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Abstract
In parametric hierarchical models, it is standard practice to place mean and variance constraints on
the latent variable distributions for the sake of identifiability and interpretability. Because
incorporation of such constraints is challenging in semiparametric models that allow latent
variable distributions to be unknown, previous methods either constrain the median or avoid
constraints. In this article, we propose a centered stick-breaking process (CSBP), which induces
mean and variance constraints on an unknown distribution in a hierarchical model. This is
accomplished by viewing an unconstrained stick-breaking process as a parameter-expanded
version of a CSBP. An efficient blocked Gibbs sampler is developed for approximate posterior
computation. The methods are illustrated through a simulated example and an epidemiologic
application.
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1. Introduction
Hierarchical models that incorporate latent variables or random effects are very widely used.
However, a common concern is the appropriateness of parametric assumptions on the latent
variable distributions. This has motivated a rich literature on semiparametric approaches,
which treat the latent variable distributions as unknown. For example, Bush and
MacEachern (1996), Müller and Rosner (1997), Mukhopadhyay and Gelfand (1997),
Kleinman and Ibrahim (1998) and Ishwaran and Takahara (2002) use Dirichlet process (DP)
(Ferguson, 1973, 1974) mixture models (Escobar, 1994; Escobar and West, 1995) for
modeling of unknown random effects distributions.

In many hierarchical models, it is important to constrain the latent variable distributions for
the sake of interpretability and identifiability. For example, parametric latent factor models
commonly constrain the latent variable distributions to have mean zero and variance one. In
the semiparametric Bayes literature, several authors have proposed methods for constraining
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quantiles of an unknown distribution. Burr and Doss (2005) recently used mixtures of
conditional Dirichlet processes (Doss, 1985) to model the random effects distribution in a
meta-analysis application. Their formulation allows median constraints, as does the class of
mixture models proposed by Kottas and Gelfand (2001). Hanson and Johnson (2002) instead
proposed using mixtures of Pólya trees with median constrained to be zero. Dunson et al.
(2003) used an alternative strategy for median regression relying on a substitution likelihood
(Lavine, 1995). Li et al. (2007) proposed an approach to correct for bias in generalized
linear mixed models with a DP prior on the random effects distribution. Their approach
relies on post-processing of the samples from an MCMC algorithm.

In contrast to the literature on semiparametric Bayes methods for median or quantile
constraints, there has been essentially no work done (to our knowledge) on the problem of
modeling of a random distribution subject to mean and variance constraints. A number of
authors have proposed approaches for modeling of unknown symmetric densities having
mean and mode at zero. For example, Brunner and Lo (1989) and Lavine and Mockus
(1995) use DP mixtures of uniform distributions. Hoff (2003) proposed a general approach
for defining probability measures in a convex set and applied it to construct measures with
mean constraint. Hoff (2000) noted that mean-zero variance-one measures can be
characterized using his theory, but difficulties arise in parameterizing the extreme points.
Motivated by this problem and by the application to semiparametric latent factor regression,
we develop a class of centered stick-breaking processes (CSBP).

In the Bayesian nonparametric literature, stick-breaking formulations of random probability
measures have been considered by an increasing number of authors. In pioneering work,
Sethuraman (1994) showed that the DP has a stick-breaking representation. In particular, let
G ~ DP(αG0), where G is a random probability measure, α a precision parameter, and G0 a
base probability measure,

(1)

with {Vh, h = 1, …, ∞} an infinite sequence of random stick-breaking probabilities, {θh, h =
1, …, ∞} an infinite sequence of random atoms, and δθ a probability measure concentrated
at θ. Ishwaran and James (2001) generalized the DP to a broad class of stick-breaking
random measures by letting Vh ~ beta(ah, bh) in (1).

It is not straightforward to directly modify the components in (1) to constrain the mean and
variance of G. Instead, we view the unconstrained stick-breaking random measure as a
parameter-expanded formulation of a constrained stick-breaking random measure.
Parameter expansion was initially proposed as an approach to accelerate convergence of the
Gibbs sampler (Liu and Wu, 1999). However, recent work has also used parameter
expansion to induce new families of prior distributions (Gelman, 2004, 2006). To our
knowledge, this approach has not yet been considered in the context of nonparametric
models.

Section 2 motivates the problem through an application to a semiparametric latent factor
model, describing a standard Dirichlet process mixture model. Section 3 proposes the
centered stick-breaking process (CSBP) and considers its properties. Section 4 develops an
efficient parameter expansion blocked Gibbs sampler for posterior computation. Sections 5
and 6 provide simulations and real data analyses, and Section 7 discusses the results.
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2. Semiparametric latent factor models
2.1. Motivation

As motivation, we focus initially on the latent factor model:

(2)

where yi = (yi1, …, yip)′ ∈ ℜp is a vector of continuous measurements on subject i, τ = (τ1,
…, τp)′ is a mean vector, Λ = (λ1, …, λp)′ is a p×r factor loadings matrix, ηi = (ηi1, …, ηir)′
is a r ×1 vector of latent factors, εi = (εi1, …, εip)′ is an p ×1 vector of idiosyncratic

measurement errors, and  is the residual covariance matrix. Model (2)
and closely related models have been widely used in recent years due to flexibility in
modeling of covariance structures in high-dimensional data (West, 2003). Although we
focus initially on the case in which the measured variables are continuous for simplicity, the
methods can be directly applied when the variables have mixed categorical and continuous
measurement scales, as will be illustrated in Section 6.

Parametric analyses of model (2) typically assume that G is the multivariate normal
distribution Nr (0, I). These constraints on the mean and variance, made for identifiability
and interpretability, result in the marginal model: yi ~ Np(τ, ΛΛ′ + Σ). Further constraints
are typically incorporated in the factor loadings matrix, Λ, to ensure identifiability, as one
can replace Λ with ΛP, for any orthonormal matrix P, without changing the likelihood (refer
to Lopes and West, 2004).

Although the restrictions on the mean and variance of G are clearly justified in order to set
the scale and location of the latent variable distribution, the normality assumption is often
called into question in applications. This has motivated a rich literature on frequentist
semiparametric methods, which avoid a full likelihood specification (Pison et al., 2003;
Pison and Van Aelst, 2004).

Our goal is to develop Bayesian semiparametric methods, which treat G as an unknown
distribution on ℜr with mean 0 and variance I, with the dimension r treated as known for
ease in exposition. For a recent article on accommodating uncertainty in the number of
factors in a normal linear factor model, refer to Bhattacharya and Dunson (2009); their
approach is easily modified to accommodate factor selection in the semiparametric latent
factor models we consider. The Bayesian approach has the distinct advantages of allowing
inferences on the latent variable distributions, while also allowing estimation of posterior
distributions for the latent variables.

2.2. Dirichlet process prior
Ignoring the problem of constraining the mean and variance, one could potentially allow the
latent variable distribution, G, to be unknown by choosing a Dirichlet process (DP) prior: G
~ DP(αG0). Relying on the stick-breaking representation (1), it is then straightforward to
show that

(3)
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with (μG, ΣG) ≠ (0, I) almost surely. There is a rich literature focused on characterizing the
exact distributions of functionals of a Dirichlet process, including the mean and variance
(Regazzini et al., 2002; James, 2005, among others).

Conditionally on G, the marginal expectation and variance of yi integrating over the latent
variable distribution are:

(4)

so that τ and Λ no longer have the same marginal interpretation as in the parametric analysis
that chooses G as Nr (0, I). Ignoring this issue can result in misleading inferences. Note that
it is not sufficient to choose G0 to correspond to Nr (0, I), as the resulting posterior
distribution for (μG, ΣG) need not be concentrated around (0, I).

3. Centered Dirichlet process priors
3.1. Formulation

Let G ~ , where G is a probability measure on (ℜr, ) and  is a probability measure on

( , ), with  the space of probability measures on (ℜr, ) corresponding to
distributions with mean 0 and variance I. Here,  and  are σ-algebras. Our focus is on the

choice of . In particular, letting , with G ~ , we choose

(5)

where μG*, ΣG* are obtained from expression (3) substituting  for θ =
(θh, h = 1, …, ∞). We refer to the choice of  implied by (5) as a centered stick-breaking
process (CSBP). The centered Dirichlet Process (CDP) corresponds to the special case in
which ah = 1, bh = α, h = 1, …, ∞.

Lemma 1—Given specification (5), we have E(ηi | G) = 0 and V (ηi | G) = I.

The proof of Lemma 1 is straightforward. Note that Lemma 1 holds for any realization from

the prior, , and hence  has support  as required.

Expression (5) is identical to the class of stick-breaking random measures considered by
Ishwaran and James (2001) except for the standardization of the atoms to constrain the
random distribution to have mean 0 and covariance I (shown in line 2 of expression (5)).

3.2. Alternative formulation
In investigating properties and developing computational algorithms, it is useful to consider
an alternative, but equivalent, specification to (5). In particular, note that ηi ~ G, i = 1, …, n,
G ~ , with  a CSBP, is equivalent to the following:
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(6)

where μG*, ΣG*, V = (Vh, h = 1, …, ∞)′ and θ* are as defined in Section 2.1. Hence, the
latent variables, ηi, are treated as normalized transformations of latent variables, , having a
distribution G* ~ , with  an unconstrained stick-breaking prior.

Note that we are effectively using a form of parameter expansion, which is conceptually
related to the approach proposed by Gelman (2006). Gelman (2006) induces a prior on the
variance of a random effect in a parametric model by expressing the random effect as a
transformation of a latent variable in an over-parameterized, or parameter-expanded (PX),
model. His PX approach results in a prior with appealing properties, while also facilitating
efficient posterior computation. In contrast, we induce a prior on a latent variable
distribution with mean zero and identity covariance by expressing the latent variable as a
transformation of a latent variable in an over-parameterized model that does not constrain
the mean and variance. Similarly to Gelman (2006), we can use the PX form in (6) to
construct efficient MCMC methods for posterior computation, modifying algorithms
developed for unconstrained stick-breaking priors.

3.3. Truncations
For unconstrained stick-breaking priors, Ishwaran and James (2001) proposed a blocked
Gibbs sampling algorithm for posterior computation, which relies on approximating the
infinite-dimensional random measure by truncating the stick-breaking representation. In this
section, we adapt their approach for the CSBP.

Let  denote the prior on G resulting from the following specification, used as an
approximation or alternative to (5):

(7)

where Vh ~ beta(ah, bh), h = 1, …, N − 1, VN = 1, , h = 1, …, N, and

Letting ηi ~ G, i = 1, …, n, with G ~ , we can obtain the following equivalent
specification:

(8)
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Letting  denote the resulting prior on G*, Theorem 2 of Ishwaran and James (2001)

provides a bound on the  distance between  and . In the DP special case, this bound
→ 0 at an exponential rate as N increases, suggesting that a highly accurate approximation

can be obtained for moderate sized N in most cases. Because  and  are
functionals of G* this result also suggests that  should provide an accurate approximation
to  for moderate N when Vh ~ beta(1, α), with α small to moderate.

3.4. Centered stick-breaking mixtures
Assuming ηi ~ G, i = 1, …, n, with G ~  and  a CSBP, G is almost surely discrete. Hence,
the nr × 1 latent variable vectors for the different subjects will not be unique; instead, there
will be k ≤ n unique values or clusters. The CSBP induces a prior on the set of partitions of
the integers {1, …, n}, which is identical to the prior under the uncentered stick-breaking
process. This equivalence is a direct consequence of the fact that the centering modifies the
locations of the atoms but not the stick-breaking weights.

Latent variable models that assume discrete distributions for the latent variables are typically
referred to as latent class models (LCMs). The CSBP should be widely useful for
constructing semiparametric Bayesian latent class models without the need to assume a
known number of classes or induce parameter restrictions to identify the classes. In
applications in which one wishes to cluster individuals it may be appealing to focus on a
LCM.

However, in many settings, it is considered unrealistic to allow ties in the latent variables, as
any two individuals are unlikely to be exactly the same. To allow unknown continuous latent
trait distributions having zero mean and identity covariance, we propose a centered stick-
breaking mixture (CSBM). In particular, starting with a parameter-expanded specification,
we let

(9)

where G* is assigned an uncentered stick-breaking prior and the other terms are as described
above. Marginalizing out the latent variables { }, we obtain:

(10)

Note that the implied prior for G is identical to the CSBP of Section 2.1, with the exception

that the pre-multiplier is (ΣG* + I)−1/2 instead of . Hence, we obtain V(μi | G) = ΣG*

(ΣG* + I)−1, so that
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Thus, the CSBM prior for G has support on the space of absolutely continuous densities
having mean 0 and covariance I.

4. Parameter-expanded blocked Gibbs sampler
The latent factor model (2), with a CSBP or a CSBM prior for the latent variable distribution
G, can be expressed in parameter-expanded form as a Dirichlet process mixture model
relying on expression (6) or (9). In either case, computation proceeds under the working
model:

(11)

We complete a specification of the model with prior distributions for

 and . For convenience in
computation, one can choose a normal prior for τ*, normal or truncated normal priors for Λ*,
and inverse-gamma priors for the diagonal elements of Σ.

For the CSBP prior, we have  with G* ~ CSBP, and approximate posterior
computation can proceed through direct application of the blocked Gibbs sampling
algorithm of Ishwaran and James (2001), which relies on truncating the stick-breaking from.
After obtaining draws for the approximate parameter-expanded posterior, we transform back
to the original hierarchical model using:

(12)

Note that the convergence and mixing rates for the τ, Λ and η parameters tends to be
improved over that for the τ*, Λ*, and η*.

For the CSBM prior for G, a very similar approach can be used, with the transformations
from the working to inferential parameterizations shown in (12) modified appropriately.
Refer to the Appendix for the specific steps involved in posterior computation.

5. Fibroid tumor study
5.1. Scientific background and data description

We initially consider an application to data from an NIEHS study of uterine fibroids (Baird
et al., 2003), a common reproductive tract tumor, which rarely becomes malignant, but leads
to substantial morbidity. In cross-sectional analyses of data from this study, fibroid size was
related to increased bleeding (Wegienka et al., 2003). The goal of the current study was to
assess whether the current presence and size of uterine fibroids predict the future level of
bleeding. In addition, investigators were interested in studying the distribution of bleeding
intensity across women adjusting for fibroid size and African American ethnicity. This
motivates a nonparametric approach, as the shape of the latent bleeding intensity density is
not known in advance; indeed it was of substantial interest to assess whether there is
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multimodality, suggesting the presence of latent sub-populations and important unmeasured
predictors of bleeding.

The uterine fibroid study was conducted by NIEHS in 1996 in collaboration with George
Washington University Medical Center. Members aged 35–49 of an urban prepaid health
plan in Washington D.C. were selected for the study, out of 1430 participants, 1245 were
premenopausal. In the study, information on menstrual, medical and reproductive history as
well as any previous fibroid diagnoses and treatment were collected by phone interview.
Detailed information on fibroid location and size were collected by ultrasound examination
during a clinic visit or from recent medical records if available. After 3–5 years, we
attempted to re-contact the premenopausal women, 981 of whom were interviewed and
asked about symptoms. If women had had a myomectomy, hysterectomy, or menopause
prior to follow-up, they were asked about symptoms prior to those events. Generally,
African American women have higher risk of uterine fibroids than other ethnic groups
(Baird et al., 2003). Our interest is in assessing how fibroid size at baseline and African
American ethnicity relate to bleeding at the follow-up.

Size of the fibroid is categorized as 0, 1, 2 or 3, corresponding to none, small (<2 cm),
medium (between 2 and 4 cm) or large (>4 cm). The following data are available on the
intensity of bleeding at follow-up:

• Count data:

– Y1: number of days during menses of real blood flow.

– Y2: number of days of spotting.

– Y3: number of days each month in using more than 8 pads or tampons.

• Binary data:

– Y4: Is there intermenstrual spotting?

• Ordinal data (1–5 scale):

– Y5: How often do you have menstrual periods?

1. Did not have any period.

2. Too irregular to say.

3. Less frequently than once a month (>34 days).

4. About once a month (27–34 days).

5. More frequently than once a month (<27 days).

– Y6: How often do you have gushing-type bleeding?

1. Just once.

2. During occasional periods.

3. Most periods.

4. Every period.

– Y7: How much did the menstrual bleeding limit social activities?

1. Not at all.

2. A little.

3. Some.
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4. A lot.

Summary statistics for the bleeding symptom data are provided in Table 2. For flexibility in
modeling and because most women had values close to 0, we treat the count data as ordinal
data for our analysis.

Letting ηi denote the latent bleeding intensity score for woman i, we used model

(13)

to relate fibroid size and African American ethnicity to bleeding intensity. The vector xi is
coded without an intercept and with indicators for (xi1) small, (xi2) medium and (xi3) large
fibroids as well as (xi4) African American ethnicity. To relate the bleeding score ηi, to the
ordered categorical symptom data, we used a continuation ratio measurement model:

(14)

where Cj is the number of categories for symptom type j, Φ(.) is the CDF of the standard
normal distribution function, λ1, …, λ7 are the loading factors for symptoms Y1 − Y7.

Note that (14) differs from the measurement model originally proposed in line 1 of model
(2). We had initially focused on a linear Gaussian measurement model for simplicity, but
now to illustrate the generality of the framework and accommodate the ordered categorical
measurement scale of the bleeding symptoms, we modify the measurement model to
correspond to a continuation ratio probit model. The same methodology can be applied for
essentially any form of the measurement model describing the conditional distribution of the
measured variables given the latent variables. For example, one can allow mixed discrete
and continuous variables using measurement models proposed in Moustaki and Knott (2000)
and Dunson (2000). For categorical measured variables, probit models provide a
computationally convenient choice, as underlying variables can be introduced to allow
conjugate updating. However, any generalized latent trait model (Moustaki and Knott, 2000)
can be used with only a modest additional computational burden. In the second example, we
use the logit link for the binary observed variable.

5.2. Simulation experiment
We assessed the performance of the approach through a simulation example designed to
mimic the fibroid data described in Section 5.1. In this application, we are interested in
inference under the latent factor regression model (13) with the same sample size and xi
values from the real data. For the simulation, we assume that the true parameter values are β
= (1, 1, 1, 1)′, Λ = (λ1, …, λ7)′ = (1, 1, 1, 1, 1, 1, 1)′ and the latent variable density ηi is the
following mixture of four normals:

which has mean 0 and variance 1.

The values of X = (x1, …, xn) and n are taken directly from the observed data. One of our
goals was to assess whether the data contain sufficient information to reliably estimate the
latent variable density.

We analyzed the simulation data using a CSBM prior for G, applying the algorithm of
Section 4. The DP precision parameter, α, was treated as unknown using a gamma(1, 1)
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hyperprior, while G0 was assumed to correspond to N(0, 1). Conditionally conjugate priors
were chosen for the remaining parameters as follows:

where N+( m, v) refers to the N (m, v) distribution truncated to (0, ∞), and

. A blocked Gibbs sampler was implemented in each case, with the chain
run for 100,000 iterations after a 20,000 iteration burn-in, we take every 20th sample
resulting in a total of 4000 samples. To assess convergence, we ran several independent
chains with widely dispersed starting values; for sensitivity to prior specification, we also
tried with varied variances: priors with variance/2, priors with variance ×2, priors with
variance ×5. With all these trials, we do not see much differences between the results.

Table 1 presents posterior summaries of the model parameters in each case, while Fig. 1
plots the estimated and true latent variable distributions. From these results, we can see that
our approach can produce good results. The estimated latent variable density is very close to
the true density, suggesting that the data are informative.

The centered Dirichlet process mixture (CDPM) model results are much more accurate than
the results for the DPM model, as expected due to the non-identifiability problem. In
general, the closer the latent variable distribution is to the base G0, the better the
performance of the DPM model. However, the performance of the DPM degrades in the
presence of deviation from G0, while the CDPM results are robust to the shape of the latent
variable density.

5.3. Analysis of real data
We implemented the analysis as in the simulation example, and again found the results
robust to the prior specification. Posterior summaries of the parameters are provided in
Table 3. These results suggest a significant increase in bleeding intensity with increasing
fibroid size and for African American women compared with other races. For small fibroids
compared with no fibroids, the expected change in the latent bleeding intensity score is 0.05
and the 95% credible interval (CI) includes 0. Note that the latent variable regression
coefficients have a clear interpretation due to the incorporation of the variance = 1
constraint. In particular, the coefficients for the indicators represent the number of standard
deviations the mean bleeding intensity score shifts between the categories. Hence, a shift of
0.05 is clearly not a clinically significant change. However, the estimated shift of β̂1 + β̂2 =
0.05+0.45 = 0.50 between no fibroids and size category 2 is significant. The estimated shift
between no fibroids and size category 3 is β̂1 + β̂2 + β̂3 = 1.26. Hence, fibroid size explains a
sizable proportion of the variability in the latent bleeding score.

Interestingly, African American ethnicity is also a significant predictor of bleeding intensity,
even adjusting for fibroid size. Although it is known that African Americans have a higher
fibroid prevalence, so that it would not be surprising to see more fibroid related bleeding, the
occurrence of higher bleeding rates adjusting for fibroid sizes is interesting. It may be that
future development of fibroids between the screening examination and the measurement of
bleeding symptoms at the follow-up time may explain this difference.

The estimated latent bleeding intensity residual density is plotted in Fig. 2. Interestingly, the
density is quite similar to a normal density, though we have demonstrated power to detect
non-normality in the simulation example.
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It is important to assess which symptoms provide the most information about the latent
bleeding intensity score for a woman and hence are most sensitive to fibroid size. With this
goal in mind, we plot the predicted mean symptom score in different fibroid size categories
for African American women in Fig. 3. The plot for white women and other ethnicities
shows a very similar pattern. For symptoms 2, 4 and 5, there are essentially no differences
across the fibroid size categories and the factor loading parameters are low, suggesting that
the bleeding intensity score has low correlation with these symptoms. Symptoms 2 and 4
relate to spotting, while symptom 5 relates to frequency of menstrual periods. In contrast, for
symptom 1, there is a moderate shift across fibroid size categories, while for symptoms 3, 6
and 7, the shift is large, with non-overlapping 95% predictive intervals. These findings are
quite plausible biologically, as symptoms 3 and 6 relate to frequency of severe bleeding,
while symptom 7 measures bleeding that is sufficient to limit activities.

6. DDT and premature delivery study
6.1. Scientific background and data description

As a second example, we analyzed data from an epidemiology study investigating the
relationship between DDT exposure and premature delivery (Longnecker et al., 2001). The
study measured concentrations of p, p′-DDT and p, p′-DDE (1, 1-dichloro-2, 2-bis(p-
chlorophenyl) ethylene), a persistent metabolite of DDT, in 2613 third trimester maternal
serum samples from the US Collaborative Perinatal Project (CPP). Although Longnecker et
al. (2001) focused their analysis on serum concentration of p, p′-DDE (xi1), data were also
collected on lipid-adjusted p, p′-DDE (xi2), serum concentration of p, p′-DDT (xi3), and
lipid-adjusted p, p′-DDT (xi4). The xi1, xi2, xi3, xi4 variables are moderately to highly
correlated, and it is not clear which should be used in assessing the relationship between
DDT exposure and premature delivery.

For this reason, it is natural to consider a latent variable model of the form:

(15)

where yi = 1 if woman i experiences a preterm birth and yi = 0 otherwise, zi is a vector of
predictors with zi = (1, agei, blacki)′, agei is standardized age for woman i, blacki is an
indicator of African American ethnicity, ηi is a latent variable summarizing the level of
DDT exposure, λy is a coefficient characterizing the effect of ηi on the log-odds of preterm
birth, and G is the distribution of ηi. Mean and variance constraints on G are necessary to fix
the scale of the latent variable, which is needed for identifiability and interpretability of the
λy coefficient. If G has mean zero and variance one, then λy is interpretable as the increase in
log-odds of preterm birth attributable to a one standard deviation increase in exposure, and z
′ τy is the baseline log-odds of preterm birth among individuals with an average level of
exposure having predictors z.

To provide further motivation, DDT is a pesticide, which is currently banned in the United
States and numerous countries. However, DDT is still in routine use in the developing world
as an anti-malarial agent due to its effectiveness against mosquitoes. Decisions to continue
the use of DDT must weigh this public health benefit against the increasing evidence of
adverse human health effects.

Our interest focuses on investigating the impact on preterm delivery, which is a major public
health concern worldwide, as babies born premature are at substantially increased risk of
infant mortality as well as short and long term morbidity. In addition, extended hospital
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stays and care associated with prematurity is extremely expensive. In assessing public health
impact and conveying this impact to clinicians and policy makers, it is important to have a
simple and interpretable summary of association between DDT exposure and risk of
prematurity.

It is not possible to accurately measure the level of external exposure to DDT for different
women in a large, prospective epidemiologic study, such as the US Collaborative Perinatal
Project (CPP). Instead, Longnecker et al. (2001) relied on assaying maternal serum samples
collected in the third trimester of pregnancy. Blood levels of p, p′-DDT and the persistent
metabolite, p, p′-DDE, provide surrogates of the external exposure to DDT, with the health
impact of the external exposure being the primary interest from a public health perspective.
Because p, p′-DDT and p, p′-DDE are lipid-soluble, there has been some controversy in the
literature over whether one should basis the analysis on serum levels in μg/L or on lipid-
adjusted values. As there are valid arguments on both sides, our preference is to include both
types of measurements through the latent variable model (15).

An additional argument in favor of the latent variable model (15) is interpretability. As an
overall measure of the association between p, p′-DDE and preterm birth, one can present an
estimated logistic regression coefficient, say θ̂. The coefficient θ is interpretable as the
increase in the log-odds of preterm birth attributable to a one μg/L increase in serum level of
p, p′-DDE. Unfortunately, the value of θ̂ provides no insight into public health impact in the
absence of careful thinking about the population distribution of p, p′-DDE. In contrast, the
coefficient λy in model (15) is interpretable as the increase in log-odds of exposure due to a
one standard deviation increase in the summary measure of exposure to DDT.

6.2. Simulation experiment
For comparison, as in Section 5.2, we repeated the analysis under the assumption that the
latent variable had a N(0, 1) density instead of an unknown density. Fig. 5 presents the
estimated and true latent variable densities in comparison with the standard normal. It is
clear that the data contain substantial information about the latent variable density in that we
obtained a very accurate estimate of the density in this simulation, which was chosen to have
the same sample size and data structure as the DDT and preterm birth application presented
in Section 6. Table 4 provides posterior summaries of the parameters in the CDPM and
normal latent variable analysis. Most of the parameter estimates seemed robust to
misspecification of the latent variable density in that the normal analysis produced posterior
means close to the true values for the factor loadings, residual variances, and intercepts in
the predictor model. However, as shown in Fig. 6 there was evidence of bias in estimation of
the exposure effect coefficient, λy, which would be the primary interest in most applications.
For the CDPM analysis, the posterior density of λy was centered on the true value of 0.2,
while in the normal analysis the true value was in the right tail of the posterior. Although the
results are not presented here, the uncentered DPM produced poor results in this and other
simulation cases we considered.

6.3. Analysis and results
The Longnecker et al. (2001) study had serum measurements for 2613 women selected from
the CPP. Our analysis focused on 2380 women, obtained after removing 233 women who
had missing covariate values. Data for a single pregnancy was available for each woman,
with 361/2380 = 15% of the pregnancies resulting in a preterm birth. The average age for
women in the sample was 24, with an interquartile range of 20–28.

Fig. 4 shows histograms for xi1 − xi4, while Table 6 shows the correlations in the different
DDT surrogates. It is clear from Fig. 4 that the surrogates are not normally distributed and
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there is a tendency towards a large right skew in the distributions. In addition, the surrogates
are moderately to highly correlated, providing support for the incorporation of a single
summary latent variable ηi in model (15). The women in the right tail of the distribution for
one surrogate tended to be in the right tail for the other surrogates.

To minimize the influence of subjective hyperparameter selection, which was necessary to
avoid the possibility of an improper posterior, we standardized the surrogates prior to
analysis. A repeat analysis without standardization did not change the results. We
implemented the analysis for the CDPM and normal latent variable models using the same
prior and computational implementation as that described in Section 5. Table 5 presents
posterior summaries for each of the parameters. In both the normal and CDPM analysis,
there was no association between preterm birth and age, likely due to the fact that women in
the sample were primarily young. In addition, the analyses estimated a 0.26–0.27 increase in
the log-odds of preterm birth among African Americans. It is well known in the literature
that African American’s tend to have consistently higher rates of preterm birth.

The results of the parametric and CDPM analysis were much less consistent for the
parameters characterizing the relationship between the latent variable, ηi, and the measured
variables, yi and xi = (xi1, xi2, xi3, xi4)′. As shown in Fig. 8, there is a non-negligible shift in
the posterior distribution for λy, with the normal analysis producing an estimate of λ̂y = 0.14
(95% CI = [0.07, 0.20]) and the CDPM analysis resulting in λ̂y = 0.11 (95% CI = [0.05,
0.18]). In both cases, there is a clear increase in the risk of preterm birth as level of exposure
increases, and 95% credible intervals have similar widths, suggesting that the nonparametric
approach does not in general result in a reduction in efficiency. In fact, we have observed in
other cases that the credible intervals are commonly narrower for the nonparametric analysis
in cases in which the parametric model provides a poor approximation.

Fig. 7 shows the estimated latent variable density along with pointwise 95% credible
intervals. Clearly, there are substantial departures from normality, with the latent variable
density having a large right skew consistent with the surrogate distributions shown in Fig. 4
and with exploratory analyses of the data. It appears that many individuals have a low level
of exposure to DDT, but there are a few individuals with very high levels of exposure. This
is certainly a common scenario in epidemiology. We note that log transforming the
surrogate data results in a latent variable density that is closer to normal, but with clear
departures. Post hoc choices of transformations can result in an underestimation of
uncertainty and biased inferences, and we find it unappealing to obscure the large
differences in exposure level through a transformation that reduces the right tail. In addition
to obtaining a very different estimate of the latent variable density under our semiparametric
Bayes analysis, we also note that the variance component estimates are substantially
different than those obtained in the normal latent variable analysis. This is apparent in
examining Table 3.

We repeated the convergence assessments and sensitivity analyses reported in Section 5, and
obtained very similar results. In particular, rates of convergence and mixing were quite good
based on examination of trace plots and standard diagnostics, and inferences were not
sensitive to local changes in the hyperparameter choice.

7. Discussion
In this article, we propose a centered stick-breaking process that constrains the mean and
variance for latent variable distributions in a hierarchical model. We accomplish this method
with the use of parameter expansion, that is, by viewing the uncentered stick-breaking
process as a parameter-expanded version of the centered stick-breaking process. This is a
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simple but useful idea that has a clear impact on the results, reducing bias and improving
interpretability over uncentered methods. An appealing feature is that approximate posterior
computation can proceed as in the uncentered case with a very simple post-processing
algorithm applied to the MCMC draws. This bypasses the need to implement computation
directly for the constrained model, which is very challenging.
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Appendix
Here, we present the conditional posterior distribution used in implementing the Gibbs
sampler for the following models:

• With prior , the posterior is .

• For prior , the posterior is truncated positive normal with
parameters
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• For prior , the posterior is also inverse-gamma distribution with
parameters

• Sample ηi from the posterior normal distribution with parameters

• With prior of N(β0, Σβ0), sample β from the posterior normal distribution with
parameters

• The unique values of , which corresponds to μ = (μ1, …, μn), n ≥
N. With prior N(g1, g2), we sample the posterior  from normal distribution with
parameters

• Allocate individuals to latent classes for  by sampling  from

•
Sample  from posterior Beta distribution , j = 1,

…, N − 1, where . Set

 for j = 2, …, N − 1.

• With prior gamma(g, h), sample c from posterior gamma with parameters
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Fig. 1.
True and estimated latent variable densities in simulation example.
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Fig. 2.
Estimated density of the latent bleeding intensity score in the fibroid data application.
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Fig. 3.
Comparison of bleeding symptoms for black women with large fibroid size (solid line,
diamond: estimated mean) vs. no fibroids (dashed line, square: estimated mean).
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Fig. 4.
Histograms of the DDT data.
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Fig. 5.
True and estimated latent variable densities for the simulation example. The dotted line is
the posterior mean estimate, the solid line is the true density, and the dashed lines are 95%
pointwise credible intervals.
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Fig. 6.
Estimated posterior densities for λy in the simulation example. The dotted line is the density
in the normal analysis, and the solid line is the density in the CDPM analysis. The vertical
line shows the true value.
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Fig. 7.
Estimated density of the latent DDT exposure variable in the DDT and premature birth
application. The solid line is the posterior mean, the dashed lines are 95% pointwise credible
intervals, and the dotted line is the standard normal density.
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Fig. 8.
Estimated posterior densities for λy in the DDT and preterm birth application. The solid line
is the estimate in the CDPM analysis, while the dotted line is the estimate for the normal
latent variable model.
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Table 3

Parameter estimation of DPM & CDPM for real data analysis.

Parameter DPM CDPM

Estimate 95% CI Estimate 95% CI

β1 0.065 (−0.21, 0.35) 0.05 (−0.18, 0.28)

β2 0.53 (0.29, 0.91) 0.45 (0.25, 0.66)

β3 0.91 (0.60, 1.45) 0.76 (0.51, 1.01)

β4 0.54 (0.34, 0.87) 0.46 (0.28, 0.63)

λ1 0.51 (0.27, 0.71) 0.60 (0.43, 0.83)

λ2 0.018 (0.00, 0.06) 0.02 (0.00, 0.04)

λ3 1.17 (0.73, 1.55) 1.37 (1.04, 1.86)

λ4 0.02 (0.00, 0.07) 0.02 (0.00, 0.02)

λ5 0.12 (0.05, 0.19) 0.14 (0.06, 0.14)

λ6 0.96 (0.61, 1.23) 1.13 (0.88, 1.50)

λ7 0.80 (0.51, 1.01) 0.93 (0.73, 1.23)
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Table 5

Posterior summaries under the normal latent factor model and the centered DPM latent factor model for the
DDT and preterm birth data.

Parameter Normal CDPM

Estimate 95% CI Estimate 95% CI

τy,1 −1.11 (−1.39, −0.84) −1.14 (−1.42, −0.87)

τy,2 0.00 (−0.01, 0.00) 0.00 (−0.01, 0.01)

τy,3 0.27 (0.13, 0.41) 0.26 (0.12, 0.40)

λy 0.14 (0.07, 0.20) 0.11 (0.05, 0.18)

λx,1 0.95 (0.92, 0.98) 0.71 (0.65, 0.79)

λx,2 0.95 (0.92, 0.99) 0.74 (0.67, 0.81)

λx,3 0.72 (0.69, 0.76) 0.96 (0.89, 1.05)

λx,4 0.74 (0.70, 0.78) 0.98 (0.90, 1.07)

σx,1 0.33 (0.30, 0.34) 0.70 (0.68, 0.73)

σx,2 0.30 (0.28, 0.32) 0.68 (0.66, 0.70)

σx,3 0.70 (0.68, 0.72) 0.34 (0.32, 0.36)

σx,4 0.69 (0.66, 0.71) 0.28 (0.26, 0.31)

τx,1 0.00 (−0.04, 0.04) 0.00 (−0.04, 0.04)

τx,2 0.00 (−0.04, 0.04) 0.00 (−0.04, 0.04)

τx,3 0.00 (−0.04, 0.05) 0.00 (−0.03, 0.05)

τx,4 0.00 (−0.04, 0.05) 0.00 (−0.03, 0.05)
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Table 6

DDT surrogates correlation table.

xi1 xi2 xi3 xi4

xi1 1.00 0.91 0.69 0.61

xi2 0.91 1.00 0.61 0.70

xi3 0.69 0.61 1.00 0.91

xi4 0.61 0.70 0.91 1.00
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