at 35 s (l ¼ 0.8). (Online version
in colour.)
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The existence of a density function r(M) is postulated and

is referred to as an orientation density function that des-

cribes the distribution of fibres in the initial configuration

V0 [29]; M is therefore an arbitrary unit vector which can be

characterized in terms of two Eulerian angles u [ ½0;p� and

f [ ½0; 2p�

Mðu,fÞ ¼ sinðuÞ cosðfÞe1 þ sinðuÞ sinðfÞe2 þ cosðuÞe3, ð2:8Þ

in which fe1,e2,e3g are the axes of a system of rectangular

Cartesian coordinates. The symmetry of the function

(r(M) ¼ r(2M)) is required, because each fibre is double

counted by the chosen range of values of the Eulerian

angles; moreover, the density function is normalized such

that the total number of fibres in the unit sphere is equal to 1,

1

4p

ð
w
rðMðu;fÞÞdw ¼ 1; ð2:9Þ

where dw ¼ sinðuÞdudf and w is the unit sphere. With

these assumptions, the generalized structure tensor can be

compacted by

H ¼ aijei � ej, ð2:10Þ

considering the summation over i and j from 1 to 3 and the

coefficients defined as

a11 ¼
1

4p

ð
w
rðMÞsin3ðuÞcos2ðfÞdudf;

a22 ¼
1

4p

ð
w
rðMÞsin3ðuÞsin2ðfÞdudf;

a33 ¼
1

4p

ð
w
rðMÞcos2ðuÞsinðuÞdudf;

a12 ¼
1

4p

ð
w
rðMÞsin3ðuÞsinðfÞcosðfÞdudf;

a23 ¼
1

4p

ð
w
rðMÞsin2ðuÞcosðuÞsinðfÞdudf;

a31 ¼
1

4p

ð
w
rðMÞsin2ðuÞcosðuÞcosðfÞdudf;

aij ¼ a ji:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð2:11Þ

For the general continuum representation of distributed

fibres, it is assumed that only one family of fibres exists for

each bundle of axons and rotational symmetry about one

principal direction is considered. As a matter of fact, in the

brain a bundle of axons develop preferentially in one direc-

tion; therefore, transversely isotropic behaviour can be

assigned to the material. In this way, the general orientation
density function r(M(u,f )) depends only on u as r(u), the nor-

malization condition becomesðp
0

rðuÞsinðuÞdu ¼ 2 ð2:12Þ

and the off-diagonal coefficients of H vanish. Without loss

of generality, the principal direction can be taken as a0

and superimposed on the basis vector e1. Calculations for

the diagonal terms of the tensor consequently provide the

following results:

a22 ¼ a33 ¼ k; a11 ¼ 1� 2k;

k ¼ 1

4

ðp
0

rðuÞsin3ðuÞdu:

9>=
>; ð2:13Þ

The new compact form of the structure tensor H is

H ¼ kI þ ð1� 3kÞa0 � a0; ð2:14Þ

and being a0 ¼ [1 0 0] the structure tensor can be rewritten as

H ¼
1� 2k 0 0

0 k 0
0 0 k

2
4

3
5: ð2:15Þ

It therefore becomes a second-order tensor depending only on

k. This tensor is visualized in the three-dimensional space as

an ellipsoid where the lengths of the main axes correspond to

the eigenvalues and their direction to the respective eigenvec-

tors. For H, the eigenvalues are the diagonal terms l1 ¼ 1–2k,

l2 ¼ k and l3 ¼ k, while the respective eigenvectors are v1 ¼

[1 0 0], v2 ¼ [0 1 0] and v3 ¼ [0 0 1]. In general, the eccentricity

of the ellipsoid is related to the ratio

eH ¼
1� 2k

k
: ð2:16Þ

Moreover, when k ¼ 1/3 the structural tensor corresponds to a

sphere (figure 1a); instead, a k-value of 0 makes the ellipsoid

collapse into a line (figure 1c). Figure 1 illustrates the variation

in the shape of the generalized structure ellipsoid depending

on the k-value, passing from a perfectly isotropic condition

to a perfectly transversely anisotropic condition.

In order to assign values to the dispersion parameter k, a

connection between mechanical anisotropy and FA from

DTIs is needed. This assumption is justified considering the

DTI framework: by applying a specific series of magnetic gra-

dients [31], the imaging technique measures the diffusion
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orientation of water molecules in a tissue and, specifically in

brain tissue, water tends to diffuse along its ordered structures,

which are axonal fibres. Consequently, the determination of

diffusion orientation and its degree of anisotropy is considered

to correspond to the numerical quantification of the main

direction of the fibres in the brain tissue and their degree of

mechanical anisotropy. The same hypothesis was used in

previous studies [34–36].

The three-dimensional spatial representation of the

structural tensor H is coupled with the diffusion tensor D

obtained from diffusion tensor imaging. Diffusion tension
formalism provides an approximation of the mean diffusion

of water molecules in a three-dimensional ellipsoid; its proper-

ties are defined by the three lengths of the axes (l1, l2, l3) and

their orientations (v1, v2, v3). To keep track of the parameters, a

3 � 3 tensor D is used, which is related to them by a diagonali-

zation procedure

D ¼
Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

2
4

3
5

¼ v1 v2 v3½ �
l1 0 0
0 l2 0
0 0 l3

2
4

3
5 v1

v2

v3

2
4

3
5; ð2:17Þ

where li is the i-th eigenvalue and vi is the corresponding

eigenvector.

To link k and FA, the previous theoretical assumptions

are held true. The principal direction is considered to be

a0 ¼ [1 0 0] and the behaviour of the material is assumed to be

transversely isotropic. These assumptions correspond to l1

being the greatest eigenvalue of the diffusion tensor and v1

(main eigenvector) being a0. Moreover, l2 ¼ l3 as the mechan-

ical behaviour is assumed to be transversally isotropic.

Considering the mathematical definition of FA,

FA ¼
ffiffiffi
1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

1 � l2
2Þ

2 þ ðl2
2 � l2

3Þ
2 þ ðl2

3 � l2
1Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ l2
2 þ l2

3

q ; ð2:18Þ

when l2 ¼ l3 this relation reduces to

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

1 � l2
2Þ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ 2l2
2

q : ð2:19Þ

Considering the three-dimensional ellipsoidal spatial represen-

tation of D, the shape of the diffusion ellipsoid is related to FA,

and specifically the eccentricity is related to the ratio l1/l2. As

for the structure ellipsoid (figure 1), if isotropic features are

detected (l1 ¼ l2 ¼ l3), the diffusion tensor can be spatially

represented by a sphere; for perfect anisotropic conditions

(l1 ... l2 ¼ l3 ¼ 0), instead, the diffusion ellipsoid col-

lapses into a line. As both H and D define the numerical

representation of the structure of the fibres in the tissue, in

order to have the same degree of anisotropy, the two ellipsoids

must coincide in shape and orientation. As a consequence,

l1

l2
¼ 1� 2k

k
: ð2:20Þ

Substituting into the FA definition (equation (2.19)),

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� 2kÞ=ðkÞ � 1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� 2kÞ=ðkÞÞ2 þ 2

q : ð2:21Þ

It can be easily demonstrated that, according to the theory, for

k ¼ 1/3 the corresponding FA value is FA ¼ 0, which rep-

resents a perfectly isotropic condition; for k ¼ 0, instead, the

corresponding FA value is FA ¼ 1, which stands for a perfectly

transversely anisotropic situation. Equation (2.21) is graphically

expressed in figure 2.

2.3. Fibre-reinforcement dispersion parameter
To assign numerical values to k, a discretization of equation

(2.21) is needed. In this work, a mapping method is pro-

posed to couple orientation information and mechanical



corpus callosum(a) (b) (c)

A

A A

S S

I I

R

P

P P

L

frontal and parietal lobe thalamus

Figure 5. Brain tractography. (a) Corpus callosum: fibre principal orientation is in the lateral direction (A, anterior; P, posterior; L, left; R, right). (b) Frontal and
parietal lobe: fibre principal orientation is in the superior – inferior direction (A, anterior; P, posterior; S, superior; I, inferior). (c) Thalamus: fibre principal orientation
is in the superior – inferior direction (A, anterior; P, posterior; S, superior; I, inferior).

Table 4. FA range from DTIs and resulting k-range used in experiments for
different brain regions.

brain region FA k-value

occipital lobe 0.0 – 0.2 0.3333; 0.2943

frontal and parietal lobe 0.2 – 0.3 0.2943; 0.2732

thalamus 0.3 – 0.4 0.2732; 0.2500

corona radiata 0.4 – 0.6 0.2500; 0.2000

corpus callosum 0.6 – 1.0 0.2000; 0.1000; 0.0000
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fibre reinforcement. The heterogeneous anisotropic behaviour

of the brain tissue is considered by defining several anisotro-

pic materials that differ only in the degree of anisotropy

defined by k. These distinct materials are then assigned to

the regions of the brain marked by different distributions of

the axonal fibres. We consider isotropic mechanical behav-

iour for FA values smaller than 0.2 whereas for higher

values of fibre dispersion the range of FA is divided into

eight increments (0.2–0.3, 0.3–0.4, . . ., 0.9–1.0) and for each

interval the maximum FA value is chosen to compute the cor-

responding k. Table 3 illustrates the discretized relation

between the fibre-reinforcement dispersion parameter and

the FA. This is a new proposed relation that is justified math-

ematically in the literature [37,38]: according to Cercignani

et al. [38], the grey matter of healthy subjects is characterized

by a low degree of anisotropy and FA values are found to

vary in a range of 0–0.2. As the behaviour of grey matter is

extensively assumed to be isotropic [7,10,15,39], in this

study a value of k ¼ 1/3 is assigned to the dispersion par-

ameter for each element of the FE model with FA in that

range (table 3). For higher values of fibre alignment, instead,

a significant variation in mechanical behaviour is considered

for increments of FA of 0.1; according to equation (2.21), this

corresponds to a variation of at least 17% in the ratio of the

axes of the structure ellipsoid. Finally, to map the complete

diffusion information within the FE head model, a FA

value is assigned to each FE that belongs to brain tissue.

A DTI dataset of a healthy patient with a spatial resol-

ution of 2 � 2 � 3.6 mm is used: the protocol involves a

mesh voxelization and an affine registration between the

DTI brain and the voxelized FE brain mask (3D SLICER

v. 4.2). The geometry of the DTI brain is aligned with the cor-

responding geometry of the FE model brain and the FA map
is calculated at FE resolution. The anisotropic behaviour is

finally assigned elementwise according to table 3.
3. Finite-element simulations
3.1. Tension and compression test
In this section, simple FE tests of tension–compression are

presented and discussed. The focus of the simulations is to

investigate the mechanical behaviour of the hyperviscoelastic

fibre-reinforced material when the dispersion parameter k is

varied. Three-dimensional FE models that mimic cylindrical

brain tissue samples are developed in the FE code LS-Dyna

971 (figure 3). The geometry of the samples is modelled as

a cylinder with an initial diameter of 30 mm and height of

10 mm. Eight-node hexahedral solid elements with reduced

integration and hourglass control are used. At each node of

the top plane of the models, x and y motion is constrained

while a constant displacement of 3 mm is imposed along

the z-axis in the positive direction; this procedure corre-

sponds to applying a tension to the samples with a

constant velocity of 5 mm min21. At a later stage, for each

node of the top plane of the models, the same displacement

is imposed in the negative direction of the z-axis. In this

way, a compression is applied to the sample at a constant

velocity of 5 mm min21 (figure 3).

To investigate the influence of the fibre-reinforcement

dispersion parameter, FE simulations are performed: for

each simulation, the cylinder is assigned the proposed

hyperviscoelastic fibre-reinforced anisotropic constitutive

law with a different value of the parameter k, according to

table 3. The GOH model is supplied to LS-DYNA 971 as a

user subroutine. The custom executable was written by

Cloots et al. [28] and it is invoked in the input deck using

user-defined material with appropriate input parameters.

Figure 4 illustrates the variation of the stress–stretch curves

with the level of fibre alignment and the angle of main orien-

tation of the fibres: when the principal direction is aligned in

the direction of force (figure 4a), a higher degree of anisotropy

is shown to stiffen the material; the more fibres are aligned, the

more they resist the deformation. As a consequence, higher

tensions are detected in correspondence with lower values of

stretch. When fibres are not oriented in the same direction of

the load, they take a minor part in stress transfer. Figure 4b,c
shows the response of the models for a main orientation of

458 and 908 with respect to the z-axis. The behaviour of the
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isotropic cylinder (k ¼ 0.3333) is independent of the direction

of load. For other values of k, lower stresses are detected in cor-

respondence with higher values of stretch and the contribution

of the fibres decreases with increasing fibre alignment. Inde-

pendent of the angle of main orientation, a significant

change is noted for FA values higher than 0.4 (corpus callo-

sum, corona radiata, etc.); this variation reduces with

increasing dispersion of the fibres. From figure 4, it can be

seen that fibres contribute their mechanical strength only in

tension and not in compression: this is in agreement with

the theoretical assumptions of the GOH model [29].

To give a complete analysis of the influence of the

fibre-reinforcement dispersion parameter, experimental data

collected by Franceschini [40] are then fitted for different

regions of the brain assuming FA values according to DTI cal-

culations. The results of the simulations are compared with

experimental stress–stretch curves with the purpose of vali-

dating the relationship in equation (2.21) and of verifying

that mechanical and diffusion anisotropy can be linked. The

occipital lobe, frontal lobe, parietal lobe, corona radiata,

thalamus and corpus callosum are assigned FA values

according to the literature; subsequently, stress–stretch

curves from these regions are compared with results from

the simulations obtained for k-values correlated to the FA

range (minimum and maximum values). In the simulations,

the principal direction of the fibres is aligned in the direction

of force; therefore, only brain tissue samples harvested in the

same direction as the principal orientation of the fibres are

considered. To determine the main direction, brain tractogra-

phy is performed in 3D SLICER: a DICOM dataset with a
spatial resolution of 2 � 2 � 3 : 6 mm is used; images refer

to a healthy subject and were acquired using a Siemens

Tim Trio scanner operating at 3.0 T with an echo time of

91.4 ms and a repetition time of 5200 ms. The fibre principal

direction is assumed to be the superior–inferior orientation

for the parietal and frontal lobe (figure 5a) and the thalamus

(figure 5b) while the lateral direction is considered to be the

principal one for the corpus callosum (figure 5c). Table 4

summarizes the properties of the different brain regions

and the k-values used to perform the simulations. According

to Bozzali et al. [41] and Lee et al. [42], the occipital lobe is

assumed to have an FA lower than 0.2 (k ¼ 0.3333 for FA ¼

0, k ¼ 0.2943 for FA ¼ 0.2) and the temporal and parietal

lobes are assigned an FA value in the range of 0.2–0.3 (k ¼
0.2943, k ¼ 0.2732). The thalamus is characterized by

FA , ½0:3; 0:4� (k ¼ 0.2732, k ¼ 0.2500), the corona radiata

has an FA value varying from 0.4 to 0.6 (k ¼ 0.2500, k ¼
0.2000), whereas the corpus callosum is the most oriented

part marked by an FA . 0.6 (k ¼ 0.2000 for FA ¼ 0.6, k ¼
0.1000 for FA ¼ 0.85, k ¼ 0.0000 for FA ¼ 1.0).

First, compression only is analysed and the GOH model is

assigned parameters according to tables 1, 2 and 4. Consider-

ing the lack of contribution to the stiffness of the axonal fibres

under compressional loads [29], the same response is

detected for various values of k. Figure 6 illustrates the com-

parison between experimental and simulated curves for each

brain region; three samples tested by Franceschini [40] in the

principal direction of the fibres are used as a reference. As can

be seen from the graphs, for G ¼ 1214 Pa, the mechanical be-

haviour of the brain matter is not well represented. For
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this value of the material shear modulus, a more compliant

response is notable for the hyperviscoelastic fibre-reinforced

material model, with the only exception being the occipital

lobe where the experimental curves are better fitted. For the

other areas of the brain, experimental data show a stiffer

behaviour which is related neither to the level of alignment

of the fibres nor to the localization of the samples. A signifi-

cant difference can only be noted between grey and white

matter, suggesting that the organization of the components

plays a limited role in the mechanical response of the tissue

under compression.

Therefore, the behaviour of the material model under

compression is modified and a parametric study conducted

to better fit the experimental data. The shear modulus G is

the only parameter contributing under compression. Reper-

forming calculations with G ¼ 3200 Pa generally improves

the representation of the experimental behaviour (figure 6).
For G ¼ 3200 Pa, tension–compression tests for different

areas of the brain are then analysed. According to Ning

et al. [20], k1 is adjusted to 30 475 Pa with respect to an empiri-

cal ratio of 0.105. Stress–stretch curves obtained from

simulations are plotted against experimental curves extracted

by Franceschini [40]. As can be seen from the graphs

(figures 7 and 8), the experimental brain tissue response is

well represented. On average, a high correlation is notable

between the experimental and the simulated data and a

mean r-value of 0.9261 is obtained (table 5). p-values are

found to be smaller than 0.001. It can thus be claimed that

equation (2.21) is able to describe the relationship existing

between the fibre-reinforcement dispersion parameter and

FA. Confirming the previous observation, the variation in k
affects the stiffness of the material for FA values higher

than 0.4 (corpus callosum, corona radiata), while the contri-

bution reduces with increasing dispersion of the fibres
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Table 5. Correlation between experimental and simulated stress– stretch
curves (figures 7 and 8). r-values are calculated for different areas of the brain.

brain area curve 1 curve 2 curve 3

occipital lobe

(k ¼ 0.3333)

0.8040 0.7283 0.8685

occipital lobe

(k ¼ 0.2943)

0.8220 0.7582 0.8907

frontal and parietal lobes

(k ¼ 0.2943)

0.9775 0.9525 0.9876

frontal and parietal lobes

(k ¼ 0.2732)

0.9767 0.9504 0.9865

thalamus (k ¼ 0.2732) 0.9901 0.9996 0.9887

thalamus (k ¼ 0.2500) 0.9936 0.9991 0.9897

corona radiata

(k ¼ 0.2500)

0.9742 0.9441 0.9516

corona radiata

(k ¼ 0.2000)

0.9722 0.9391 0.9468

corpus callosum

(k ¼ 0.2000)

0.9388 0.7611 0.9331

corpus callosum

(k ¼ 0.1000)

0.9086 0.8858 0.9875

corpus callosum

(k ¼ 0.0000)

0.7987 0.9706 0.9866

corpus
callosum

ventricles

midbrain

white matter

grey matter

facial bones

Figure 9. FE model of the human head: isometric view of the head model
with brain exposed.

Table 6. A summary of the properties of the head model components used
in this study. K represents the bulk modulus while EA is the force/unit strain.
The brain is assigned the hyperviscoelastic fibre-reinforced anisotropic material.

tissue

Young’s
modulus
(MPa)

density
(kg dm23)

Poisson’s
ratio

outer compact

bone

15 000 2.00 0.22

inner compact

bone

15 000 2.00 0.22

porous bone 1000 1.30 0.24

neck bone 1000 1.30 0.24

cerebrospinal

fluid

K ¼ 2.1 GPa 1.00 —

brain GOH material 1.04 —

sinuses K ¼ 2.1 GPa 1.00 —

dura mater 31.5 1.13 0.45

falx 31.5 1.13 0.45

tentorium 31.5 1.13 0.45

pia mater 11.5 1.13 0.45

bridging veins EA ¼ 1.9 N — —
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(thalamus, frontal and parietal lobes and occipital lobe). For

the less anisotropic areas, experimental data suggest that

the ratio G/k1 should be better investigated.

Finally, to test the quality of the FA–k relationship, a com-

parison of the model with an experiment of relative brain–

skull motion is performed. Data are taken from postmortem

experiments by Hardy et al. [43], in which the motion
between the skull and the brain was measured using a

high-speed biplane X-ray and polystyrene neutral density tar-

gets (NDTs). The NDTs were implanted into the

occipitoparietal and the temporoparietal regions of the

brain and the cadaver head was suspended in a fixture that

permits rotation and translation. In this work, results from

the occipital impact C755-T2 are used [43]. A simulation

that involves the KTH head model [5] is performed and the

full kinematics of case C755-T2 is applied to the skull. The

KTH head model, developed in the FE code LS-DYNA 971,

includes a three-dimensional reproduction of the scalp, the

skull, the brain, the meninges, the cerebrospinal fluid, the

ventricles, 11 pairs of the largest parasagittal bridging veins

and a simple neck with the extension of the spinal cord

and the dura mater (figure 9). It has been compared with

relative motion, intracerebral acceleration, skull fracture and

intracranial pressure experiments [5]. The original constitu-

tive laws are used with the exception of the brain, where

the hyperviscoelastic fibre-reinforced anisotropic behaviour
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is incorporated. The dispersion parameter k is quantified for

different areas of the brain according to table 3 and the pro-

tocol of par. 2.3 is applied to obtain diffusion information
at the FE resolution. A summary of the properties used for

the head model is given in table 6.

Figure 10 illustrates the comparison between the simu-

lated relative skull–brain motion and the relative motion of

the target. In order to evaluate the effects of the inclusion

of the anisotropy, the response of the presented model is

also compared with the prediction of the original isotropic

head [5] where the brain is described by a second-order

Ogden-based hyperviscoelastic law. For the anisotropic

case, the model manages to reproduce both magnitude and

overall shape of the three-dimensional localized brain tissue

motions seen in the experiment. The magnitudes of motion

are underestimated by an average of 33.7% in the x direction

and an average of 28.9% in the z direction. The original

Ogden-based model shows a discrepancy of 34.2% in the x
direction and 31.8% in the z direction. The root mean

square error is, respectively, 0.68 and 0.78 mm for the aniso-

tropic and isotropic models. It can thus be claimed that the

GOH anisotropic law is able to describe the behaviour of

the brain for test C755-T2 but the introduction of the aniso-

tropy does not significantly improve the model prediction
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Table 7. Variation of maximum principal strain with k; the reduction is
expressed in percentage with respect to the isotropic curve (k ¼ 0.3333).

k-value principal strain (max.) reduction (%)

0.3333 0.380 —

0.2732 0.380 —

0.2500 0.380 —

0.2273 0.376 1.19

0.2000 0.370 2.63

0.1667 0.364 4.21

0.1282 0.357 6.05

0.0769 0.345 9.21

0.0000 0.304 20.05
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of displacements. However, both the Ogden-based isotropic

law and the GOH anisotropic material model were assigned

values to reproduce experimental data from Franceschini

[40]; therefore, a similar behaviour is to be expected.

3.2. Testing for a simple rotational acceleration
In this section, a simple test of a rotational acceleration

impulse is presented and discussed. The main focus of this

investigation is to study the influence of k on the response

of a specific brain region. In previous studies [5,44], it was

shown that deviatoric strains are mainly caused by rotational

loading. As the anisotropic response is to be evaluated, the

idealized loading condition consists of rotational acceleration

only: an acceleration sinusoid of magnitude amax is applied

for 5 ms, followed by a longer (10 ms) deceleration sinusoid

of magnitude amax/2. Figure 11 illustrates the profile of the

curve. This specific loading condition is chosen because an

angular acceleration with this magnitude and duration
around the head centre of gravity in the sagittal plane results

in a translational acceleration at the top of the skull

corresponding to a head injury criterion value of 1000 [44].

For this investigation, the KTH FE head model is used

[5] (table 6); the special focus of the study is the brainstem.

To investigate the influence of the fibre-reinforcement

dispersion parameter, nine different simulations are per-

formed: for each simulation, the brain is assigned the GOH

isotropic constitutive law (k ¼ 0.3333), whereas the brainstem

is assigned the anisotropic model with a different value of the

parameter k, according to table 3. It is important to underline

that, in order to avoid influences on the mechanical response

owing to the anatomical location, the same region of the brain

is analysed for all the calculations. According to the anatomy

of the brainstem, the principal direction of the tissue is mod-

elled as inferior–posterior while the level of fibre dispersion

varies elementwise depending on the k-value. Rotational

acceleration of figure 11 is applied to the sagittal plane and

the resulting deformations are compared with the study of

the influence of the degree of anisotropy of the fibres on

the brainstem response.

Figure 12 illustrates the magnitude and location of

Green–Lagrange principal strains in the brainstem for various

fibre-reinforcement dispersion parameters (k) at 5 ms (around

the maximum). The results clearly indicate that the sagittal

rotation produces smaller deformations for a higher level of

fibre alignment; for randomly distributed fibres, a maximum

principal strain of 0.38 is detected whereas for perfectly aligned

fibres it decreases to 0.30. Table 7 illustrates the variations of

the principal strains for different dispersion parameters.

This difference in deformation may be a consequence

of the large strain in the axonal direction during the acce-

leration phase. Figure 13 shows how the anisotropy affects

the principal strain orientation: the more fibres are aligned, the

more the direction of the principal strain corresponds to the

directions of the fibres. Also, a high degree of anisotropy

increases the stiffness of the material, the fibres resist the defor-

mation and, as a consequence, the maximum principal strain
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decreases. For isotropic conditions, or slightly anisotropic, the

material is more compliant in the principal direction of defor-

mation. The same is confirmed when the deformations are

plotted as a function of time (figure 13a), where higher and

later peaks occur for isotropic conditions.

However, the effect on the location of the principal strains

is shown to be minor (figure 12). The strain concentration

seems to be caused by the anatomy of the head only and,

in particular, the brainstem is deformed more owing to its

location, which is confined between the spinal cord and the

remaining part of the brain as well as the tentorium. Different

results may be obtained for different areas of the brain.
4. Discussion and conclusion
This work aims at connecting FA from medical images

with mechanical anisotropy of a hyperviscoelastic fibre-

reinforced anisotropic material model for brain tissue. Both

viscoelastic features and local morphological dependence on

the mechanical response of the brain are taken into account

and FE simulations are used to investigate the influence of

the degree of anisotropy for different loading conditions.

Heterogeneities of the tissue are considered through the use

of the fibre-reinforcement dispersion parameter k [29]. To

choose the numerical value of this variable, a new correlation
between k and DTI FA is proposed (see equation (2.21) and

table 3).

The results show that the dispersion of fibres plays

an important role in accounting for the internal load-carrying

mechanisms of the individual constituents of the tissue.

When the fibres are aligned in the direction of the force, the

mechanical behaviour of the brain is stiffer for a lower level

of fibre dispersion. When fibres are mainly perpendicular to

the direction of loading, they cannot take part in the stress

transfer and smaller stresses are seen together with larger

stretches. A great sensitivity is noted especially for FA

values larger than 0.4 (corpus callosum, corona radiata, cer-

ebral peduncle, etc.). This variation reduces with increasing

dispersion of the fibres.

The nonlinear relationship, which is assumed to exist

between k and FA (equation (2.21)), is supported by exper-

imental data [40]. For simulations in simple tension and

compression, the stress and strain are well correlated with

the experimental findings. A mean r-value of 0.9261 is calcu-

lated and the statistical significance of the correlation is

confirmed by p-values smaller than 0.001. However, for less

anisotropic areas (i.e. thalamus, frontal and parietal lobes,

and occipital lobe), where the organization of the components

plays a minor role in the mechanical response of the tissue, the

results suggest that the ratio between the shear modulus and

the fibre-reinforcement parameter (G/k1) should be better
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investigated. The validation with data from postmortem head

subjects illustrates that the anisotropic model is able to

describe the behaviour of the brain during impact.

Moreover, when the strain in the axonal direction is large,

the mechanical response of the tissue is affected to a larger

extent in terms of changing the magnitude and orientation

of the principal strain. For an angular acceleration in the

sagittal plane, this gives a decrease in the principal strain of

20% for the brainstem, probably because of alignment of

the strain field and the axon directions.
It is concluded that the incorporation of axonal orien-

tation into a brain tissue constitutive model affects the

strains predicted by a computational FE head model to a

large extent. As the reliability of such models depends on

an appropriate level of structural detail and accurate rep-

resentation of the material behaviour, the introduction of

fibre dispersion information into the constitutive law of

brain tissue is crucial to improve the biofidelity of the

simulations. The proposed FA–k relationship is a novel

approach for obtaining this.
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