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Abstract

Aims: Thioredoxin-interacting protein (TXNIP) contributes to cellular redox-state homeostasis via binding and
inhibiting thioredoxin (TRX). Increasing evidence suggests that cellular redox homeostasis regulates vascular
endothelial growth factor (VEGF)-mediated signaling. This study aims to examine the redox-dependant role of
TXNIP in regulating VEGF-mediated S-glutathionylation and angiogenic signaling. TXNIP-knockout mice
(TKO) or wild-type (WT) treated with the reduced glutathione (GSH)-precursor, N-acetyl cysteine (WT-NAC,
500mg/kg) were compared to WT using hypoxia-induced neovascularization model. Results: In response to
hypoxia, retinas from TKO and WT-NAC mice showed significant decreases in reparative revascularization and
pathological neovascularization with similar VEGF expression compared with WT. VEGF failed to stimulate
vascular sprouting from aortic rings of TKO compared to WT mice. TKO mice or WIT+NAC experienced
reductive stress as indicated by twofold increase in TRX reductase activity and fourfold increase in reduced-GSH
levels compared with WT. In human microvascular endothelial (HME) cells, VEGF stimulated co-precipitation
between vascular endothelial growth factor receptor 2 (VEGFR2) with low molecular weight protein tyro-
sine phosphatase (LMW-PTP). Silencing TXNIP expression blunted VEGF-induced oxidation of GSH and
S-glutathionylation of the LMW-PTP in HME cells. These effects were associated with impaired VEGFR2
phosphorylation that culminated in inhibiting cell migration and tube formation. Overexpression of TXNIP
restored VEGFR2 phosphorylation and cell migration in TKO-endothelial cells. Innovation: TXNIP expression is
required for VEGF-mediated VEGFR2 activation and angiogenic response in vivo and in vitro. TXNIP expression
regulates VEGFR-2 phosphorylation via S-glutathionylation of LMW-PTP in endothelial cells. Conclusion: Our
results provide novel mechanistic insight into modulating TXNIP expression as a potential therapeutic target in
diseases characterized by aberrant angiogenesis. Antioxid. Redox Signal. 19, 2199-2212.

Introduction

ALTHOUGH PHYSIOLOGICAL ANGIOGENESIS is important for
wound healing and recovery after stroke and myocardial
infarction, pathological angiogenesis is involved in athero-
sclerosis, tumor growth, and diabetic retinopathy (5, 11, 12,
24, 38). Vascular endothelial growth factor (VEGF) is one of
the potent angiogenic growth factors that maintain endothe-
lial cell survival and migration. VEGF-angiogenic signal oc-

curs mainly via the activation of vascular endothelial growth
factor receptor 2 (VEGFR2) also known as Flk-1 (22, 47, 48).
Therefore, regulation of VEGFR?2 activation is critical for the
VEGF-mediated response. Over the past decade, evidence
accumulated to emphasize the role of reactive oxygen species
(ROS) as a signaling moiety for VEGF angiogenic signal (15,
20, 49). Yet, the role of antioxidants and their impact on
modulating cellular redox homeostasis and angiogenic signal
remain to be fully understood.
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This study provides new insights into understanding
the critical role of redox balance in regulating vascular
endothelial growth factor (VEGF)-mediated angiogenic
signal. In normal homeostasis, thioredoxin (TRX) system
regulated by thioredoxin-interacting protein (TXNIP)
counters the endogenously formed peroxynitrite to main-
tain VEGF receptor phosphorylation. Acute shift in redox
balance genetically using TXNIP-knockout mice or high
dose of N-acetyl cysteine impaired VEGF-mediated an-
giogenesis but not VEGF expression in vivo. We also il-
lustrated that S-glutathionylation of the phosphatase low
molecular weight protein tyrosine phosphatase (LMW-
PTP) as a possible mechanism by which silencing TXNIP
expression impairs VEGFR2 phosphorylation in endothe-
lial cells. These results highlight the importance of TXNIP
as a potential target to control angiogenic response.

Endothelial cells have two major antioxidant systems, the
glutaredoxin system and the thioredoxin (TRX) system. The
crosstalk between the two systems, as indicated by the ratio of
the oxidized to reduced glutathione (GSSG/GSH) reflects
antioxidant capacity of the cell (18, 19). Shifting redox state to
more GSSG reflects a state of oxidative stress, while shifting to
more GSH reflects a state of reductive stress. A great body of
evidence supports the emerging role of the TRX system in
modulating VEGF and angiogenesis (17, 31, 33, 50). The TRX
system is a ubiquitous thiol-reducing system that consists
of TRX, NADPH, and homodimeric selenoprotein TRX re-
ductase (36). TRXs are a family of proteins that have been
identified in regulation of multiple biological processes in a
cell-compartment specific fashion. TRX has two distinct iso-
forms; the cytosolic (TRX-1) and the more recently identified
mitochondrial (TRX-2) isoform. The activity and expression of
TRX is regulated by thioredoxin-interacting protein (TXNIP)
that tightly control cellular redox state (41). TXNIP-knockout
(TKO) mice have been previously characterized by marked
increase in antioxidant defense compared to wild-type (WT)
mice (28, 44). Upregulation of TXNIP expression has been
reported under stress conditions including inflammation and
hyperglycemia (7, 13, 42). Yet, whether TXNIP expression can
play a role in modulating cellular redox state and VEGEF-
mediated angiogenesis remains unstudied.

Previous studies showed that VEGF-induced ROS targets
protein tyrosine phosphatases (PTP) to regulate angiogenic
signal (1, 30, 49). We have recently demonstrated that VEGF
caused transient S-glutathionylation and oxidative inhibition of
the low molecular weight PTP (LMW-PTP), a redox-regulated
phosphatase that regulates cell adhesion and migration.
While overexpression of LMW-PTP blunted VEGF-mediated
angiogenic response (26), its inhibition enhanced VEGEF-
induced cell migration in endothelial cells (1). Yet, the redox-
dependent role of TXNIP in regulating LMW-PTP and how it
can modulate VEGF-mediated angiogenic response in vivo re-
main to be elucidated. The current studies utilized hypoxia-
induced murine neovascularization model, a standard model
for retinal angiogenesis (45). The model has two distinguished
stages: initial stage of hyperoxia (75% oxygen) characterized
with capillary dropout in the central retina, followed by a later
stage of relative hypoxia (21% oxygen) characterized with
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retinal neovascularization including a physiological angio-
genesis to fill the central retina and a pathological angiogenic
response at the retina periphery. Using TKO or WT mice
treated with high dose of the glutathione precursor NAC, we
tested the hypothesis that shifting cellular redox state to re-
ductive stress will scavenge VEGF-induced peroxynitrite
and impair VEGFR2 phosphorylation and VEGF angiogenic
signal by a mechanism involving the hyperactivation of LMW-
PTP.

Results

Deficiency of TXNIP impairs reparative
and pathological retinal neovascularization

TKO mice and WT mice were subjected to hypoxia-
induced neovascularization model, a standard model of
VEGF-mediated retinal angiogenesis in neonates (3, 45). In
this model depicted in Supplementary Figure S1 (Supple-
mentary Data are available online at www liebertpub.com/
ars), pups are exposed to initial high oxygen insult (p7-p12)
followed by relative hypoxia at room air (p12—-p17) that in-
creases VEGF expression and drive physiological revascu-
larization of the central retina (reparative angiogenesis) and
pathological neovascularization that appears as tufts emerg-
ing from the mid-peripheral retinal capillaries (45). Retinas
from TKO mice showed similar vascular density to WT at
basal condition (Supplementary Figure S2). As shown in
Figure 1, retinas from TKO showed impaired VEGF-mediated
reparative and pathological angiogenesis compared with WT.
TKO showed a reduction in physiological revascularization
indicated by 2.6-fold increase in capillary-free area of the
central retina (Fig. 1B, C) when compared to age-matched
(p17) WT pups (Fig. 1A). TKO showed a 75% reduction in
peripheral retinal neovascularization (Fig. 1E, F) when com-
pared to age-matched (p17) WT pups (Fig. 1D).

Deficiency of TXNIP expression shifts redox
state to reductive stress

We next evaluated expression of TXNIP and TRX-1 and
antioxidant defense in response to hypoxia. In WT, hypoxia
(p12—-p14) induced TXNIP mRNA expression (2.2-fold) and
protein expression (2.5-fold) compared with normoxia
(Fig. 2A, B). TKO mice showed no TXNIP mRNA or protein
expression under both normoxic and hypoxic conditions (Fig.
2A, B). A two-way ANOVA (2x2) analysis showed signifi-
cant difference between hypoxia versus normoxia in both WT
and TKO. In comparison with WT, retinas from TKO mice
showed significant 1.7-fold increase in TRX mRNA and 1.6-
fold increase in TRX-1 mRNA under normoxic (Fig. 2C). In
WT, hypoxia (p12-p14) induced TRX mRNA expression (3-
fold) and TRX-1 mRNA expression (4.25-fold) (Fig. 2C) and
total TRX protein expression (1.6-fold) compared with nor-
moxia (Fig. 2D). In TKO, hypoxia induced significant 2.2-fold
increase in TRX and 2-fold in TRX-1 mRNA expression (Fig.
2C). Statistical analysis also showed a significant difference
between WT versus TKO on TRX or TRX-1 expression. For
protein levels, retinas from TKO showed 1.45-fold increase in
TRX under normoxia and 1.8-fold under hypoxic condition.
TKO were previously characterized by having significant in-
crease in the ratio of NADH to NAD and the hepatic ratios of
reduced to GSSG (28, 44). Under normoxic condition, TKO
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Deficiency of TXNIP impairs reparative and pathological neovascularization. Exposing the postnatal day p12

mice to relative hypoxia (from p12—p17) results in VEGF-mediated revascularizations (reparative angiogenesis) of the central
capillary dropout areas and the pathological neovascularization (tufts) at mid-peripheral retina. Capillary dropout areas
(shaded) were measured using Zeiss software and expressed as percentage to the total retina area. Total areas of tufts were
traced individually and normalized to total retina area. Lacking TXNIP expression (TKO) impaired both physiological and
pathological VEGF-induced neovascularization compared with age-matched (p17) WT controls. (A-C) Retinas from TKO
showed impaired physiological angiogenesis as indicated by 2.6-fold increase in capillary dropout (shaded) areas. (D-F) Retinas
from TKO showed significant reduction in pathological neovascularization as indicated by 75% reduction in total tuft areas
when compared to age-matched p17 mice. Arrows indicate tufts and pathological neovascularization. Results are expressed as
mean*SE n=6-8, one-way ANOVA, *p<0.05 vs. control. VEGF, vascular endothelial growth factor; VEGFR2, vascular
endothelial growth factor receptor 2; TKO, TXNIP-knockout; TXNIP, thioredoxin-interacting protein; TRX, thioredoxin; WT,
wild-type. To see this illustration in color, the reader is referred to the web version of this article at www. liebertpub.com/ars

had significant 2-fold increases in retinal TRX reductase ac-
tivity and 3.5-fold in plasma GSH when compared with
age-matched p17 WT mice (Fig. 2E, F). Hypoxia is known to
increase oxidative stress and consume antioxidant capacity. A
two-way ANOVA (gene/Oxygen levels) revealed a signifi-
cant difference between (WT vs. TKO) and (Normoxia vs.
Hypoxia) on their interaction on TRX reductase activity and
GSH levels. Exposure to hypoxia (p12-pl7) caused 20%
and 40% reduction in retinal TRX reductase activity in WT
and TKO, respectively and 40% and 45% reduction in plasma
GSH levels in WT and TKO, respectively (Fig. 2E, F).

Pharmacologically induced reductive stress impairs
VEGF-induced neovascularization

We mimicked the acute shift in redox state observed in TKO
by treating WT mice with a high dose (three times of the tra-
ditional antioxidant dose) of the thiol donor and GSH-precursor
N-acetyl cysteine (NAC, 500 mg/kg, IP) during hypoxia from
p12-pl7. In comparison with WT (Fig. 3A, D), treatment
with NAC (WT+NAC) decreased reparative angiogenesis
indicated by 2.3-fold increase in central capillary-free area
(Fig. 3B, C) and decreased pathological neovascularization
by 70% at peripheral retina (Fig. 3E, F). Plasma of WT +NAC
pups showed a fourfold increase in reduced-GSH levels
when compared with age-matched p17 WT mice (Fig. 3G).

We next evaluated the effect of TXNIP deficiency or high
dose of NAC on peroxynitrite formation assessed by ni-
trotyrosine formation. As shown in Supplementary Figure
S3, under normoxic condition, TKO mice showed 45% re-
duction in nitrotyrosine formation compared with WT. Hy-
poxia (pl12-pl4) induced 2.5-fold increase in the retinal
nitrotyrosine formation in WT but not in TKO or WT + NAC.

Acute shift to reductive stress did not alter hypoxia
inducible factor-1o. or VEGF expression

TXNIP is a known target gene for hypoxia inducible factor
1o (HIF-10), which is an essential transcriptional regulator for
hypoxia-induced angiogenesis. Therefore, we examined the
effect of hypoxia on retinal expression of HIF-1« and VEGEF at
pl4, a time point for maximum VEGEF expression in this
model (8). Hypoxia (p12-p14) increased the expression of
HIF-10 2.2-fold in WT, 2.6-fold in TKO mice, and 2.1-fold in
WT-NAC compared with corresponding normoxic controls
(Fig. 4A). We next examined the impact of increased cellular
antioxidant defense on VEGF mRNA and expression. A two-
way ANOVA 2 x2 analysis showed no significant interaction
between WT wversus TKO or WT-NAC. Statistical analysis
showed a significant interaction between hypoxia versus
normoxia in both WT and TKO. Hypoxia induced compara-
ble increases in VEGF retinal mRNA (2.5-fold) in WT and
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FIG. 2. Deficiency of TXNIP expression shifts redox state to reductive stress. To examine the effect of TXNIP deficiency on
TRX system and redox state, retinas were examined for expression of TXNIP and TRX-1 using real-time PCR and western
blot, TRX reductase activity and systemic reduced-GSH levels was assessed in plasma. (A, B) Hypoxia induced TXNIP
mRNA expression (2.2-fold) and protein expression (2-fold) compared with normoxia. TKO mice showed no TXNIP mRNA
or protein expression under both normoxic and hypoxic conditions. A two-way ANOVA (2x2) analysis showed significant
difference between hypoxia versus normoxia in both WT and TKO. (C, D) In WT, hypoxia (p12-p14) induced 3-fold in TRX
and 4.25-fold in TRX-1 mRNA and 1.65-fold in total TRX protein expression compared with normoxia. In TKO, hypoxia
induced comparable increases to WT by inducing 3.75-fold in TRX and 2.75-fold in TRX-1 mRNA and 1.75-fold in total TRX
protein expression compared to WT normoxia. A two-way ANOVA (gene/Oxygen levels) revealed a significant difference
between (WT vs. TKO) and (Normoxia vs. Hypoxia) on their interaction on thioreductase activity and GSH levels. (E) TKO
retinas showed significant increases (twofold) in retinal TRX reductase activity when compared with age-matched (p17) WT
under normoxic conditions. Hypoxia (p12-p17) caused significant reduction in TRX reductase activity both in WT (20%) and
TKO (25%) when they compared to the same genotype at normoxic condition. The TRX reductase activity of TKO hypoxic
retinas remained significantly higher than the WT under hypoxia. (F) TKO showed 3.5-fold increases in plasma GSH levels
when compared with age-matched WT under normoxic conditions. Hypoxia caused significant reduction in plasma GSH
levels in both WT (45%) and TKO (42%) when they compared with the same genotype at normoxic condition. The reduced
GSH levels of TKO hypoxic retinas were significantly higher than the WT exposed to hypoxia. Results are expressed as
mean +SE, n=6-8, two-way ANOVA (WT vs. TKO and Normoxia vs. Hypoxia), **p<0.05 vs. control. GSH, reduced glu-
tathione.

(2.45-fold) in TKO mice and (2.55-fold) in WT-NAC compared
with corresponding normoxic controls (Fig. 4B). Hypoxia also
induced retinal VEGF protein expression (1.5-fold) in WT and
(1.4-fold) in TKO mice (Fig. 4C) and (1.6-fold) in WT-NAC
compared with corresponding normoxic controls (Fig. 4D).

Acute shift to reductive stress impairs
retinal VEGFR2 activation in vivo

We next examined the auto-phosphorylation site (Y966),
which is required for the VEGFR?2 kinase activity. A two-way
ANOVA was used to examine the effect of manipulation (WT
vs. TKO or WT+NAC) and oxygen levels (Normoxia vs.
Hypoxia) and revealed a significant interaction between WT

versus TKO/WT+NAC on the phosphorylation of VEGFR2.
Retinas from WT showed 1.8-fold increases in VEGFR2
phosphorylation in response to hypoxia. On the other hand,
retinas from TKO mice showed a 60% reduction of VEGFR2
activation compared with WT under hypoxia and 35% re-
duction when compared with TKO under normoxia (Fig. 5A).
In comparison to WT, retinas from WT+NAC showed sig-
nificant 56% reduction in VEGFR2 phosphorylation under
hypoxia (Fig. 5B) and 30% reduction under normoxia. To
confirm our results, we examined the activation of Akt, a
downstream target from VEGFR2. A 2x 2 statistical analysis
showed a significant difference between WT and TKO/
WT+NAC in pAKT phosphorylation in normoxia and hyp-
oxia. Hypoxia (p12—-p14) stimulated Akt phosphorylation
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FIG. 3. Pharmacologically induced reductive stress impairs VEGF-induced neovascularization. WT mice were treated
with a high dose of NAC (L.P 500 mg/kg/day, p12-p17) and were compared to WT. (A—C) Retinas from WT +NAC showed
impaired VEGF-mediated reparative angiogenesis as indicated by 2.3-fold increase in capillary-free zone (shaded area) and (D-
F) 70% reduction in total area of (tufts) pathological neovascularization when compared with PBS-treated age-matched WT.
(G) Plasma of the NAC-treated pups showed fourfold increases in reduced-GSH levels when compared with WT PBS-treated
age-matched animals. Arrows indicate tufts and pathological neovascularization. Results are expressed as mean+SE, n=6-8,
one-way ANOVA, *p<0.05 vs. control. NAC, N-acetyl cysteine. To see this illustration in color, the reader is referred to the

web version of this article at www.liebertpub.com/ars

twofold in retinas from WT but not from TKO or WT +NAC
(Fig. 5C).

VEGF stimulates protein—protein interaction
between VEGFR2 and LMW-PTP

We and others have shown that LMW-PTP can modu-
late VEGF-mediated angiogenic response in endothelial cells
(1,26). We examined interaction of VEGFR2 with LMW-PTP, a
redox-regulated phosphatase (14). Results show that VEGF
stimulated protein—protein interaction of LMW-PTP with
VEGEFR2 evident by maximum co-precipitation after 15min
of VEGF stimulation in human microvascular endothe-
lial (HME) cells (Fig. 6A). These results suggest that LMW-PTP
regulates sustained rather than immediate VEGFR2 activation.

Silencing TXNIP expression blunts VEGF-mediated
S-glutathionylation of LMW-PTP

We further investigated the molecular mechanism by
which deficiency of TXNIP impairs VEGFR2 phosphoryla-
tion. TXNIP expression was successfully silenced in HME
cells using siRNA as detailed in Supplementary Figure S4A.

Silencing TXNIP expression caused a shift in cellular redox state
toward more reductive milieu as indicated by 1.6-fold increase
in GSH and 80% reduction of peroxynitrite formation assessed
by nitrotyrosine formation in HME cells (Supplementary
Fig. S4B, C). As shown in Figure 6B, VEGF caused a transient
and significant decrease (~40%) in reduced-GSH levels that
was restored back to normal after 15 min in HME treated with
scrambled siRNA. Silencing TXNIP with siRNA increased the
cellular antioxidant buffer capacity so that it blunted the VEGF-
mediated decreases in reduced-GSH levels. VEGF induced
immediate receptor autophosphorylation as indicated by
1.8-fold increase in VEGFR2 activation in HME treated with
scrambled siRNA but not in cells treated with TXNIP siRNA
(Fig. 6C). S-glutathionylation is a reversible protective mecha-
nism for cysteine modification in response to oxidative stress.
We have recently shown that VEGF causes S-glutathionylation
and inactivation of LMW-PTP that is reversible after 15-30 min
(1). Indeed, VEGF caused S-glutathionylation of LMW-PTP that
peaked at 5-10min that went back to baseline by 30 min in
HME treated with scrambled siRNA. Silencing TXNIP expres-
sion using siRNA blunted VEGF-mediated S-glutathionylation
of LMW-PTP over 30 min of VEGF treatment (Fig. 6D).
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FIG.4. Acute reductive stress did not alter HIF-1a or VEGF expression. WT, TKO, or WT + NAC were subjected to relative
hypoxia p12-p14. Retinas were isolated and examined for HIF-1o and VEGF expression. (A) Western blot showed that there
were no significance difference between HIF-1u expression between TKO and age-matched WT at normoxia. Hypoxia (p12-
p14) induced 2.2-fold, 2.6-fold, and 2.1-fold in HIF-1o expression levels in WT, TKO, and WT +NAC, respectively. (B) Real-
time PCR analyses of VEGF mRNA showed that hypoxia (p12-p14) caused 2.5-fold, 2.4-fold, and 2.5-fold increase in WT,
TKO, and WT +NAC, respectively. (C, D) Western blot analysis of heparin-bound VEGEF levels showed that hypoxia induced
1.5-fold, 1.4-fold, and 1.6-fold increase in WT, WT +NAC, and TKO, respectively. Results are expressed as mean+SE, n=6-8,
two-way ANOVA (WT vs. TKO/WT-NAC and Normoxia vs. Hypoxia), *p <0.05 vs. control. HIF, hypoxia inducible factor.

Silencing TXNIP expression inhibits VEGF
angiogenic response

VEGF-angiogenic properties were examined after silencing
TXNIP in different assay models such as tube formation, cell
migration, and aortic ring assay. As shown in Figure 7A,
VEGF caused a 1.9-fold increase in the mean length of tube
formation in HME cells treated with scrambled siRNA, but
not in TXNIP siRNA. In parallel, VEGF caused a 1.6-fold in-
crease in cell migration of HME treated with scrambled siR-
NA. Silencing TXNIP with siRNA impaired VEGF-mediated
endothelial cells migration and did not show any significant
difference from control microvascular endothelial cells (Fig.
7B). Inducing acute reductive stress using a high dose of NAC
(10mM), a five times higher than traditional antioxidant dose
(2mM) blunted VEGF-induced cell migration (Fig. 7C).
Moreover, ex vivo studies using aortic rings of adult TKO mice
showed 80% reduction in sprouting angiogenesis as indicated

by length of tubes formed in Matrigel in response to VEGF
when compared to WT (Fig. 7D).

TXNIP overexpression in TKO-endothelial cells
restores VEGF angiogenic function

To demonstrate gain of VEGF angiogenic function in
TKO-endothelial cells, we isolated and characterized micro-
vascular endothelial cells from brains of TKO mice (Supple-
mentary Fig. S5A). TXNIP was overexpressed using plasmid
transduction via electroporation in TKO-endothelial cells
(Supplementary Fig. S5B). Western blot analysis showed
10-fold increase in protein TXNIP expression (Fig. 8A). Trans-
duction of TXNIP in TKO-endothelial cells restored VEGEF-
mediated VEGFR2 phosphorylation (1.4-fold) compared to
TKO-endothelial cells (Fig. 8B). These effects coincided with
twofold increase in VEGF-mediated cell migration in TKO cells
expressing TXNIP (Fig. 8C).
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FIG. 5. Acute reductive stress impairs VEGFR2 phosphorylation in vivo. WT, TKO and WT-NAC were subjected to
relative hypoxia (p12—-p14) and VEGFR2 phosphorylation was assessed in retinas at p14. (A, B) Western blot analysis showed
that hypoxia induced 1.8-fold of VEGFR?2 activation at Y-996 in WT but not in TKO or WT +NAC. Further, retinas from TKO
and WT+NAC showed significant 35%, 30% reduction of VEGFR2 phosphorylation, respectively when compared with WT
normoxia and 60% and 56% when compared with WT exposed to hypoxia. (C) Hypoxia induced twofold Akt activation in
WT but not in TKO and WT +NAC mice compared with WT normoxia controls. Further, retinas from TKO and WT+NAC
showed 30% and 34% significant decrease in Akt activation, respectively when compared with normoxic WT animals and
65%, 67% respectively when compared with WT exposed to hypox1a Results are expressed as mean*SE, n=6-8, two-way
ANOVA (WT vs. TKO/WT-NAC and Normoxia vs. Hypoxia), *#p<0.05 vs. control.

Discussion

Our study demonstrated for the first time a novel redox-
dependent mechanism of TXNIP in modulating VEGEF-
mediated angiogenic response in vivo and in vitro. Our results
showed that TXNIP expression is required to achieve ho-
meostasis of redox state and facilitate VEGF’s angiogenesis in
endothelial cells. Induction of reductive stress genetically
using TKO mice or pharmacologically using high dose of
NAC can blunt VEGF-mediated angiogenesis but did not
alter VEGF levels. Our results demonstrate a critical role of
S-glutathionylation of LMW-PTP as a novel regulatory mech-
anism for VEGFR?2 activation and VEGF angiogenic function.
Modulating TXNIP expression is a viable therapeutic target in
diseases characterized by aberrant angiogenesis.

TXNIP is identical to vitamin D5 upregulated protein-1
(VDUP-1) and also is called thioredoxin-binding protein-2

(TBP-2). TXNIP belongs to the o-arrestin family so it may
serve as adaptor and scaffold protein with several interacting
domains to activate various signaling pathways [reviewed in
Masutani et al. (34)]. TXNIP has been established to regulate
the cellular redox state by binding to and inhibiting TRX.
Although increasing evidence that cellular redox homeostasis
can be an important regulator of angiogenesis (18), the role
of TXNIP in mediating VEGF angiogenic signal is not fully
understood. The present study documents the first in vivo
evidence for redox-dependent mechanisms of TXNIP in
modulating VEGF angiogenic signal rather than VEGF ex-
pression. Retinas from p12 TKO mice showed vascular den-
sity similar to WT at resting condition (Supplementary
Fig. S2). Our results clearly demonstrate impaired VEGEF-
mediated angiogenic response observed in retinas from TKO
or WT+NAC in vivo (Figs. 1 and 3), aortic rings from TKO
(Fig. 7D) was not due to decreases in VEGF levels (Fig. 4),
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protein tyrosine phosphatase.

rather it can be attributed to disturbed cellular redox-state
homeostasis. The current study highlights the importance of
antioxidant dose for modulating VEGF angiogenic response.
Administration of high dose of NAC (500 mg/kg) induced
reductive stress, blunted both reparative and pathological an-
giogenesis. In contrast, we demonstrated that a standard dose
of NAC (150 mg/kg) exerted vascular protective actions and
promoted reparative angiogenesis in hypoxia-induced neo-
vascularization (3). Similar to previous reports, our analyses
(Fig. 2) demonstrated that TKO mice had no TXNIP mRNA
expression or protein expression (27) and marked increases in
antioxidant defense (28, 44). TKO and WT +NAC also showed
significant reduction in peroxynitrite formation assessed by
nitrotyrosine formation compared with WT under basal nor-
moxic and hypoxic condition (Supplementary Fig. S3).

Changes in the intracellular GSSG/GSH ratio not only re-
flect redox state but can also alter angiogenic response by
regulating expression of VEGF and stabilization of the redox-
sensitive transcription factor HIF-1a (33, 46, 50). Of note,
previous reports showed that the ratio of cytoplasmic Trx1
to TXNIP expression can be an important factor in redox-
mediated regulation of angiogenesis (6, 43). Our results
showed that hypoxia triggered expression of retinal total TRX
and the TRX-1 (Fig. 2C) equally in WT and TKO and stabilized
retinal HIF-1o levels and VEGF expression in WT, TKO, and
WT+NAC (Fig. 4). These results suggest that HIF-1o is up-
stream of TRX protein expression as TXNIP deletion did not
alter expression of total TRX or TRX-1 expression or stabili-
zation of HIF-lo. compared to WT. Prior studies pointed
out that inhibiting TXNIP expression could impair VEGF
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silenced in HME cells using siRNA. (A) VEGF (20ng/ml) caused 1.9-fold increases in mean length of tube formation of HME
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siRNA/WT-NAC and control vs. VEGF treatment), *p <0.05 vs. control.

expression independent to TRX binding (13, 21, 42). Other
studies showed that enhanced TRX can increase VEGF ex-
pression (17,19, 31, 50), which can account for the observation
of similar VEGF levels in TKO and WT animals. These find-
ings clearly suggest that impaired VEGF angiogenic response
in this model is likely due to its impaired signaling rather than
levels of VEGF. We have previously shown that peroxynitrite
is required to sustain VEGFR2 activation in endothelial cells
(20). Silencing TXNIP expression resulted in blunting VEGF-
mediated peroxynitrite formation and shifting redox state to
reductive stress and impaired VEGFR2 activation in HME
(Figs. 6 and 7). Activation of VEGFR2 and its downstream
target Akt was also impaired in retinas from TKO or WT +
NAC (Figs. 5 and 6). Moreover, expression of TXNIP plasmid
in TKO-endothelial cells restored VEGFR2 activation and
angiogenic response (Fig. 8). Our results lend further support
to recent reports showing that peroxiredoxin2 (29) or TXNIP
expression (40) are essential for VEGFR2 activation and an-
giogenic response. The latter study demonstrated another
redox-independent mechanism by which TXNIP is required
for VEGFR2 internalization and activation. These results
highlight the crucial and multiple roles by which TXNIP
modulates VEGFR2 activation in endothelial cells. Future

studies are warranted to explore similar roles in other tyrosine
kinase receptors.

Negative regulation of VEGFR?2 signaling by phosphatases
is equally important for controlling angiogenic response.
Several phosphatases have been identified to associate with
and regulate VEGFR2 at different steps of angiogenesis in-
cluding vascular endothelial PTP (35); SHP-1 (10); SHP2 (37);
and LMW-PTP (26). The activity of LMW-PTP is tightly linked
to redox changes and can be a molecular switch for regulation
of the cell migration and the angiogenic process (14, 25). Our
recent work showed that LMW-PTP activity is regulated by
transient oxidation and S-glutathionylation resulting in its
inactivation in response to VEGF (1). Previous studies showed
a positive association between LMW-PTP and VEGFR2 (26,
39, 51). Herein, we confirmed the association between LMW-
PTP and VEGFR2 in HME cells at 15 min, a time point where
LMW-PTP activity is restored after a transient inactivation (1).
Our results showed that knocking down TXNIP expression
blunted VEGF-induced S-glutathionylation of LMW-PTP re-
sulting in its hyperactivation and inhibition of VEGFR2. In
support, LMW-PTP activity has been shown to be regulated
by the glutathione reducing system and cellular redox state (9,
53). Although, recent report by Park et al. (2013) excluded the
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involvement of PTP1B or SHP1 in TXNIP-mediated regula-
tion of VEGFR?2 activation (40), future work is warranted to
examine whether S-glutathionylation can play a role in
modulating other phosphatases similar to LMW-PTP. In
summary, the study provides mechanistic insight into mod-
ulating TXNIP expression as a potential therapeutic target in
diseases characterized by aberrant angiogenesis. Our findings
support a redox-dependent pathway by which TXNIP can
modulate VEGFR2 angiogenic signal. We also identified
blunting of the VEGF-induced S-glutathionylation of LMW-
PTP as a molecular switch for angiogenesis.

Materials and Methods
Animals

Experiments were approved by the Institutional Commit-
tee for Animal Use in Research and Education at Charlie
Norwood VA medical Center (ACORP # 04-12-043) and
conformed to the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. All experiments were per-
formed using age-matched WT mice C57Bl/6 mice (Jackson

Laboratory, Bar Harbor, Maine) and TXNIP-knockout mice
(TKO) that was provided as a kind gift from Dr. AJ Lusis and
Dr. ST Hui at the BioSciences Center, San Diego State Uni-
versity (San Diego, CA). TKO mice have a global knockdown
of the expression of functional TXNIP as characterized pre-
viously (27). TKO mice are similar in weight and activity to
WT or heterozygous littermates, with no differences in food
consumption or litter sizes.

TKO breeding and genotyping

Littermates of WT and homozygous TKO were used and
genotyping was performed as described previously (27).
Briefly, DNA was prepared by incubating ear tissue with
proteinase K and digestion buffer for 1h at 95°C. A mixture
of primer sequence (5-TGA-GGT-GGT-CTT-CAA-CGA-CC-3".
5-GGA-AAG-ACA-ACG-CCA-GAA-GG-3" and 5-CCT-TGA-
GGA-AGC-TCG-AAG-CC-3’ [Integrated DNA Technnologies,
Inc., San Diego, CA]), buffer and 2mM MgCl,, and poly-
merase enzyme (GoTAG Hot start polymerase; Promega)
were added to the DNA template. DNA segments were
amplified using the Master plex-RealPlex2 (Eppendorf,
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Germany) and were detected with 1% agarose gel electro-
phoresis. Deleted TXNIP allele was detected at 530 bp while
WT was detected at 699 bp.

Hypoxia-induced neovascularization

Hypoxia-induced neovascularization was induced in
newborn mice as described previously (3, 16) and depicted in
Supplementary Figure S1. On postnatal day 7 (p7), mice were
placed along with their dam into a custom-built chamber
(Biospherix, Redfield, NY) in which the partial pressure of
oxygen was maintained at 70% for 5 days followed by 5 days
in room air (relative hypoxia, 21%). One set of WT mice was
treated during hypoxia (p12-p17) with the GSH precursor,
NAC (500mg/kg/day IP, from [p12-p17]; Sigma Chemical
Co.). Pups were deeply anesthetized by IP injection of Avertin
240 mg/kg. One eye was enucleated and fixed in 2% para-
formaldehyde overnight to be flat-mounted for vascular
density. For the other eye, retinas were isolated and snap
frozen for biochemical assays.

Analysis of physiological revascularization
and pathological neovascularization

Retinal vascular density was analyzed using flat-mounted
retinas labeled with biotinylated Griffonia simplicifolia lectin B4
and Texas Red-conjugated Avidin D (Vector Laboratories).
Retinas were viewed and imaged with fluorescence Axio
Observer Zeiss Microscope. The areas of retinal neovascu-
larization were assessed on p17 as described previously (3).
Results were expressed as percentage of the total retinal area.
For comparing normal retinal vasculature at pl2, flat-
mounted retinas were imaged as shown in Supplementary
Figure S2 and processed via FIJI software.

Cell culture

Primary cultures of HME cells from retina and supplies
were purchased from Cell Systems Corporation. Experiments
were performed using cells between passages (3-6). Cells
were switched to serum-free medium 6 h prior to stimulation
with VEGF 20 ng/ml (R&D).

Isolation of primary endothelial cells from TKO mice

Due to small tissue limitation of the retina, we elected to
isolate microvascular endothelial cells from the brain. Isola-
tion of endothelial cells was performed according to protocol
by Wuet al. (52) with small modification. For each isolation six
to ten mouse brains (at 0.3-0.5 g/mouse brain) were asepti-
cally collected and rinsed in MCDB131 medium (Gibco BRL)
supplemented with 2% fetal bovine serum (FBS; Gibco),
100U/ml penicillin, and 100 ug/ml streptomycin (Sigma
Chemical Co.). Cerebral cortices devoid of cerebella, white
matter, and leptomeninges were prepared by aseptic macro-
scopic dissection. The cortices were cut into small pieces. The
brain pieces were digested in 15ml 0.1% of collagenase/
dispase (Boehringer Mannheim) supplemented with 2% FBS
for 6h at 37°C with occasional agitation. The digested micro-
vessels were collected with centrifugation at 1000 g for 5 min.
The pellet were suspended in 5ml PBS and centrifuged at
20,000 g for 10min at 4°C. The microvessels and individual
endothelial cells located in the top layer were transferred to a
new 14 ml tube and washed once with PBS. Twenty microliters
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of CD31 rat anti-mouse (BD Pharmingen, San Jose, CA) were
added with gentle shaking for 3h at 37°C. The microvessel
pellets were centrifuged at 20,000 g for 10min at 4°C and
washed once. Fifty microliters of Dynabeads (sheep anti-rat1I
gG) (Invitrogen) were added to the microvessel and shaken
for 35min at room temperature. The beads were isolated
using magnet, washed thrice with PBS, and then
resuspended in 10 ml MCDB 131 complete medium supple-
mented with 30 ug/ml ECGS (Sigma Chemical Co.), 10%
FBS, 15U/ml heparin, 325 ug/ml glutathione, 1 ul/ml 2-
mecaptoethanol, 100 U/ml penicillin, and 100 ug/ml strep-
tomycin (all were obtained from Sigma Chemical Co.). The
microvessel suspension was platted on rat tail collagen I
(Roche Diagnostics) coated plastic ware and incubated at
37°C with 5% CO; in air. The medium was changed after
every 2 days. Final recovering is ~1x 10° PO cells per gram of
mouse brain tissue. Isolated cells were stained with the en-
dothelial specific marker Isolectin-B4 as previously described
for flat-mounted retinas (Supplementary Fig. S5A).

Silencing TXNIP expression

Transfection of HME cells was performed using Amaxa
nucleofector and a kit for primary endothelial cells according
to the manufacturer’s protocol (Lonza). Optimization exper-
iments that were performed showed that T005 program and
300ng of TXNIP siRNA (Dharmacon) gave the maximum
transfection efficacy for HME cells. Cells suspended in a nu-
cleofection mixture with the siRNA and pmaxGFP were
zapped and left in complete medium for 48 h to recover before
experiments. Transfection efficiency was between 80%-90%
as indicated by the number of GFP-expressing cells (data not
shown) and western blots for TXNIP expression shown in
Supplementary Figure S4A.

TXNIP overexpression

Overexpression of TXNIP in HME cells isolated from
TKO mice was performed using Amaxa nucleofector and a
kit for primary endothelial cells according to the manu-
facturer’s protocol (Lonza). Optimization experiments that
were performed showed that T005 program and 300 ng of
TXNIP plasmid (Dharmacon) gave the maximum trans-
fection efficacy for HME cells. Cells suspended in a nu-
cleofection mixture with the plasmid and pmaxGFP were
zapped and left in complete medium for 48h to recover
before experiments. Transfection efficiency was 85%-90%
as indicated by the number of GFP-expressing cells (Sup-
plementary Fig. S5B) and western blots for TXNIP expres-
sion (Fig. 8A).

Cell migration assay

Wound healing assay was performed as described before
(20). Briefly, HME cells were grown to confluence and
switched to serum-free medium 6 h prior to experiment. The
monolayer was wounded with a single sterile cell scraper of
fixed diameter. Images of wounded areas were taken im-
mediately and after 18 h. Cell migration was calculated by
measuring migration distance normalized to initial distance
of wounding using AxioObserver Zeiss Microscope soft-
ware and expressed as the percentage of untreated control
cells.
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Tube formation assay

Tube formation assay was performed using growth factor-
reduced Matrigel (BD Biosciences) as described previously
(32). HME were counted and plated at 2x10* cells/ml with
Matrigel in a 96 well-plate. Eighteen hours later, images of the
tube-like structures were captured and analyzed using Zeiss
Axiovert microscope software.

Aortic ring assay

Eight-week-old adult males of WT and TKO mice were eu-
thanized and the aortas were removed and immediately trans-
ferred to iced serum-free media. The periaortic fibroadipose
tissue was carefully removed without damaging the aortic wall.
The aorta was cut into one millimeter-long aortic segments. The
aortic rings were then individually embedded in growth factor-
reduced Matrigel for 10 days. Images of vascular sprouts
were captured and analyzed using a Zeiss Axiovert microscope.
The greatest distance from the aortic ring body to the end of the
vascular sprouts was measured in three rings per animal, and
each group contained three to four animals.

Oxidized and reduced glutathione

GSH was measured using the Northwest Life Science kit as
described before (3). Briefly, reduced-GSH was calculated by
subtracting the oxidized-GSSG from the total glutathione.
For total glutathione, cells were lysed in phosphate buffer
(100 mM potassium phosphate and 1mM EDTA) and were
mixed with an equal amount of DTNB (10 mM 5, 5’-dithiobis
2-nitrobenzoic acid (DTNB) in the presence of glutathione
reductase and NADPH producing a yellow color measured at
412nm. To detect GSSG, samples were treated with 10 mM
2-vinylpyridine (Sigma Chemical Co.) in ethanol to sequester
all the reduced GSH then measured using the same protocol
as the total glutathione.

TRX reductase activity

TRX reductase activity was performed using a colorimetric
kit (Sigma Chemical Co.) as described previously (7). Briefly,
retinal samples were homogenized in assay buffer followed
by the addition of DTNB with NADPH. Reduction of DTNB
produced a strong yellow color that was measured colori-
metrically at 412 nm. TRX reductase activity was measured by
the difference between DTNB measurement of sample and
sample plus selective TRX reductase inhibitor and expressed
as unit/ ug/min. As the TRX reductase activity increases, the
availability of free TRX increases. TXNIP is the endogenous
inhibitor of the TRX and can affect the cellular redox state that
will be reflected in TRX reductase activity.

Quantitative real-time PCR

The One-Step qRT-PCR kit (Invitrogen) was used to am-
plify 10ng retinal mRNA and quantification was performed
as described previously (7). PCR primers were designed to
amplify TXNIP, TRX-1, and VEGF and were purchased from
Integrated DNA Technnologies, Inc. TXNIP primers: for-
ward 5’AAGCTGTCCTCAGTCAGAGGCAATS’ and reverse
primer 5 ATGACTTTCTTGGAGCCAGGGACA3’. Total TRX
primers 5GCCAAAATGGTGAAGCTGAT3’ and reverse
primer 5TGATCATTTTGCAAGGTCCA3’. VEGF primers
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were: forward 5TGAGCCTTGTTCAGAGCGGAGAAA3’
and 5'TTCGTTTAACTCAAGCTGCCTCGC3'. TRX-1 prim-
ers were forward: 5’ATGGTGAAGCTGATCGAGAG3’ and
reverse: 5 TTAGGCATATTCAGTAATAGAGGCTTC3'. Am-
plification of 185 RNA (forward 5’CGCGGTTCTATTTTGTT
GGT3" and reverse 5’ AGTCGGCATCGTTTATGGTC3') was
used as an internal control. Quantitative PCR was performed
using a Realplex Master cycler. Expression of TXNIP, total
TRX, VEGF, or TRX-1 was normalized to the 18S level and
expressed as relative expression to control.

Immunoprecipitation and western blot analysis

Protein expression in isolated retinas or HME cells were
analyzed as described previously (7). For VEGEF, retinal ly-
sates were subjected to heparin beads (Sigma Chemical Co.)
as described before (23). The beads were pelleted at 5000 g for
1 min, washed in 400 mM NaCl and 20 mM Tris and loaded
onto a 4%-20% gradient Trisglycine precast gel (BioRad). The
primary antibodies were purchased as follows: VEGF (Rabbit
polyclonal; Calbiocam), phospho-Akt (Rabbit polyclonal; Cell
Signaling), or Akt (Rabbit polyclonal; Cell Signaling), LMW-
PTP (Sheep; Exalpha), anti-GSH (Mouse monoclonal; Viro-
gen), total TRX (Mouse monoclonal; Santa Cruz), and TXNIP
(Rabbit polyclonal; Life Technology, Invitrogen). Primary
antibodies were detected using a horseradish peroxidase-
conjugated antibody and enhanced chemiluminescence (GE
Healthcare).The films were scanned, and band intensity was
quantified using densitometry software (Alpha Innotech). For
S-glutathionylation immunoprecipitation, cell lysate (200 ug)
was immunoprecipitated with LMW-PTP primary antibody
(5ug) and A/G agarose beads (Santa Cruz) overnight. The
precipitated proteins were analyzed by SDS-PAGE and blot-
ted with Anti-GSH and anti-LMW-PTP for loading.

Data analysis

All the results were expressed as mean+SE and the data
were evaluated for normality and appropriate transforma-
tions were used when necessary. Figures 1, 3, 6, 8B, and
Supplementary Figures S3 and S4 were evaluated by analysis
of variance, and the significance of difference between groups
was assessed by the post hoc test (Fisher’s PLSD) and signifi-
cance was defined as p<0.05. A two-way ANOVA was used
to examine the effect of manipulation (WT vs. TKO or WT +
NAC) and oxygen levels (Normoxia vs. Hypoxia) and their
interaction on mRNA and expression of TXNIP, TRX-1; ex-
pression of HIF-1o;, VEGEF; nitrotyrosine levels; activation of
Akt; GSH levels and TRXR activity. A two-way ANOVA was
used to study the effect of manipulation (WT vs. TKO) and
treatment (control vs. VEGF) and their interaction on tube
formation, cell migration, and aortic ring assay. A Tukey’s test
was used to adjust for the multiple comparisons used to assess
significant effects. NCSS 2007 was used for all analyses
(NCSS, version 07.1.14 LLC; Kaysville). Statistical significance
was determined at alpha=0.05.
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