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Functionalized 3-trifluoromethyl-2-isoxazolines and 3-trifluoromethylisoxazoles were easily prepared from trifluoromethyl

aldoxime 2 under mild conditions by using DIB as oxidant. Theoretical studies of the reactivity of trifluoroacetonitrile oxide 4

toward olefins and alkynes were carried out. The 3-trifluoromethyl-2-isoxazolines were ring-opened with NaBH,4 and NiCl; to yield

the corresponding trifluoromethylated y-amino alcohols.

Introduction

2-Isoxazolines are five-membered heterocyclic compounds that
have been widely applied in medicinal and organic chemistry.
This nucleus is frequently found in natural products [1-4],
bioactive molecules [5,6] (Figure 1) and can be used as bioiso-
steric transformations of amide bonds in order to provide meta-
bolically stable and more active derivatives [7-11]. Moreover,
2-isoxazolines can be cleaved under various conditions to
supply a variety of organic functionalities including y-amino
alcohols [12], B-amino acids [13], B-hydroxy ketones [14,15]
and B-hydroxy nitriles [14,15].

Fluorinated compounds play a central role in different branches
of chemistry [16]. The incorporation of a fluorine atom into

bioactive molecules causes remarkable changes of their

physicochemical properties, which allows the development of
substances with improved pharmacological characteristics.
Some examples are the synthesis of modified amino acids and
peptides, carbohydrates, natural products and the development
of more selective enzyme inhibitors [17-21]. Another powerful
area, yet a somewhat less utilised role for fluorine is as a tag for
I9F NMR that offers several analytical advantages including
speed, sensitivity and selectivity [22,23]. Fluorinated molecules
have served as valuable '°F NMR probes in high-throughput
screening, drug metabolism and protein binding experiments as
well as in assessing gene expression [24].

Nevertheless, the preparation of 3-trifluoromethyl-2-isoxazo-

lines 1 has not been extensively studied so far. In the literature
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Figure 1: Example of bioactive molecules bearing the 2-isoxazoline nucleus.

only a few examples of the preparation of these derivatives
through a multistep procedure are described (Scheme 1) [25].
Initially, trifluoromethyl aldoxime 2 is halogenated to give a
volatile trifluoroacetohydroxymoyl chloride or bromide 3,
which is usually isolated in low yields. Reaction of intermedi-
ate 3 with a base provides trifluoroacetonitrile oxide 4, which
can be reacted with olefins (such as styrene, allyl derivatives,
etc.) through a 1,3-dipolar cycloaddition to give the desired
product. Therefore, the development of a straightforward and
mild general procedure to access these valuable derivatives
remains of great importance. In the present work, we describe a
simple and efficient metal-free protocol for the oxidation of tri-
fluoromethyl aldoxime 2 into trifluoroacetonitrile oxide 4 and a
one-pot synthesis of 1 through in situ cyclization of 4 with
different dipolarophiles (Scheme 1).

Results and Discussion

Initially, another procedure for the preparation of the trifluo-
roacetaldehyde oxime 2 was developed. In a previous work
[25], 2 was obtained as an etherate complex from the reaction

previous work:

cardioprotective

between 2,2,2-trifluoroethane-1,1-diol (TFAL) and hydroxyl-
amine hydrochloride. In our work, reaction of TFAL and an
aqueous solution of hydroxylamine (50 wt %) yielded the
desired product, which was isolated as a complex of two mole-
cules of aldoxime with one molecule of water after distillation
in 70-80% yield (Scheme 2).

F3C
F3CYOH NH,OH/50% in water B
N.
OH OH - 1/2 H20
2
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Scheme 2: Synthesis of aldoxime 2.

In the recent literature, different conditions have been devel-
oped for the direct oxidation of aldoximes [26-31]. Recently,
commercially available reagents have been employed under
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Scheme 1: Synthesis of 3-trifluoromethyl-2-isoxazolines.
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metal-free conditions. A group [27] reported that the hyperva-
lent iodine reagents (diacetoxyiodo)benzene (DIB) and
phenyliodine bis(trifluoroacetate) (PIFA) could successfully
promote the oxidation of aldoximes to the corresponding nitrile
oxide. Those reagents exhibit potent oxidizing properties,
comparable to heavy-metal reagents, but with several advan-
tages such as low toxicity, high availability and the possibility
to be utilized under mild conditions [32]. Then, we decided to
verify their applicability in the oxidation of 2 despite the pres-
ence of water. We first screened different oxidative reagents
and conditions for the oxidation step and allylbenzene (5a) was
chosen as dipolarophile. Our studies for this process are
summarized in Table 1.

Table 1: Effect of different conditions on the reaction between trifluoro-
methyl aldoxime 2 and allylbenzene (5a).

OH

N~ X N-O
+ \/\Ph —_— '/
F C)l F3C/K)\/Ph
3
2 5a 1a
entry reaction conditions time isolated yield (%)
1 DIB, TEA,MeOH 2h complex mixture
2 DIB, HFIP 2h complex mixture
3 DIB, CH,Cl» overnight 55
4 PIFA, CH,Cl, overnight 16

When DIB was used with triethylamine (TEA) and methanol as
solvent, the formation of a complex mixture was observed
(Table 1, entry 1). This is probably due to the nucleophilic addi-
tion of methanol to the highly electrophilic trifluoroacetonitrile
oxide. The utilization of the less nucleophilic alcohol hexafluo-
roisopropanol (HFIP) [33,34] led to the formation of a complex
mixture (Table 1, entry 2). The oxidation of 2 with PIFA in
CH,Cl, afforded the product in only 16% yield (Table 1, entry
4). Better results were obtained by employing DIB in CH,Cl, as
solvent, after which the product could be isolated in an accept-
able yield (55%, Table 1, entry 3). [Bis(acetoxy)iodo]benzene
(DIB) is a weaker oxidant than PIFA. When the oxidation is
carried out with DIB, weak acetic acid instead of strong trifluo-
roacetic acid is liberated, and the decomposition of the oxazoli-
nes is avoided.

R R

/ \ + —_ -
N\O’ ‘o- R-N=C=0
furoxans isocyanates

Figure 2: Dimerization and isomerization products from nitrile oxides.
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Faced with the moderate yield of 1a, we followed the reaction
by using 'F NMR. The measurement of the crude mixture with
I9F NMR revealed the presence of a side product and despite
the total consumption of the aldoxime, a small amount of allyl-
benzene remained. It is known that nitrile oxides can dimerize
or isomerize to yield different products, such as furoxans,
isocyanates, 1,2,4-oxadiazoles and 1,4,2,5-dioxadiazines
(Figure 2).

We thus postulated that a competition between the cycloaddi-
tion reaction and the dimerization or isomerization pathways
could occur. Aiming to confirm our hypothesis we carried out
the reaction without the presence of allylbenzene. After 12 h, 2
was completely consumed with the exclusive formation of the
previously observed side product. However, attempts to isolate
this product failed due to its high volatility. It was therefore
co-distilled with CH,Cl, and the resulted solution was analyzed
by '9F NMR coupled and decoupled with proton,
19F 19.COSY and 1°F,!9F-NOESY (see Supporting Informa-
tion File 1). Data confirmed the formation of bis(trifluoro-
methyl)furoxan 6 (Figure 3) already synthesized by Middleton
[35].
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Figure 3: Dimerization of 4 yielding bis(trifluoromethyl)furoxan 6.

Considering that the best results were reached utilizing DIB and
CH,Cl, as solvent, these conditions were selected for further
optimizations. After several investigations, we could verify that
employing two equivalents of aldoxime 2 and two equivalents
of DIB led to complete conversion of the starting olefin. The
product could be isolated in good yield (76%, see below in
Table 2, entry 1). We can note here that water complexed with 2
did not alter the reaction rate.

Having optimized reagents and conditions, the scope of the
reaction was explored with regard to the substrates (Table 2).
As observed in the earliest works [11], the cycloaddition of 4

BN

0" R

1,4,2,5-dioxadiazines

N.

! N*
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with terminal olefins led to the corresponding 3-trifluoro-
methyl-5-substituted-2-isoxazoline 1 with complete regioselec-
tivity. No trace of the regioisomer 3-trifluoromethyl-4-substi-
tuted-2-isoxazoline could be detected even when yields of
cycloadducts were low. From functionalized olefins such as
NH-Cbz and NH-Boc allylamines the desired product could be

Beilstein J. Org. Chem. 2013, 9, 2387-2394.

isolated in excellent yields (90% and 91%, respectively,
Table 2, entries 2 and 3). Interestingly, the protecting groups
were not cleaved, which indicated that reaction conditions are
very mild. With allyltrimethylsilane oxazoline 1g was obtained
in good yield (82%). From ester and acid derivatives of
undecen, isoxazolines were obtained in good yields too (64%

Table 2: Synthesis of 3-trifluoromethyl-2-isoxazolines and isoxazoles by reaction between aldoxime 2 and olefins or alkynes in the presence of DIB.

N/OH R ) N-O
+ DIB (2 equiv), CH,Cl, (.
| &.,/RZ F3C ® R2
F3C overnight R
2 5 1
2 equiv 1 equiv
entry substrate product isolated yield (%)
A N I;I—O
1 s Fe LA Ph 76
1a
l;l—O
9 \/\NHCbZ Fgc/K)\\ 90
5b NHCbz
1b
l;l—O
3 \/\NHBOC F3C/K)\\ 91
5c NHBoc
1c
WOCHZCH3 l;l—O
CO,Et
4 F CW 2 64
(0] 8 8
5d 1d
WOH ’)1—0
8 WCOZH
5 0 F3C 5 51
5e 1e
Br ';‘_O
) \/©/ Fgcm 5
X Br
l;l-O
AN .
7 NSi(CH)s I:30/K)\\ 82
59 Si(CH3)3
19
N-O
/
F3;C
8 74
5h
1h
N-O
O / o)
9 VJ\OCH FsC 24
5 3 OCHj;
i

-
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Table 2: Synthesis of 3-trifluoromethyl-2-isoxazolines and isoxazoles by reaction between aldoxime 2 and olefins or alkynes in the presence of DIB.

(continued)

10 \/\Br
5j
1" \/\CN
5k
Ph
12 =z
51
Si(CH3)3
13 =z
5m
0
14 %oomcm
5n

and 51%, respectively, Table 2, entries 4 and 5). With para-
bromostyrene isoxazoline 1f was obtained in 56% yield. On the
other hand, a good yield was reached for disubstituted olefin Sh
(Table 2, entry 8). However a complete lack of reactivity was
observed for the reaction with the electron-poor olefins 5i, 5j
and 5k (Table 2, entries 9-11). The reaction was also carried
out with alkynes, providing 3-trifluoromethyl-5-substituted-
isoxazoles. Moderate yields were obtained for the reaction with
phenylacetylene (51) and trimethylsilylacetylene (Sm, Table 2,
entries 12 and 13). However, the electron poor alkyne Sn was

unreactive towards trifluoroacetonitrile oxide 4.

1,3-Dipolar cycloaddition reactions have been studied from the
theoretical standpoint since the 1970°s onwards [36,37] with an
ever-increasing accuracy as computational methods evolved
[38]. Assuming that the above-mentioned transformations occur
via a concerted mechanism, we decided to perform electronic
structure calculations at the B3LYP/6-31G* level in order to
further understand the reactivity of the different unsaturated
compounds studied in this work against trifluoroacetonitrile
oxide 4 (See Supporting Information File 1) [39-43]. Upon
energy minimization, a structure with a geometry close to
linearity was found for trifluoroacetonitrile oxide (Figure 4),
which is consistent with earlier findings [44].

Comparison of the energy gaps between the frontier molecular
orbital levels of the nitrile oxide and those of the alkene part-
ners (Figure 5) suggest that type-III cycloaddition reactions
(where the dipole reacts via its LUMO and the dipolarophile via

l;l—O
FSC/K)\\ 20
Br
1j
N-O
L
FsC traces
CN
1k
l;l—O
Fsc/k/\Ph 53
11
l;l—O
FgC&)\Si(CHsk 50
1m
l;l—O
(0]
Z
FaC traces
OCH,CH3
1n

— 196

Figure 4: Depiction of the geometry (left column) and isodensity
surface of the reacting frontier molecular orbitals (FMO) at 50% proba-
bility (right column) of trifluoroacetonitrile oxide 4 (top row) and
protected aminoalkene 5c¢ (bottom row) calculated at the B3LYP/6-
31G* level.

its HOMO) take place for every combination of reactants
reported herein [45].

In this scenario, with the same dipole, the reactivity is expected
to increase with the HOMO energy level of the dipolarophile. A
simple scatter plot of yield versus the latter variable confirms
and illustrates this trend (Figure 6), which can be interpreted the
following way: when the gap between the LUMO energy level
of the nitrile oxide and the HOMO energy level of the alkene
becomes too high (relatively to 7.139 eV, which is the energy
difference for the self-cycloaddition process), the dimerization

pathway is favored and the yield of isoxazole drops.
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Figure 5: FMO energy levels of dipole 4 and dipolarophiles 5a and 5k
calculated at the B3LYP/6-31G* level. Continuous and dotted lines
indicate the favored (AE = 5.407 eV for 5a and 6.673 eV for 5k) and
the disfavored (AE = 8.178 eV for 5a and 7.955 eV for 5k) molecular
orbital interactions, respectively.
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Figure 6: Yields of the cycloaddition reaction plotted against the
HOMO energy levels of the dipolarophile partner among 5a—c,f—n.

With only a single regioisomer being isolated, we also consid-
ered the coefficients (Table 3) and shapes (Figure 4) of frontier
molecular orbitals. This data is compatible with the observed

Beilstein J. Org. Chem. 2013, 9, 2387-2394.

regioselectivity [37]. Steric factors can also exert notable influ-
ence, but they would guide regioselectivity in the same direc-

tion.

Table 3: FMO coefficients of the 1,3-dipole 4 and representative dipo-
larophiles (atomic orbital is indicated in parentheses).

coefficients
reactant Ca Cp
5c 0.180 (2py) 0.133 (2py)
59 0.321 (2p,) 0.246 (2p,)
42 0.434 (2py) 0.299 (2py)

aColumns C, and Cy, contain coefficients for C and O.

In a subsequent step, we decided to preliminarily study the ring
opening reaction of the 3-trifluoromethyl-2-isoxazolines in
order to prepare the corresponding trifluoromethylated y-amino
alcohols. The major and almost the only route to synthesize
these amino alcohols is the reduction of f-aminocarbonyl com-
pounds prepared from Mannich-type reactions [46-48]. The ring
opening of 2-methyl-3-trifluoromethylisoxazolines by utilizing
H, and Raney-Ni as catalysts was described by Tanaka and
co-workers [49]. However, this methodology is restricted to the
synthesis of N-methylated amino alcohols. Instead we investi-
gated the reduction and the ring opening of 3-trifluoromethyl-2-
isoxazolines 1a and 1b in the presence of NaBH,4 and NiCl, as
additives [50]. Under these conditions, a total conversion of the
starting material was observed by !°F NMR, and products 7a
and 7b were obtained in moderate yields. However the
diastereoisomeric excess was very poor (10% de). The results
are reported in Table 4.

Table 4: Ring opening reaction of 3-trifluoromethyl-2-isoxazolines 1a and 1b.

N-O NaBH,4 NiCl NH, OH
3 THF/MeOH FsC R
1 —42°Ctort,24 h 7
entry substrate product isolated yield (%) dr
N-O NH, OH
1 F3C/<)\/Ph FAC Ph 50 40:60
1a 7a
N-O NH, OH
U
2 FsC F3C 52 40:60
NHCbz NHCbz
1b 7b
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Conclusion

In conclusion, we have developed a simple, mild and efficient
one-step procedure for the synthesis of functionalized 3-tri-
fluoromethyl-2-isoxazolines and 3-trifluoromethyl-2-isoxa-
zoles from trifluoromethyl aldoxime 2 by utilizing DIB as
oxidant. The applicability of the 3-trifluoromethyl-2-isoxazo-
lines to supply different fluorinated building blocks was demon-
strated by the easy ring opening of these intermediates with
NaBHy4 and NiCl,, yielding the corresponding trifluoro-
methylated y-amino alcohol.

Supporting Information

Supporting Information File 1

General methods, synthetic procedure, spectroscopic data,
"H NMR, '3C NMR and '°F NMR of compounds of 2,
1a-1j, 11-1n, 7a, 7b, 6 and computational results.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-275-S1.pdf]
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