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Swarming is an essential part of honeybee behaviour, wherein thousands

of bees cling onto each other to form a dense cluster that may be exposed to

the environment for several days. This cluster has the ability to maintain its

core temperature actively without a central controller. We suggest that the

swarm cluster is akin to an active porous structure whose functional require-

ment is to adjust to outside conditions by varying its porosity to control its

core temperature. Using a continuum model that takes the form of a set of

advection–diffusion equations for heat transfer in a mobile porous medium,

we show that the equalization of an effective ‘behavioural pressure’, which

propagates information about the ambient temperature through variations in

density, leads to effective thermoregulation. Our model extends and general-

izes previous models by focusing the question of mechanism on the form

and role of the behavioural pressure, and allows us to explain the vertical asym-

metry of the cluster (as a consequence of buoyancy-driven flows), the ability of

the cluster to overpack at low ambient temperatures without breaking up at

high ambient temperatures, and the relative insensitivity to large variations

in the ambient temperature. Our theory also makes testable hypotheses for

the response of the cluster to external temperature inhomogeneities and

suggests strategies for biomimetic thermoregulation.
1. Introduction
Honeybees are masters of cooperative thermoregulation, and indeed need to be in

order to survive during winter, raise their brood, cook predatory wasps, etc. They

do this collectively by forming swarms wherein a fertilized queen leaves the colony

with about 2000–20 000 bees, which cling onto each other in a swarm cluster, typi-

cally hanging on a tree branch, for times up to several days, while scouts search for a

new hive location [1]. During this period, the swarm cluster regulates its tempera-

ture by forming a dense surface mantle that envelopes a more porous interiorcore. At

low ambient temperatures, the cluster contracts and the mantle densifies to con-

serve heat and maintain its internal temperature, whereas at high ambient

temperatures the cluster expands and the mantle becomes less dense to prevent

overheating in the core. Over this period, when the swarm is in limbo before

moving to a new home the cluster adjusts its shape and size to allow the bees to

maintain and regulate the core temperature to within a few degrees of a homeostatic

set point of 358C over a wide range of ambient conditions.

The swarm cluster is able to perform this thermoregulatory task without a

centralized controller to coordinate behaviour in the absence of any long-range

communication between bees in different parts of the cluster [4]. Instead, this

behaviour of a swarm cluster emerges from the collective behaviour of thou-

sands of bees [5] who know only their local conditions. Early work on

swarm clusters, and the related problem of winter clusters [6,7], used conti-

nuum models for variations in bee density, and temperature as determined

by the diffusion of heat in a metabolically active material. Most of these

models [8–11] assumed that the bees know their location and the size of the
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Table 1. Table of quantities and associated units.

quantity symbol units typical values

bee packing fraction r dimensionless approximately 0.220.8

bee metabolic rate M power/volume approximately 0.00120.01 W cm23 [2,3]

heat conductivity k power/(distance � temperature) approximately 0.000420.006 W (cm8C) – 1? (appendix A.1.)

permeability k distance2 (0.05 cm)2? (appendix A.1.)

Darcy velocity u distance/time approximately 1 cm s21? (appendix A.1.)

air heat capacity C energy/(volume � temperature) 1.2 � 1023 J (ml8C) – 1

air specific weight gair pressure/distance 1.2 � g (cm2 s2) – 1

coefficient of thermal expansion aair temperature21 1/3008C

air viscosity h pressure � time 1.8 � 1024 g (cm s) – 1

T dependence of rm abee temperature21 approximately 0.048C21?

behavioural pressure Pb model dependent (appendix A.3.) unknown (appendix A.3.)

thermotactic coefficient x behavioural pressure/temperature unknown (appendix A.3.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131033

2

cluster, contrary to experimental evidence. However, a new

class of models initiated by Myerscough [12] is based on

local information, as experimentally observed. These models

are qualitatively consistent with the presence of a core and

mantle, but are unable to explain how a high core temperature

persists at low ambient temperatures. Further refinements of

these models that account for bee thermotaxis and also use

only local information [13,14], yield the observed mantle–

core formation and good thermoregulation properties at low

ambient temperatures, while allowing for an increased core

temperature at very low ambient temperatures, observed in

some clusters [2,4,15,16]. However, the thermotactic mechan-

ism that defines these models of bee behaviour causes the

cluster to break up at moderate to high ambient temperatures,

unlike what is observed.

Here, we present a model for swarm cluster thermoregula-

tion1 that results from the collective behaviour of bees acting

based on local information, yet propagates information about

ambient temperature throughout the cluster. Our model

yields good thermoregulation and is consistent with exper-

iments at both high and low temperatures, with a cluster

radius, temperature profile and density profile qualitatively

similar to observations, without leading to cluster breakup.

In §2, we outline the basic principles and assumptions

behind our model. In §3, we formulate our model mathemat-

ically and characterize the parameters in it. In §4, we solve

the governing equations using a combination of analysis

and numerical simulation, and compare our results qualitat-

ively with observations and experiments. We conclude with a

discussion in §5, where we suggest a few experimental tests

of our theory.
2. Model assumptions
Any viable mechanism for cluster thermoregulation consistent

with experimental observations should have the following

features: (i) the behaviour of a cluster must result from the col-

lective behaviour of bees acting on local information, not

through a centralized control mechanism. (ii) The bee density

of a cluster must form a stable mantle–core profile. (iii) The

cluster must expand (contract) at high (low) ambient
temperatures to maintain the maximum interior ‘core’

temperature robustly over a range of ambient temperatures.

This suggests that any quantitative model of the behaviour

of swarm clusters requires knowledge of the transfer of heat

through the cluster, the movement of bees within the cluster,

and how these fields couple to each other. The basic assumptions

and principles behind our model are as follows:

— The only two independent fields are the packing fraction

of bees in the cluster r (1-porosity) and the air tempera-

ture T. These then determine the bee body temperature

and metabolism which can be written as a function of

the local air temperature; convection of air in the form

of upwards air currents depends entirely on the global

bee packing fraction and temperature profiles.

— We treat the cluster as an active porous structure, with a

packing fraction-dependent conductivity and permea-

bility. Bees metabolically generate heat, which then

diffuses away through conduction and is also drawn

upwards through convection. The boundary of the cluster

has an air temperature equal to the ambient temperature.

— Cold bees prefer to huddle densely, whereas hot bees dis-

like being packed densely. In addition, bees attempt to

push their way to higher temperatures. The movement

of bees is determined by a behavioural variable which

we denote by ‘behavioural pressure’ Pb (r, T ), which we

use to characterize their response to environmental vari-

ables such as local packing fraction and temperature. In

terms of this variable, we assume that the bees move

from high to low behavioural pressure, a notion that is

similar in spirit to that of ‘social forces’ used to model

pedestrian movements [17]. Here, we must emphasize

that behavioural pressure is not a physical pressure. For

packing fraction to be steady, behavioural pressure must

be constant throughout the cluster.

— We assume that the number of bees in the cluster is fixed and

that the cluster is axisymmetric with spherical boundaries,

whose radius R is not fixed (figure 1). At higher tempera-

tures, the clusters become elongated and misshapen, so

that the assumption is no longer accurate; however, this

does not change our results for thermoregulation qualitat-

ively. In general, to determine the shape of the cluster, we
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Figure 1. A cluster at an ambient temperature of (a) 118C and (b) 278C,
approximately 12 cm across (Photo courtesy of [18]). Note that number of
bees inside the cluster is nearly constant; change in cluster width is a
result of changes in bee packing fraction [1]. (c) Schematic of interior
(V), and boundary (dV), with mantle – core structure. ŝ; ẑ are radial,
vertical directions in polar coordinates, R is the cluster radius.
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must account for both heat and force balance, but we leave

this question aside in the current study.

A model based on these assumptions can be used to study

both the equilibria and dynamics. Since a swarm cluster is a

constantly changing network of attachments between bees, as

bees grab onto and let go of nearby bees, and can also

detach and reattach themselves at different points on the sur-

face of the cluster, these ‘microscopic’ dynamical processes

allow the cluster to quickly equilibrate to changes in ambient

conditions [2,4]. Thus, while we will focus on the resulting

equilibria, we will also briefly consider the slow dynamical

modes that allow it to respond to large-scale weak forcing, as

they are particularly important in the context of cluster stability.
3. Mathematical formulation
The two independent fields in our model are bee packing frac-

tion rðr; tÞ [ ½0; 1�; and the air temperature T(r, t); while both

of these are functions of space (r) and time (t), we will focus

primarily on the equilibrium behaviour of these fields. For a

static cluster of bees modelled as an active porous medium

that generates heat and is permeable to air, the heat generated

metabolically must balance the heat lost due to conduction and

convection, so that

rMðTÞ þ r � ðkðrÞrTÞ � Cu � rT ¼ 0jr[V

T ¼ Tajr[dV;
ð3:1Þ

where k(r) is the packing fraction-dependent conductivity

(power/[distance � temperature]), M(T) is the metabolic

heat production rate of the bees per unit volume and C is the

volumetric heat capacity of air (energy/[volume � tempera-

ture]). We model the conductivity of the cluster as arising

from a superposition of random convection currents within

the cluster which are suppressed at high bee packing fraction

and the bare conductivity of the bees treated as a solid, and

approximate this by a function k(r) ¼ k0(1 2 r)/r (table 1).

Although this form diverges as r! 0 and random convection

currents are unsuppressed, the r never vanishes in the interior

of the cluster, so that this limitation is not a problem. Likewise,

by bounding r from above, we prevent k from vanishing in the

cluster. We further assume that the mean flux per unit area u
(distance/time) is determined by Darcy’s law for the flow of

an incompressible buoyant fluid through a porous medium,

so that

u ¼ [gairaairðT � TaÞẑ�rP]kðrÞ=hjr[V ð3:2Þ

and r � u ¼ 0; P ¼ 0jr[dV: ð3:3Þ

Here, equation (3.2) relates u to the effects of thermal buoy-

ancy and the pressure gradient,2 while equation (3.3) is just

the incompressibility condition, with k(r) the packing frac-

tion-dependent permeability (distance2), aair is the

coefficient of thermal expansion (temperature– 1), gair is the

specific weight of air (pressure/distance), h is the viscosity

of air (pressure � time) and P is air pressure. We assume

that the permeability of the cluster may be approximated

via the Carman–Kozeny equation kðrÞ ¼ k0ð1� rÞ3/r2;

used to describe the permeability of randomly packed

spheres [19].

In general, the bee metabolic activity is not a constant,

and depends on a number of factors such as temperature,

age, oxygen and carbon dioxide concentration, etc. [3,4,20].

To keep our model as simple as possible, we start by assum-

ing that the metabolic rate is temperature-independent, with

M(T) ¼M0 and show that this is sufficient to ensure

robust thermoregulation, setting apart the details of the cal-

culations that show that our model can also yield robust

thermoregulation with a temperature-dependent metabolic

rate (appendix D).

To close our set of equations, we still must relate r(r) to T(r),

which we do by making a hypothesis that bees respond to

local packing fraction and temperature changes by changing

their packing fraction to equalize an effective behavioural vari-

able which we call the behavioural pressure. Our formulation

of this behavioural pressure relies on two assumptions that

are based on observations

(1) In their clustered state, bees have a natural packing frac-

tion which is a function of the local temperature. This

natural packing fraction decreases with increasing temp-

erature, and increases with lower temperature, until it

reaches a maximum packing fraction rmax. Effectively,

cold bees prefer to be crowded, whereas hot bees dislike

being crowded, consistent with a variety of experiments

in the field and in the laboratory [4,7,15,18].

(2) In addition to having a temperature-dependent natural

packing fraction, bees also like to push their way towards

higher temperatures. This will cause areas of equal local
temperature to pack more densely at low ambient temp-

eratures, consistent with observations [4].

With these constraints in mind, a minimal model for bee

behavioural pressure suggests the piecewise function

Pbðr;TÞ ¼
�xT þ jr� rmðTÞj r � rmax

1 r . rmax;

�
ð3:4Þ

where rm(T ) ¼minfrmax, r02 abeeTg is the natural packing

fraction. The constant r0 is dimensionless and represents

the baseline for natural packing fraction; abee has units of

temperature21 and describes how the natural packing frac-

tion changes with temperature, while x also has units of

temperature21 and describes how bees push their way

towards higher temperatures. Behavioural pressure diverges

as r! rmax to enforce the maximum packing density.3
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Figure 2. Graphical representation of equations (3.9) – (3.11), showing how
local packing fraction is obtained through behavioural pressure. At low Ta,
bees on the mantle will pack at r ¼ rmax (upper circle), and behavioural
pressure is high throughout the cluster leading to higher interior packing frac-
tion (upper solid line) and overpacking. At high Ta, bees on the mantle will
pack more loosely (lower circle), and low behavioural pressure throughout
the cluster leads to low interior packing fraction (lower solid line). The
solid lines run along contour lines of equal Pb(r,T ), as behavioural pressure
must be uniform through the cluster. Coefficients used are r0 ¼ 0.85,
abee ¼ 0.75, rmax ¼ 0.8, x ¼ 0.3. (Online version in colour.)
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We emphasize that our model assumes that individual
bees have no independent homeostatic set points for temp-

erature or packing fraction; the behavioural pressure

depends on a combination of r and T. Furthermore, we note

that we only allow stable packing fractions (@Pb/@r . 0);

thus, bee packing fraction in a cluster at equilibrium can

never be lower than the natural packing fraction. In our

formulation, a higher behavioural pressure at near-zero

packing fractions represents the basic aggregation behaviour

that creates the cluster. Additionally, the absolute beha-

vioural pressure is of no consequence; only gradients and

relative values are important.4 Further evidence for a

behavioural pressure comes from experiments [6] which

observed a relation between the ambient temperature and the

core density, even when the core temperature remained

approximately constant.

To complete the formulation of our problem, we need

to specify boundary conditions for the temperature and pack-

ing fraction fields. As we have stated earlier, the surface bees

will be at the ambient temperature; furthermore, as they can

freely expand and contract to minimize their behavioural

pressure, we assume that they will be at their natural packing

fraction rm(Ta).

Comparing our model with earlier models such as the

Myerscough model [12] and the Watmough–Camazine

model [13], we note that both fit into this general behavioural

pressure framework (appendix B). However, our work differs

from these studies in that we synthesize and generalize the

implicit relation between bee behaviour and their environ-

mental variables in terms of the behavioural pressure, with

a form that combines elements from both models and is con-

sistent with experimental observations. In addition, we

account for the role of fluid flow and convection of heat in

the cluster, which breaks the vertical symmetry, and is poten-

tially relevant in heat transport at high Rayleigh number

Ra ¼ ðgairaC=hkÞðT � TaÞkR.
3.1. Dimensionless equations
To reduce the number of parameters in our model, we make our

equations dimensionless. We note that the total number of

bees in the cluster is constant; in our continuum model, this

means that the total bee volume within the cluster
Ð Ð Ð

r dv
is fixed. Rather than defining cluster size by number of bees,

we define it in terms of the dimensionless total bee volume

V ¼
Ð Ð Ð

r dv/V0, where V0 is the total bee volume of a typical

cluster, i.e. the average volume of a bee times the average

number of bees in a cluster (appendix A 1). Upon setting a

characteristic length scale to be the radius of a sphere of

volume V0;R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V0/4p3
p

; we write the constraint on total

bee volume as
Ð Ð Ð

r dv ¼ (4p/3)V. Scaling the temperature so

that a typical ambient temperature of 158C! 0, and the goal

temperature of 358C! 1, we use the dimensionless variables

T ! T � 15WC

20WC
; Ta !

Ta � 15WC

20WC
;

k0 ! k0
gairaairC
hM0R0

ð20
W

CÞ2; k0 !
k0ð20WCÞ
R0

2M0

and M0 ! 1; abee ! abeeð20
W

CÞ; x! xð20
W

CÞ

and write the dimensionless form of equations (3.1)–(3.4) as

rþr � ðkðrÞrTÞ � u � rT ¼ 0; ð3:5Þ
u ¼ ½ðT � TaÞẑ�rP�kðrÞ; r � u ¼ 0; ð3:6Þ
kðrÞ ¼ k0
1� r

r
; kðrÞ ¼ k0

ð1� rÞ3

r2
; ð3:7Þ

T ¼ Tajr[dV; P ¼ 0jr[dV; ð3:8Þ

Pbðr;TÞ ¼
�Txþ jr� rmðTÞj r � rmax

1 r . rmax

�
ð3:9Þ

and rmðTÞ ¼ min{rmax; r0 � abeeT}; ð3:10Þ

for the packing fraction and temperature profiles of the cluster

which depend on the dimensionless parameters rmax, r0, abee,

x, Ta, k0, k0, V.5
3.2. Information transfer through equalization of
behavioural pressure

On the outer boundary of the mantle, the air temperature is

equal to ambient temperature, so that minimizing the behav-

ioural pressure requires that the packing fraction at the

mantle will be the natural packing fraction at the ambient

temperature rm(Ta). At equilibrium, (3.4) then implies that

the behavioural pressure in the mantle and thus throughout

the cluster will be 2Tax. This means that throughout the clus-

ter, we may write the local bee packing fraction as a function

of both the local temperature and the ambient temperature,

i.e. Pb(r(T,Ta),T ) ¼ 2Tax which we solve to find

rðT;TaÞ ¼ min{rmðTÞ þ xðT � TaÞ; rmax}

¼ min{r0 þ Tð�abee þ xÞ � xTa; rmax}

¼ min{r0 � Tc0 � Tac1; rmax};

ð3:11Þ

where we have made the substitutions c0 ¼ abee2 x, c1 ¼ x.

Intuitively, the c0 term characterizes the sensitivity of core

temperature to ambient temperature, but the cluster cannot

fully adapt at low Ta through this term alone; adaptation at

lower ambient temperatures requires the c1 term, which is

eventually responsible for overheating in the core at very

low Ta. In figure 2, we graph the packing fraction r(T,Ta)

obtained by tracing contours of equal Pb which allows us to

write the equilibrium local packing fraction everywhere in

terms of the conditions at the boundary. Bees respond to

their local conditions and move accordingly, and these
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Figure 3. Adaptation with temperature-independent metabolism. (a) Comparison of temperature and packing fraction profiles at high (0.8) and low ( – 0.7) ambient
temperature, where the dimensionless total bee volume V is 1. (b) Core temperature as a function of ambient temperature and total bee volume shows that as V
increases the core temperature increases but adaptation persists over a range of Ta (also plotted to guide the eye.) (c) Cluster radius as a function of ambient
temperature and total bee volume showing how clusters swell with temperature, consistent with experiment. For bee packing fraction, we choose coefficients
of r0 ¼ 0.85, c0 ¼ 0.45, c1 ¼ 0.3, rmax ¼ 0.8. For heat transfer, we choose coefficients of k0 ¼ 0.2, k0 ¼ 1. (Online version in colour.)
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variations in packing fraction propagate information about

ambient temperature throughout the entire cluster without

long-range communication. Although we have mapped

Pb(r,T )! r(T,Ta) for just one choice of behavioural pressure,

our approach will work for any equation of state Pb(r,T )

which uniquely defines a stable packing fraction, i.e. with

@Pb/@r . 0.

Having obtained equation (3.11) from equations (3.9) and

(3.10), from now on we work with equation (3.11) directly.

The set of equations (3.5)–(3.8) and (3.11) with the boundary

condition that the surface temperature of the cluster is

the ambient temperature completes the formulation of the

problem to determine r(r), T(r).
4. Simulations and results
While the boundary of the cluster is assumed to have spheri-

cal symmetry, the temperature and packing fraction fields

inside do not need to have spherical symmetry owing to

the effects of convection. However, the fields still have cylind-

rical symmetry, and therefore we can represent r(r), T(r) as

r(s,z), T(s,z), where s is the distance from the central axis

and z is the height. With this coordinate representation, we

solve the governing equations (3.5)–(3.8) and (3.11) in a

spherically bounded domain using a simple discretization

scheme with 30 values of s and 60 values of z (appendix C.2.).

Our choice of the dimensionless parameter k0 ¼ 0.2 is con-

strained by experiments [3], while we estimate k0 ¼ 1 though
a simple calculation assuming the bees to be randomly

packed spheres, and rmax ¼ 0.8, slightly higher than the

maximum packing fraction of spheres, as bees are more flex-

ible (appendix A.1.). However, the parameters defining bee

movement and behaviour, namely c0, c1 and r0 are exper-

imentally unknown. Guided by the general observation that

physiological performance is often improved by changing

parameters while basic mechanisms remain unchanged, we

optimize these parameters to achieve robust thermoregula-

tion, i.e. the core temperature remains close to 1(358C) over

a range of scaled ambient temperatures Ta[ [20.7,0.8] corre-

sponding to a real ambient temperature Ta[ [0,30]8C. For

the choice of parameters r0 ¼ 0.85, c0 ¼ 0.45 and c1 ¼ 0.3,

we find that within this wide range of Ta and a factor of three

in V, the dimensionless core temperature stays in the range

0.7–1.3 corresponding to a real temperature range of 29–418C,

while the core temperature itself increases monotonically with

r0 in an analytically solvable way (appendix A.2.).

Our simulations also capture the qualitative mantle–core

structure of the cluster (figure 3) with a dense mantle sur-

rounding a sparse core. We also find that at high ambient

temperatures, the cluster expands and the mantle thins, and

at low ambient temperatures the cluster contracts and the

mantle thickens. Furthermore, we find that the core tempera-

ture, defined as the maximum temperature of the cluster, is

higher at low ambient temperatures resulting from ‘overpack-

ing’, consistent with experiments of [2,4,15,16], and predicted

earlier [13]. Finally, we note that the temperature profile is

vertically asymmetric due to convection, causing the point



Figure 4. Cell layout of a cluster 30 cells in radius. Interior cells are coloured
white, exterior cells are coloured grey.
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of maximum temperature to rise above the geometric centre

of the cluster, as observed in experiments [2,4].
5. Discussion
We have shown that it is possible to provide a self-organized

thermoregulation strategy in bee clusters over a range of

observed ambient temperatures in terms of a few behavioural

parameters. Our theory fits into a broader framework for

understanding collective behaviour where the organism

responds to the environment, but in doing so, changes the

local environment and its behaviour until a common steady

state is reached. Here, our model takes the form of a two-

way coupling between bee behaviour and local temperature

and packing fraction, quantified in terms of an effective be-

havioural pressure whose equalization suffices to regulate

the core temperature of the cluster robustly. Although our

choice of the form of the behavioural pressure is likely too

simplistic, it is consistent qualitatively with experimental

observations, and we think it provides the correct framework

within which we can start to quantify collective behaviour.

Furthermore, our strategy might be useful in biomimetic set-

tings. Our formulation for behavioural pressure shows that in
a cluster, bee packing fraction should depend only on local

temperature and the temperature of bees at the boundary,

which effectively control the surface packing fraction. These

dependencies might be measured by applying different

temperatures to the surface and interior of an artificial

swarm cluster. This observation provides an immediately tes-

table prediction: a cluster may be ‘tricked’ into overpacking

and overheating its core by warming the bees just below

the surface, while exposing the surface bees to a low tempera-

ture to increase behavioural pressure. As pointed out earlier,

experiments and observations of bee core temperature and

bee packing fraction [6] are consistent with these ideas,

although a direct experiment of this type does not seem to

have been carried out. Preliminary analysis of winter clusters

shows that bee density can be written as a function of the local

temperature (A. Stabentheiner 2013, personal communication).

Our model adjusts well in response to changes in ambient

temperatures, but it does not have the same level of tolerance

to different total bee volume that honeybees exhibit. We have

used a continuum model where the bees on the surface are

exposed to ambient temperature from all sides, but in reality

the first layer of bees is hotter than the ambient temperature

and supports a large temperature gradient driven by heat

from interior bees. This means that the surface bees feel an

average temperature higher than ambient because of the

interior bees, and we predict this should give a large cluster

a lower behavioural pressure than a small cluster at the

same ambient temperature. This should reduce the sensitivity

of core temperature to total bee volume, and we have

confirmed this in simulations (appendix E).

We close with a description of some possible extensions of

our study. Currently, our model ignores changes in shape of

the cluster associated with force balance via the role of grav-

ity, and the associated effects on thermoregulation. In reality,

the cluster is a network of connections between bees which

changes shape and size due to a combination of mechanical

forces and heat balance, and a complete theory must couple

these two effects as well.

Our heat balance equation and estimates (appendix A.1.)

suggest that while convective terms are responsible for the

asymmetry in the temperature profile, they do not play an

important global role in thermoregulation. However, our cal-

culation assumes a uniform packing which does not

accurately represent the microscopic structure of the cluster,

and thus we may have underestimated the Rayleigh number

and the importance of convection. At high ambient tempera-

tures, swarm clusters are observed to ‘channellize’, where

channels open up to ventilate. Studying a simple ‘behavioural

pressure-taxis’ dynamical law (appendix F), we find no linear

instability that leads to channellization without an ‘anemo-

taxis’ mechanism, where behavioural pressure increases with

juj; instead we see only one kind of linear instability which

comes from the mathematical necessity of fixing cluster

radius. This raises the question of whether there are anemotaxis

mechanisms. If not, how can channellization result from bee-

level dynamics and mechanics? We have also neglected

active cooling, which includes fanning, evaporative cooling

(which can give up to approx. 508C of cooling), diffusion of

heat through diffusion of bees and effects of oxygen and CO2

[3,20–22]. Finally, we have also neglected any implications

of bee age distribution, despite knowledge of the fact that

younger bees tend to prefer the core and produce less heat,

while older bees prefer the mantle and can produce more
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heat [4,16,18]. Accounting for these additional effects will

allow us to better characterize the ecological and possibly

even evolutionary aspects of thermoregulation.

Thermoregulation is a necessity for a wide variety of

organisms. When achieved collectively, individuals expend

effort at a cost that accrues a collective benefit. The extreme

relatedness of worker bees in a cluster and near-inability to

reproduce implies that the difference between the individual

and the collective is nearly non-existent, so that cost and

benefit are equally shared. However, many other organisms

are faced with the ‘huddler’s dilemma’ [23]; expending indi-

vidual metabolic effort is costly, and benefits a group that is

only partially related. Because genetic relatedness, metabolic

costs, individual temperature and spatial positions are all

easily measurable [24], a collective thermoregulatory system

is an ideal context in which to study the tangible evolution

of cooperation and competition by building on our current

framework both theoretically and experimentally.
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Appendix A. Units, parameter estimation and
dimensional analysis
A.1. Estimation of heat conductivity, metabolic

rate and permeability
For the metabolic rate and heat conductivity, we use estimates

from the experiments of Southwick [3], where a cluster of 4250

bees (608 g) is put into a set of roughly planar, parallel honey-

combs, and the temperature profile and oxygen consumption

are measured. The bees are roughly uniformly distributed

with a bee packing fraction r of about 0.5, for which the meta-

bolic rate is roughly uniform, and the temperature is well

approximated with a parabolic profile, with a temperature of

348C at the core, and 118C at the edge 9.5 cm from the core, par-

allel to the combs. The combs insulate well, so heat transfer

occurs primarily in the two directions parallel to the combs.

Then, within the cluster

T � 34
W

C� 23
W

C
x2 þ y2

9:5 cm2

� �

and r2T � �4� 23WC

ð9:5 cm2Þ �
1:0WC

cm2
:

The oxygen consumption rate is measured to be 6.5 ml

min21, which gives a volumetric metabolism of 0.0035 W cm–3,

assuming a bee specific weight of 1 g cm– 3, and an oxygen

to energy conversion of 3.5 ml O2 kg min21 ; 0.0012 W g21.

This metabolic rate agrees well with the experiments of

Heinrich [4]. We now have all the pieces to calculate the

conductivity using the conduction heat balance

kr2T þ rM ¼ 0) k ¼ 1:7� 10�3W

cmWC
:

At r¼ 0.8, the maximum packing fraction we allow, the con-

ductivity becomes close to the value of 2.4� 1023 W (cm8C)–1

for fur and feathers [25] as suggested by Southwick which

gives us some level of confidence in the functional form

k0(12r)/r we have chosen for conductivity.

To estimate k0, we use the Carman–Kozeny equation

[19]. The average bee weighs about 0.14 g, which corresponds

to a sphere of diameter approximately 0.65 cm. In the

absence of any detailed information about the bee structure

in the cluster, we treat the cluster as a system of randomly

packed spheres. It would be interesting to measure and

better understand convective gas and heat transfer within

swarm clusters. Using this diameter in the Carman–Kozeny

equation, we find

k0 ¼
D2

180
� ð0:05 cmÞ2:

A typical cluster has about 10 000 bees, which is about 1.4 kg,

giving R0 ¼ 7 cm. Plugging these values in (appendix A.2.),

we find dimensionless conductivity and permeability to be

k0 � 0:2 and k0 � 1:
A.2. Dimensional analysis
Our conditions for heat balance imply that

rMðTÞ þ r � ðkðrÞrTÞ � Cu � rT ¼ 0jr[V;

T ¼ Tajr[dV;

u ¼ [gairaairðT � TaÞẑ�rP]kðrÞ
hjr[V

;

r � u ¼ 0; P ¼ 0jr[dV;

while our equation for behavioural pressure reads

Pbðr;TÞ ¼
�xT þ jr� rmðTÞj r � rmax

1 r . rmax;

�
rmðTÞ ¼ min{rmax; r0 � abeeT}:

We set our unit of length to be R0, so that the volume constraint

becomes
Ð Ð Ð

r dv ¼ (4p/3)V. We make the transformation

r!r/R0. Then our heat balance equations read

rMðTÞ þ 1

R2
0

r � ðkðrÞrTÞ � 1

R0
Cu � rT ¼ 0jr[V;

T ¼ Tajr[dV;

u ¼ ½gairaairðT � TaÞẑ� ð1/R0ÞrP�kðrÞ
hjr[V

;

r � u ¼ 0; P ¼ 0jr[dV:

On making the substitutions

T ! T � 15WC

35WC� 15WC
and Ta !

T � 15WC

35WC� 15WC
;

leads to the goal temperature of 358C yielding a dimensionless

temperature of unity, and a typical ambient temperature of

158C corresponding to a dimensionless temperature that

vanishes. Then our system of equations becomes

rMðTÞ þ 35WC� 15WC

R2
0

r � ðkðrÞrTÞ

� 35WC� 15WC

R0
Cu � rT ¼ 0jr[V;

T ¼ Tajr[dV;
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u ¼ ½ð35WC� 15WCÞgairaairðT � TaÞẑ� ð1/R0ÞrP�kðrÞ

hjr[V

;

r � u ¼ 0; P ¼ 0jr[dV:

Pbðr;TÞ ¼
�xð35WC� 15WCÞT þ jr� rmðTÞj r � rmax

1 r . rmax;

�
rmðTÞ ¼ min{rmax; ½r0 � abee15

W

C� � abeeT½35
W

C� 15
W

C�}:

We divide all terms in the heat equation by the base metab-

olism M0 to yield

rMðTÞ
M0

þ 35WC� 15WC

M0R2
0

r � ðkðrÞrTÞ

� 35WC� 15WC

M0R0
ðCu � rTÞ ¼ 0jr[V;

T ¼ Tajr[dV;

u ¼ ½ð35WC� 15WCÞgairaairðT � TaÞẑ� 1/R0rP�kðrÞ
hjr[V

;

r � u ¼ 0; P ¼ 0jr[dV:

Making the substitution

u! u� 35WC� 15WC

M0R0
C;

and the substitution

P! P
ð35WC� 15WCÞgairaairR0

;

leads to the set of equations

rMðTÞ
M0

þ 35WC� 15WC

M0R2
0

r � ðkðrÞrTÞ � u � rT ¼ 0jr[V;

T ¼ Tajr[dV;

u ¼ ½ðT � TaÞẑ�rP� ð35WC� 15WCÞ2gairaairC
M0R0h

kðrÞjr[V;

r � u ¼ 0; P ¼ 0jr[dV:

Finally, making the substitutions for the coefficients

M! M
M0

; k! k
35WC� 15WC

M0R2
0

;

k! k
ð35WC� 15WCÞ2gairaairC

M0R0h
;

r0 ! r0 � abeeð15
W

CÞ; abee ! abeeð35
W

C� 15
W

CÞ;
x! xð35

W

C� 15
W

CÞ;

leads to our full dimensionless set of equations for heat

balance

rMðTÞ þ r � ðkðrÞrTÞ � u � rT ¼ 0jr[V;

T ¼ Tajr[dV;

u ¼ ½ðT � TaÞẑ�rP�kðrÞjr[V;

r � u ¼ 0; P ¼ 0jr[dV;

while the dimensionless behavioural pressure reads

Pbðr;TÞ ¼
�xþ jr� rmðTÞj r � rmax

1 r . rmax;

�
rmðTÞ ¼ min{rmax; r0 � abeeT}:

Our model has seven parameters rmax, r0, abee, x, Ta, k0, k0,

with an additional parameter for the total bee volume V,

which varies from cluster to cluster.
A.2.1. Note on further dimensional analysis
We note that, when the metabolic rate is temperature indepen-

dent, the goal temperature and the typical independent

ambient temperature have no bearing on the actual behaviour

of the model, only on whether it represents effective thermo-

regulation. Then, we may set the temperature where the

packing becomes maximally dense, Tpacked ¼ ðr0 � rmaxÞ/abee;

to be zero, and the temperature at which the packing fraction

becomes zero, Tempty ¼ r0/abee; to be 1. We can then make

slightly different substitutions for the coefficients

M! 1; k! k
Tempty � Tpacked

M0R2
0

;

k! k
ðTempty � TpackedÞ2gairaairC

M0R0h
;

r0 ! rmax; abee ! rmax; x! xðTempty � TpackedÞ:

We may remove the parameter V by setting the length

scale to be the fully packed radius of this particular cluster

rather than the fully packed radius of a typical cluster.

Doing this makes the total bee volume constraint becomeÐ Ð Ð
r dv ¼ (4p/3) and requires the substitutions

k! k
V2=3

and k! k

V1=3
:

We now find that there are now only five free parameters

rmax, x, Ta, k0, k0. We do not carry out this extra analysis in

the main body of the paper because this causes us to lose

sight of what the goal core temperature, typical ambient

temperatures and typical cluster sizes are.
A.3. Units of behavioural pressure
Our model is based on behavioural pressure being uniform at

equilibrium. The units and typical values of behavioural

pressure are unknown: any set of dynamical equations for

bee movement will result in the same equilibrium where

behavioural pressure, whose units depend on the set of dyna-

mical equations used, remains constant. For example, a

simple taxis model is one where

dr

dt
¼ �r � J; J ¼ �rPb

would mean that behavioural pressure has units of distance2/

time. A more complicated evaporation/condensation model

would have the form

drðrÞ
dt
¼
ððð

(Pbðr0Þ � PbðrÞ)
ejr�r0 j2=2s2

s3
T ðrðrÞ; rðr0ÞÞ

" #
d3r0;

where s is the evaporation and condensation radius and T is

some transfer coefficient would give units of 1/time. A yet

more complicated model involving mechanical compressibility

or viscosity would have yet another set of dimensions for

behavioural pressure. All of these models would, however,

yield the same static solution.
Appendix B. Behavioural pressure formalism and
its antecedents
To understand how our behavioural pressure formalism fits

in with previous models, we compare them within this
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framework. We note that previous models have defined den-

sity in terms of bees/cm3 instead of packing fraction; to go

between the two, bees may be assumed to have water den-

sity, and a packing fraction of 1 corresponds to (1 g)/mbee

bees/cm3.

The Myerscough model assumes that the bee density

depends only on local temperature, and thus can be written

as Pb(r,T ) ¼ jr2rmj, where rm ¼ 8 bees/cm3ð1� T/40WCÞ.
The Watmough–Camazine model defines a dynamical

law for the bee density via the equations

_r ¼ �r � J
and J ¼ �mðrÞrr� rxðTÞrT;

where m(r) . 0 is a motility function and x(T ) is a thermotac-

tic function. This may be written as

J ¼ �r mðrÞ
r
rrþ xðTÞrT

� �
¼ �rrPb;

where the behavioural pressure Pb is defined as

Pbðr;TÞ ¼
ð
mðr0Þ
r0

dr0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
density component

þ
ð
xðT0ÞdT0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

temperature component

:

We note that as m(r) . 0 for all r, the density component

is minimized as r! 0, and the density at the surface must

be fixed to prevent the cluster from falling apart, unlike

in our behavioural pressure framework. By contrast, the

Watmough–Camazine behavioural pressure allows the pack-

ing fraction at the mantle to become too high. Additionally,

because the behavioural pressure can be divided into tempera-

ture and density components, the point of highest density will

always be at the same temperature, regardless of size or ambi-

ent temperature, which is not observed experimentally. This is

in contrast with our formalism.
Appendix C. Numerical methods
C.1. Method of solving for equilibrium
To reach equilibrium, we use an iterative scheme, described

by the following pseudocode:

TðrÞ  Ta;

R R0/
ffiffiffiffiffiffiffiffiffiffi
rmax

3
p

;

rðrÞ  rmax : jrj � R
0 : jrj . R

�
;

repeat

Solve for u at fixed temperature and density, then solve for T at
fixed M and u

Find u;P such that: u ¼ [(T � Ta)ẑ�rP]kðrÞ;r � u ¼ 0;

FindTnewðrÞsuchthat : rMðTÞ ¼�r � ðkðrÞrTnewÞ�
u � rTnew;

TðrÞ  TðrÞ þ ðTnewðrÞ � TðrÞÞ;
rnewðrÞ  rðTðrÞ;TaÞ;
rðrÞ  rðrÞ þ crðrnewðrÞ � rðrÞÞ:
Expand or contract the bee packing fraction and temperature

profiles to normalize total bee volume

R 
ffiffiffiffiffiffiffiffi
VÐÐÐ
r

3

s
scaling ratio;

R R� R;
rðrÞ  rðr/RÞ;
TðrÞ  Tðr/RÞ;

until converged

The intermediate steps can be solved as a system of linear

equations. Note that this method does not add or remove

cells to vary cluster radius and conserve the total number

of bees; it grows and shrinks a fixed number of cells. The sol-

ution is considered to be converged when rnew ¼ r, Tnew ¼ T,

R ¼ 1 to within 10210, which takes about 100–200 iterations,

about a minute on a laptop. All simulations were done using

MATLAB (Source code at http://web.mit.edu/socko/

Public/PublishedCode/PRS2013BeePaperSimulations.zip).
C.2. Discretization of space
To solve for the temperature and density profiles, we must

first discretize the system. While spherical symmetry is

broken due to convection, the system retains rotational sym-

metry about its axis. We therefore use cylindrical coordinates,

where each cell is given indices (i, j ), and has coordinates

which represent the distance from the central axis sij and

the vertical coordinate zij, where

sij ¼ iþ 1

2

� �
R
n

and zij ¼ j� 1

2

� �
R
n
;

where n is the radius of the cluster in cells. All cells with

s2
ij þ z2

ij � R are in the interior of the cluster, while all cells

with s2
ij þ z2

ij . R are at the exterior of the cluster (figure 4),

subject the the boundary conditions Tij ¼ Ta, Pij ¼ 0, rij ¼ 0.

The volume of each cell with coordinates (i, j) is

Vij ¼ 2pw2sij; where w ¼ R/n is the width of each cell. Each

cell (i, j) neighbours four other cells, (i, j þ 1), (i, j21), (i þ 1,

j), with the exception of cells which border the axis (i ¼ 0),

which only have three neighbours. The area shared by cell

(i, j) and its outside horizontal neighbour (i þ 1, j) is

2pwðsij þ w/2Þ: The area shared by cell (i, j) and its vertical

neighbour (i, j þ 1) is 2pwsij.
C.2.1. Heat equations
For heat balance, we discretize our (now dimensionless) heat

equations as
dQij

dt
¼MðTijÞrijVij|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

metabolism

�
X
ki0j0l

Aij;i0j0

w
HðkðrijÞ; kðri0j0 ÞÞðTi0j0 � TijÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

þ
X
ki0 j0l

uij;i0j0 ½�uðuij;i0j0 ÞTij þ uð�uij;i0j0 ÞTi0j0 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
convection

¼ 0:
The first term corresponds to metabolic heat generation, and

the second term is heat conduction, where
P

ki0j0l is the sum of all

(i0, j0 ) neighbouring (i, j), with the heat conductance between
two neighbouring cells depending on the harmonic mean of

the conductance of each cell; Hða; bÞ ¼ 2/ð1/aþ 1/bÞ: The

third term represents convective heat transfer, with uij,i’j’ the

http://web.mit.edu/socko/Public/PublishedCode/PRS2013BeePaperSimulations.zip
http://web.mit.edu/socko/Public/PublishedCode/PRS2013BeePaperSimulations.zip
http://web.mit.edu/socko/Public/PublishedCode/PRS2013BeePaperSimulations.zip
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air flow from cell (i, j) to (i0, j0 ) (Units of dimensionless volume/

time due to discretization).

We have chosen an ‘upwinding’ scheme [26]; when air

flows out of a cell, the outwards heat flux is determined by

the temperature of that cell. When air flows into a cell from

a neighbouring cell, the inwards heat flux is determined by

the temperature of the neighbouring cell where the air orig-

inates. This scheme uses the Heaviside step function

uðxÞ ¼ 0 x � 0
1 x . 0:

�

C.2.2. Solving for buoyancy-driven flow
The air flow from cell (i, j) to neighbouring cell (i0, j0 ) is given

by

uij;i0j0 ¼ HðkðrijÞ;kðri0j0 ÞÞ

�
Aij;i0j0

w
ðPij � Pi0j0 Þ þ ðzi0j0 � zijÞ

Tij þ Ti0j0

2
� Ta

� �� �
;

where the air conductance between two cells again depends

on the harmonic mean of the permeability of each cell, and

the pressure is set so that air flow is conserved in every cell

i.e.
P

ki0 j0l uij;i0j0 ¼ 0 for all cells (i, j). This yields a set of linear

equations that can be solved easily.
Appendix D. Role of temperature-dependent
metabolic rate
To formulate our temperature-dependent metabolic rate, we

note that bees have a higher base metabolic rate at high temp-

eratures than at low temperatures. Our metabolic rate for high

temperatures comes from experiments involving oxygen con-

sumption in swarm clusters [2]. At moderate temperatures,

bees on the mantle keep their body temperatures approximately

38C above ambient temperature, and at below 158C, they will

‘shiver’ to keep their body temperature at 188C [2]. Assuming

a constant coefficient of thermal transfer between a bee and

the surrounding air, this leads to a formulation of metabolism

by shivering at air temperatures below 158C, and gives us the

full piecewise function for metabolic rate (figure 5).

MðTÞ ¼M0

1þ 15WC� T
3WC

: T , 15WC

1þ T � 15WC

10WC
: T � 15WC,

8><
>:

where the base metabolism, M0 has units of power/volume.

The simulated cluster with temperature-dependent meta-

bolic rate has the same qualitative features as when we use

temperature-independent metabolic rates. We set M0 to be

0.00175 W cm23, half as high as when M was set tempera-

ture-independent, because now it represents the minimal
metabolic rate, not the uniform one (figure 6). Using
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dimensional analysis, this results in the values of k0, k0 being

doubled, giving k0 ¼ 0.4, k0 ¼ 2.
Appendix E. Role of finite bee size on
thermoregulation
In this paper, we have defined the temperature at the

boundary to be the ambient temperature, and we assumed

the surface bees feel the ambient temperature, which sets

the behavioural pressure accordingly. In reality, bees point

their heads inwards, and feel a temperature gradient

driven by the heat produced by interior bees. Therefore, it

may be more realistic that the behavioural pressure is set

by the temperature a slight distance inwards from the sur-

face. If we include the effects of convection, this implies

that spherical symmetry must be broken, and the tem-

perature becomes not just a function of distance, but also

dependent on angle. Therefore, to close our set of equa-

tions without having to delve deeper into the question

of cluster shape, we must neglect upwards convection
and only consider conduction. This gives us the system

of equations

rM0 þr � ðkðrÞrTÞ ¼ 0; kðrÞ ¼ k0
1� r

r
;

T ¼ Tajr[dV;

where the behavioural pressure is now set by the tempera-

ture a distance of Lbee inside the cluster rather than by the

ambient temperature, so that the equation for density is

r ¼ min{r0 � Tc0 � TðR� LbeeÞc1; rmax}: ðE 1Þ

Assuming Lbee ¼ 1 cm, slightly shorter than the body length of

a worker bee, for an average cluster radius of 7 cm we find that

the dimensionless Lbee of about 0.14. We simulate the system

for dimensionless total bee volumes of 0.5, 1 and 3, with the

same parameters of c0 ¼ 0.45, c1 ¼ 0.3 and rmax ¼ 0.8 as were

used in the paper. In the first system, to test thermoregulation

with this effect, we choose Lbee ¼ 0.14, and compensate for the

slightly lower average behavioural pressure by increasing r0 to

0.95. In the second system, we test thermoregulation without

this effect, and so we choose Lbee ¼ 0, r0 ¼ 0.85, as we did in
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the main body. We find that for large clusters, the temperature

gradient created by the interior bees lowers behavioural

pressure and loosens the cluster (figure 7). This mitigates over-

heating in the core and sensitivity to total bee volume, e.g. at

Ta ¼ 20.7, Tcore varies approximately 50% more with cluster

size when behavioural pressure is set by ambient temperature

rather than the temperature beneath the surface. We note that

in the models of Myerscough [12] and Watmough–Camazine

[13], a similar shielding of surface bees from ambient air and

reduction of sensitivity to cluster size was achieved through

use of a heat transfer coefficient, with units of power/(area

temperature) between the cluster surface and ambient air.
.Soc.Interface
11:20131033
Appendix F. Linear stability of cluster
Solving for linear stability using simple ‘behavioural

pressure-taxis’ dynamics (appendix F.1.), we find that all

clusters simulated at a temperature-independent metabolic

rate are stable. However, at low ambient temperatures, clus-

ters with a temperature-dependent (appendix D) metabolic

rate can be linearly unstable via an overheating instability

(figure 8), which we believe to be a relic of fixing the bound-

aries of the cluster. In this instability, bees from the core move

to the mantle, increasing the mantle thickness and insulation.

This causes the core to heat up, increasing its behavioural

pressure causing even more bees to move from the core to

the mantle, leading to eventual runaway. We only see this

instability when using a temperature-dependent metabolic

rate, where an increased core temperature results in a greater

net metabolic rate, aggravating the problem.

Dynamical behaviour that allows the cluster radius to

vary would suppress this instability, as bees moving from

the core to the mantle would result in an expansion of the

cluster, increasing the surface area and cooling the core.

However, a dynamical model which allows the boundaries

of the cluster to change requires a better understanding of

the bee-level structure and the mechanics within a swarm

cluster, and we leave this aside here.
F.1. Methods for calculating linear stability
Having solved for the equilibrium state, we want to find if

this state is stable or unstable. To do so, we must define

some dynamical laws for bee movement. Choosing a

simple ‘behavioural pressure-taxis’ behaviour, where

J/�rrPb; dr/dt ¼ �r � J gives us the complete set of

dynamical equations

r _T ¼ rMðTÞ þ r � ðkðrÞrTÞ � Cu � rT ¼ 0jr[V ¼ rF[r;T];

T ¼ Tajr[dV;

u ¼ ½gairaairðT � TaÞẑ�rP�kðrÞ
hjr[V

; r � u ¼ 0; P ¼ 0jr[dV;

J ¼ �J0rrPb; J ¼ 0jr[dV;
dr

dt
¼ �r � Jjr[V ¼ G[r;T]:

Here we vary J0 over a wide range to reflect the large vari-

ations in bee movement and temperature timescales, and

define F, G to be the functionals that determine the dynamics

of the system. We also emphasize some issues about these

choices: (i) our form assumes a substrate that the bees move

on. In reality, in a swarm cluster the bees are the substrate,

and changes on one side of the cluster propagate
mechanically to other parts of the cluster at a rate faster

than the taxis rate. (ii) Bee movement is not necessarily a

local movement down pressure gradients. Bees can discon-

nect from the cluster and reattach at a different point,

which does not fit into the local gradient picture. (iii) There

is a discontinuity in behavioural pressure and packing frac-

tion at the boundary of the cluster, so this taxis model does

not explain how the boundary of the cluster can change.

Within these limits then, this choice of behaviour gives us a

full set of differential equations. To determine whether the

equilibrium state of the system is linearly stable, we must

determine whether the linear response matrix

M ¼

dF
dT

dF
dr

dG
dT

dG
dr

0
BB@

1
CCA

has positive eigenvalues. We note that the equilibrium temp-

erature and bee packing fraction profile we solved for

is symmetric with respect to rotation about the central axis

(f direction), and therefore we may partition the space of per-

turbations into subspaces defined by wavenumber kf;

DTðs; z;fÞ ¼ eikffdTðs; zÞ; Drðs; z;fÞ ¼ eikffdrðs; zÞ: These

temperature and bee packing fraction perturbations will in

turn give a change in airflow, pressure and behavioural pressure

Duðs; z;fÞ ¼ eikffduðs; zÞ; DPðs; z;fÞ ¼ eikffdPbðs; zÞ: All of

these will change the temperature and bee packing fraction

time derivatives which will be proportional to eikff. For each

wavenumber kf, we construct the stability matrix and study

its spectrum. To first order

_Tr ¼ �u � rsz þrsz � krsz � k
kf

s

� �2

þ rMT

" #
DT

þ [MDrþrszkrrszT]Dr� Du � rszT;

_r ¼ rsz � ðrrszDPbÞ �
kf

s

� �2

rDPb;

DPb ¼
dPb

dr
Drþ dPb

dT
DT;

where rsz is the gradient in the s and z directions,

MT ¼ dMðTÞ/dT; kr ¼ dkðrÞ/dr: Regions where r¼ rmax

are locked at rmax and not allowed to vary in bee packing fraction.

F.1.1. Solving for Du, DP
The above equations depend on Du, which is determined by

Du ¼ k[DTẑ� krðDPÞ]þ Dr[ðT � TaÞẑ�rP]:

Du must have the form

Du ¼ ½Dusz � krfDPf̂ � ¼ Dusz � k
ikf

s
DPf̂

� �
;

where Dusz is the sz component of Du. We solve for pressure

DP using the condition r � Du ¼ 0

r � Du ¼ rsz � usz þrf � uf ¼ rsz � usz � kDP
ikf

s

� �2

¼ 0

) DPk
kf

s

� �2

¼ �rsz � usz:

At kf ¼ 0, Duf ¼ 0; this condition simply becomes

rsz � usz ¼ 0:

Therefore, at a given DT, Dr, we can solve Du, DP from

this set of linear equations.
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F.1.2. Numerical computation of linear response
matrix

To solve for stability, we discretize the system in the s, z direc-

tions in the same way that we did when solving for the
equilibrium state. Because we are only solving for linear stab-

ility and the system starts off uniform in the f direction, we

do not need to discretize in the f direction. For perturbations

at a certain wavenumber kf, the temperature derivative is, to

first order
ety
publishing.org
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dTij

dt
rije

�ikff ¼Mð½T þ dT�ijÞðrþ drÞij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
metabolism

� dTij
kf

sij

� �2

kðrijÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
conduction infdirection

� 1

Vij

X
ki0 j0l

Aij;i0j0

w
H½kðrij þ drijÞ; kðri0j0 þ dri0 j0 Þ�½ðT þ dTÞi0j0 � ðT þ dTÞij�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction in s;z directions

� 1

Vij

X
ki0j0l

ðuij;i0j0 þ duij;i0j0 Þ½�uðuij;i0j0 þ duij;i0j0 ÞðTij þ dTijÞ þ uð�½uij;i0j0 þ duij;i0j0 �ÞðTi0j0 þ dTi0j0 Þ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
airflow in s;z directions

þ 1

Vij

X
ki0 j0l

duij;i0j0Tij

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
airflow infdirection

:

:20131033
Note the slight modification of the upwinding terms, where

we have also included a f component to represent the

influx or outflux of air in the f direction.
The density derivative is, to first order
drij

dt
e�ikff ¼ J0

kf

sij

� �2

rijðPb þ dPbÞij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
movement infdirection

� 1

Vij

X
ki0j0l

Aij;i0j0

w
rij þ ri0j0

2

� �
[ðPb þ dPbÞij � ðPb þ dPbÞi0 j0 ]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

movement in s;z directions

2
66664

3
77775:
The airflow is solved using the set of linear equations

uij;i0j0 þ duij;i0j0 ¼ Hðkðrij þ drijÞ;kðri0j0 þ dri0j0 ÞÞ
Aij;i0j0

w

� �

�
�
½ðPþ dPÞij � ðPþ dPÞi0j0 �

þ ðzi0 j0 � zijÞ
Tij þ dTij þ Ti0j0 þ dTi0j0

2

� ��
:

dP is set such that the divergence in the f direction negates

the divergence in the s,z directions,

X
ki0j0l

duij;i0j0 ¼ dPijkðrijÞw2 kf
2

sij

 !
;

for all cells (i,j ).
Endnotes
1While we do not consider the related problem of winter clusters
here, a behavioural pressure formalism should also be applicable in
this case.
2We note that in Darcy’s law, a buoyant ‘body force’ may be added to
the gradient of pressure in the same way that is done for the full
Navier–Stokes equations.
3This discontinuity is not a problem in practice as our simulations do
not work with behavioural pressure directly.
4The magnitude of these gradients and differences are not important,
and allow us to omit a prefactor from jr2rm(T )j.
5Note this can be further reduced to five dimensionless parameters as
we do in the appendix, but this causes us to lose sight of what the
goal temperature, typical ambient temperatures and typical cluster
sizes are.
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