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Abstract
Breast cancer is the most common cancer in women in developed countries and has a well-
established genetic component. Germline mutations in a network of genes encoding BRCA1,
BRCA2, and their interacting partners confer hereditary susceptibility to breast cancer. Abraxas
directly interacts with the BRCA1 BRCT (BRCA1 carboxyl-terminal) repeats and contributes to
BRCA1-dependent DNA damage responses, making Abraxas a candidate for yet unexplained
disease susceptibility. Here, we have screened 125 Northern Finnish breast cancer families for
coding region and splice-site Abraxas mutations and genotyped three tagging single-nucleotide
polymorphisms within the gene from 991 unselected breast cancer cases and 868 female controls
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for common cancer-associated variants. A novel heterozygous alteration, c.1082G>A
(Arg361Gln), that results in abrogated nuclear localization and DNA response activities was
identified in three breast cancer families and in one additional familial case from an unselected
breast cancer cohort, but not in healthy controls (P = 0.002). On the basis of its exclusive
occurrence in familial cancers, disease cosegregation, evolutionary conservation, and disruption of
critical BRCA1 functions, the recurrent Abraxas c.1082G>A mutation connects to cancer
predisposition. These findings contribute to the concept of a BRCA-centered tumor suppressor
network and provide the identity of Abraxas as a new breast cancer susceptibility gene.

INTRODUCTION
Breast cancer is the most common malignancy affecting women. The presence of a family
history is the most important single risk factor, with the first-degree relatives having about a
twofold increased risk over the general population. BRCA1 and BRCA2 are the two most
important susceptibility genes in hereditary predisposition to breast and ovarian cancer.
However, germline mutations in these tumor suppressors account for no more than 20% of
the familial breast cancer cases worldwide (1). Most of the remaining cancer cases are
predicted to involve mutations in moderate- and low-penetrance susceptibility genes
together with influence from environmental factors, although the data from large multiple-
case families strongly suggest that there might still be additional high-penetrance genes to be
identified (2, 3). Improved knowledge on the functions of BRCA1 and BRCA2 in the DNA
damage response pathway has been instrumental in the identification of a number of breast
cancer susceptibility genes including PALB2, BRIP1, ATM, and CHEK2, all with protein
products interacting directly or indirectly with BRCA1 and BRCA2 (4, 5).

BRCA1 plays multifaceted roles as a gatekeeper of genomic integrity. It is essential for
efficient DNA repair by homologous recombination and execution of cell cycle checkpoints
activated by DNA damage (6). The C-terminal region of BRCA1 contains two BRCT
(BRCA1 C-terminal) repeats that are critical for its tumor suppressor function. These
BRCA1 BRCT motifs are the most common site of clinical mis-sense mutations, which
invariably disrupt phosphorylation-dependent interactions with direct binding partners (7, 8).

Abraxas (ABRA1, CCDC98, or FAM175A) serves as a central organizer of a large BRCA1
holoenzyme complex, directly binding via its phosphorylated C terminus to the BRCA1
BRCT motifs (9–11). This interaction links BRCA1 to a core protein complex dedicated to
ubiquitin chain recognition and hydrolysis at DNA double-strand breaks (DSBs) (9, 12–16).
Abraxas and the other members of this complex [RAP80, BRCC36, MERIT40/NBA1
(HUGO name BABAM1), and BRCC45] are required for DNA damage checkpoints and
cellular resistance to ionizing radiation (IR).

A deleterious germline RAP80 variant (del81E) that abrogates ubiquitin binding, DSB
targeting, and genome integrity has been reported in two breast cancer patients (17).
Additionally, a recent genome-wide linkage consortium study suggested an association
between the rare allele of single-nucleotide polymorphism (SNP) rs8170 in MERIT40/NBA1
and an increased propensity for hormone receptor–negative breast cancer, both in the
general population and in BRCA1 mutation carriers (18). The same SNP has also been
associated with susceptibility to serous epithelial ovarian cancer (19). These findings
suggest that BRCA1, in association with the core Abraxas complex, has tumor-suppressive
function in humans. Here, we provide evidence in support of this hypothesis by identifying a
novel germline mutation in Abraxas that exclusively associates with familial cancer and
abrogates BRCA1-dependent DNA repair function.
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RESULTS
A genetic screen for Abraxas mutations identified a R361Q alteration that associates with
familial breast cancer

We screened 125 affected index patients of Northern Finnish breast cancer families for
germline mutations in the Abraxas gene, revealing four intronic and six exonic variants
(Table 1). Together, five of the changes have not been reported either in the National Center
for Bio-technology Information (NCBI) SNP database (http://www.ncbi.nlm.nih.gov/SNP/)
or by previous studies (20, 21). A computer simulation analysis using PolyPhen software
indicated that of the observed changes, only c.1082G>A was likely to result in functional
changes in the protein. ESEfinder 2.0 and NNSplice software analysis did not reveal any
likely abnormalities. Alteration c.1082G>A results in Arg361Gln (R361Q), which changes
the last residue of a putative bipartite nuclear localization signal (NLS) (Fig. 1A) (10). Both
Abraxas protein and mRNA sequence alignments revealed absolute evolutionary
conservation among vertebrates at the site of the wild-type sequence (Fig. 1B). None of the
studied common SNPs within Abraxas showed a statistically significant association with
cancer susceptibility (table S1).

Abraxas c.1082G>A alteration was observed in 3 of 125 studied breast cancer families
(2.4%) but was absent from 868 healthy female control individuals. The mutant allele was
also identified in 1 of 991 breast cancer cases unselected for a family history of the disease
(Table 1). The prevalence of c.1082G>A in familial compared with control cases, and also
in familial compared with unselected breast cancer cases, was found to be significantly
different (P = 0.002 and 0.005, respectively), which suggests that this variant is disease-
associated and specifically correlated with familial cancer. In agreement, the only mutation-
positive breast cancer patient in the unselected cohort also proved to have a familial cancer
background (Fig. 1C, Family BR-0194).

Segregation analysis was performed in two of the mutation-positive families (BR-0194 and
96-653, Fig. 1C), showing cosegregation between Abraxas c.1082G>A and cancer
phenotype. Because of a lack of suitable DNA samples, segregation analysis was not
possible for the two remaining Abraxas mutation–positive breast cancer families (BR-02101
and 98-063). Of these, the index case of Family BR-02101 was diagnosed with both breast
and endometrial cancer at the age of 37 and 49 years, respectively. She had a family history
notable for stomach, lung, and prostate cancer, in addition to two maternal female cousins
diagnosed with breast cancer at 48 and 54 years of age, respectively. The index case in the
fourth family (98-063) was diagnosed with two ipsilateral primary breast tumors of different
morphology (lobular and mucinous) at the age of 49 years. Her deceased sister displayed
bilateral breast cancer at 53 and 71 years of age. The index patients of all four Abraxas
mutation–positive breast cancer families tested negative for mutations in BRCA1, BRCA2,
TP53, CDH1, and PALB2. The average age of disease onset of the confirmed five Abraxas
mutation–positive breast cancer cases was 46 years (variation, 35 to 53 years), similar to
those with Finnish BRCA1 (46 years; variation, 32 to 57 years) and BRCA2 (48 years;
variation, 45 to 67 years) mutations (22). For comparison, the mean age of onset for the
recurrent Finnish PALB2 c.1592delT was found to be 52.9 years (variation, 39 to 73 years),
and the average age of onset for the unselected breast cancer cases was 57.9 years (variation,
23 to 92) (23).

Morphology studies of R361Q-positive breast cancers (Table 2) revealed a lobular
phenotype in four of the five tumors (80%). A second primary disease of mucinous
morphology was observed in one of the patients who initially presented with lobular disease.
This was in marked contrast to the single case (20%) of the ductal phenotype, which is
typically seen in about 75% of breast cancer cases (24). Immunohistochemistry was
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performed on sections from the same breast cancer cases noted above, and all four of the
informative tumors revealed strong expression of both the estrogen receptor (ER) and the
progesterone receptor (PR), as well as total absence of human epidermal growth factor
receptor 2 (HER2) expression (Table 2). These phenotypic observations suggest that
Abraxas mutation–positive breast cancer cases can deviate from the pattern of hormone
receptor and HER2 negativity associated with BRCA1 tumors (25). Tumors from patients
with mutations in BRCA2 and PALB2, which, like Abraxas, encode BRCA1-associated
proteins, also frequently show hormone receptor positivity (23, 26).

BRCA1 and BRCA2 mutated cancers often display loss of heterozygosity (LOH), whereas
loss of the wild-type allele at other BRCA-associated breast cancer susceptibility genes is
less common (27, 28). To test whether LOH had occurred in tumors of individuals
heterozygous for the Abraxas mutation (a total of six R361Q-positive tumors), we extracted
genomic DNA from pure or highly enriched tumor cell populations obtained by laser-
capture microdissection from formalin-fixed, paraffin-embedded tumor tissue sections, and
we amplified and sequenced an Abraxas gene segment surrounding the c.1082G>A mutation
by polymerase chain reaction (PCR). The existence of the c.1082G>A mutation was
confirmed in all studied tumors, whereas no evidence of loss of the wild-type allele was ever
seen (table S2).

Abraxas R361Q mutation impairs nuclear localization and disrupts BRCA1 DNA damage
response function

To assess the impact of R361Q on Abraxas subcellular localization, we stably expressed
epitope-tagged wild-type or R361Q mutant Abraxas in three different cell lines at near-
endogenous levels and examined subcellular localization by immunofluorescence (IF).
Wild-type Abraxas demonstrated predominantly nuclear localization by IF, whereas
Abraxas R361Q was primarily cytoplasmic (Fig. 2, A and B). Coimmunoprecipitation
experiments revealed that R361Q maintained interactions with BRCA1 and other core
components of the holoenzyme complex (Fig. 2C). Notably, Abraxas R361Q preferentially
immunoprecipitated with BRCA1 and other interacting partners in the cytoplasm, whereas
wild-type Abraxas primarily displayed these interactions in the nucleus (Fig. 2D and fig.
S1).

To determine the impact of R361Q on DNA damage response functions, we examined
recruitment of wild-type Abraxas or R361Q to DSBs. R361Q recruitment to a specific site
of nuclease-induced DSBs (29) was strongly reduced in comparison to wild-type Abraxas,
suggesting deficiency in DNA damage response functions due to impaired nuclear
accumulation (fig. S2A). Similar results were observed at IR-induced foci (IRIF) in three
different cell types (Fig. 3, A and B). Consistent with a dominant-negative activity, R361Q
expression significantly reduced both BRCA1 and RAP80 IRIF formation and resulted in IR
hypersensitivity in three different cell lines (Fig. 3, A to C, and fig. S2, C and D). In
addition, R361Q expression partially disrupted the G2 checkpoint in response to IR and
reduced the efficiency of homology-directed DSB repair (Fig. 3, D and E). These results
suggest that reduced nuclear accumulation by Abraxas R361Q negatively affects DSB
localization of its interacting partners. In support of this concept, inhibition of nuclear export
by leptomycin B treatment increased nuclear Abraxas R361Q and restored IRIF for Abraxas
R361Q, BRCA1, and RAP80 (fig. S3, A and B). Conversely, Abraxas R361Q expression
did not aberrantly affect subcellular localization of β-catenin, further emphasizing the
specificity for its impact on BRCA1 and RAP80 (fig. S4). Abraxas, in addition to BRIP1
(FANCJ) and RAP80 (17, 27, 30), is now the third BRCA1 BRCT–interacting partner with
germline human breast cancer–associated mutations shown to exert dominant-negative
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effects on BRCA1 DNA repair function. These findings suggest that the nature of the
Abraxas R361Q mutation may obviate the need for LOH in tumors from affected patients.

DISCUSSION
Here, we report the identity of a novel, recurrent, constitutional mutation in the Abraxas
gene in familial breast cancer. Abraxas R361Q demonstrated exclusive association with
cancer, segregation with disease within families, and loss of biological function in the DNA
damage response. The impaired DNA damage response function extends beyond Abraxas
itself, because Abraxas R361Q exerted a dominant-negative influence on BRCA1 and
RAP80 by diminishing their accumulation at IR-induced DNA damage foci. In light of this
finding, it is interesting that breast cancer–associated mutation RAP80delE81 displayed
similar dominant-negative properties with respect to BRCA1 localization to IR-induced foci
(17).

These observations complement existing knowledge of breast cancer–associated mutations
within genes encoding proteins present in other BRCA1-containing protein complexes,
reinforcing the concept of a BRCA-centered tumor suppressor network dedicated to the
maintenance of genomic integrity (4, 31). Moreover, they establish ubiquitin recognition at
DNA damage sites as a bona fide tumor suppression function of BRCA1-associated protein
complexes. The BRCA1 protein complex containing Abraxas and RAP80 is unique in
comparison to BRCA1 complexes that contain breast cancer suppressors PALB2, BRCA2,
and BRIP1. RAP80 targets BRCA1 and Abraxas to ubiquitinated chromatin extending for a
distance away from DSBs, whereas BRCA1 complexes containing BRCA2 and PALB2 or
BRIP1 are thought to directly interact with DNA intermediates during homologous
recombination–dependent DNA repair (32). Mutation in any of these genes results in
severely reduced homologous recombination, whereas cells deficient for Abraxas or RAP80
display elevated use of homology-directed DNA repair mechanisms (33, 34). Abraxas
R361Q cells displayed slightly reduced homology-directed repair of a nuclease-induced
DSB (Fig. 3E), suggesting that Abraxas R361Q expression impairs BRCA1-dependent DNA
repair differently than would an Abraxas-null allele. It is also unclear whether the IR
hypersensitivity displayed in three different Abraxas R361Q–expressing cell lines was a
result of the slight reduction in homology-directed DNA repair or alternatively due to
defective G2 checkpoint signaling (Fig. 3D). Therefore, it would be interesting to determine
whether cancers expressing Abraxas or RAP80 dominant-negative mutant alleles would
exhibit similar responses to chemotherapy regimens as tumors harboring mutations in other
genes within the BRCA network. The development of various Abraxas- or RAP80-deficient
tumor models will be important to test such predictions.

In addition to breast cancer, Abraxas R361Q families displayed some relatively rare cancer
types. Recently, a genome-wide association study associated a novel variant, rs1494961,
located near Abraxas, with genetic susceptibility to upper aero-digestive tract cancers (35).
In our current study, both lung and lip cancer and lymphoma of the throat occurred in the
two Abraxas c.1082G>A families shown in Fig. 1C. In addition, Family BR-0194 had a case
of neuroblastoma; mutations in anotherBRCA1-associatedgene, BARD1, have recently been
connected to this disease (36).

In conclusion, we have identified a coding variant of the Abraxas gene with a significantly
different distribution in the familial cancer cases compared to the studied controls. This
alteration is found in 2.4% of the studied Northern Finnish familial breast cancer cases and
predominantly associates to a lobular tumor phenotype. On the basis of its exclusive
occurrence in familial cancer cases, disease cosegregation, evolutionary conservation, and
disruption of critical BRCA1 DNA damage response functions, the recurrent mutation
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connects to cancer predisposition. Similar to BRCA1 and BRCA2, mutations in Abraxas
appear to be involved in susceptibility to certain other malignancy types beyond breast
cancer. The present results warrant investigation of Abraxas as a new cancer susceptibility
gene in other populations as well. The identification of additional Abraxas mutation–
positive families would provide the means for more reliable cancer risk assessments and
evaluation of the potential use of Abraxas mutation testing in clinical diagnostics.

MATERIALS AND METHODS
Familial and unselected breast cancer cases

Mutation screening of Abraxas was performed on blood DNA samples obtained from 125
breast and breast-ovarian cancer families originating from Northern Finland (23). One index
patient from each family was chosen according to the youngest age of breast cancer onset.
Inclusion criteria for the 73 high-risk families were as follows: (i) three or more cases of
breast cancer, potentially in combination with single ovarian cancer in first- or second-
degree relatives, or (ii) two cases of breast or breast and ovarian cancer in first- or second-
degree relatives, of which at least one with early disease onset (<35 years), bilateral breast
cancer, or multiple primary tumors including breast or ovarian cancer in the same individual.
The remaining 52 families were indicative of moderate disease susceptibility, presenting
either two cases of breast cancer in first- or second-degree relatives, or breast cancer under
the age of 35 (2 cases). Together, 15 of the studied index cases had previously been tested
positive for known breast cancer–associated germline mutations in BRCA1 or BRCA2 (11
cases), TP53 (1 case), and PALB2 (3 cases). All of the biological specimens and clinical
information of the familial breast cancer cases investigated were collected at the Oulu
University Hospital, with the informed consent of the patients.

For the Abraxas c.1082G>A genotyping and tagging SNP (tagSNP) analysis, DNAs from an
unselected cohort of breast cancer patients (n = 991) were collected without selection for a
family history of breast cancer. This sample set consisted of 544 Northern Finnish cases
operated at the Oulu University Hospital during the years 2000 to 2007 and 447 patients
with invasive breast cancer from the Kuopio Breast Cancer Project (KBCP), originating
from the province of Northern Savo in Eastern Finland and diagnosed at the Kuopio
University Hospital between 1990 and 1995 (37).

Informed consent to participate in the study has been obtained from each patient, and the
studies have been approved by the Finnish Ministry of Social Affairs and Health, and
appropriate ethical committees of each of the participating University Hospitals.

Control cases
Together, 868 Finnish female control cases were used for genotyping and tagSNP analysis.
The Northern Finnish control samples (where the number of studied individuals varied
between 88 and 506, depending on the specific analysis) derived from anonymous cancer-
free Finnish Red Cross blood donors (age ≥45 years) originating from the same geographical
region as the studied cancer patient cohort. The age- and area of residence–matched KBCP
cohort consisted of DNA from 362 control subjects selected from the National Population
Register during the same time period as the unselected breast cancer patients (37). All
control individuals were cancer-free at the time of donation of the blood sample. There was
no follow-up on donor health status.

Mutation and tagSNP analysis
The entire coding region and exon-intron boundaries of the Abraxas gene were screened for
germline mutations either by conformation-sensitive gel electrophoresis (CSGE, exons 2 to
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8) or by direct sequencing (exons 1 and 9). Samples with deviating CSGE patterns or those
directly sequenced were analyzed with the Li-Cor IR2 4200-S DNA Analysis system (Li-
Cor Inc.) using the SequiTherm EXEL II DNA Sequencing Kit-LC (Epicentre
Technologies) or with ABI3730 (ABI Perkin Elmer) using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems). Oligonucleotides were designed with Primer3
software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi, table S3).

Genotyping of Abraxas c.1082G>A and tagSNPs rs12499395, rs12649417, and rs13125836
was done with MassARRAY mass spectrometer (Sequenom Inc.) and iPLEX Gold
(Sequenom) on 384-well plate format (used primers in table S4). TagSNPs were selected
with the HapMap Genome Browser release 2 (Phase 3, NCBI build 36, bdSNP b126) as of
23 February 2010 (http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r2_B36/).
TagSNPs for region chr4:84593218-84633217 were picked out for the CEU population with
the Tagger multimarker algorithm with r2 cutoff at 0.8 and minor allele frequency (MAF)
cutoff at 0.05. MassARRAY was used for spectra acquisitions from the SpectroCHIP
(Sequenom). Data analysis and genotype calling were done with Typer Analyzer software
version 4.0.3.18 (Sequenom). Each 384-well plate contained a minimum of eight
nontemplate controls. For the c.1082G>A mutation, DNAs from three heterozygous
mutation carriers were used as positive controls on each plate. For quality control, duplicate
analysis was done for 6.5% of the samples from Oulu and for 6.7% of the samples from
Kuopio.

Statistical and bioinformatic analysis
Carrier frequencies between patients and healthy controls were compared with Pearson χ2 or
Fisher’s exact test (two-sided, SPSS version 17.0 for Windows). All alterations were
checked with NNSplice software for potential effects on splicing (http://www.fruitfly.org/
seq_tools/splice.html). Arg361Gln was tested for possible pathogenicity with PolyPhen
software (http://genetics.bwh.harvard.edu/pph). For tagSNP data, the overall association as
well as the Hardy-Weinberg equilibrium, allele-specific P, odds ratio, and confidence
interval were computed with Cochran-Armitage trend test.

Tumor ER, PR, and HER2 immunohistochemistry
Formalin-fixed, paraffin-embedded tissue sections (4 μm) were de-paraffinized and
rehydrated in graded alcohols. Heat-induced epitope retrieval was performed with a digital
pressure cooker in citrate buffer (pH 6.0) before application of the appropriate polyclonal (or
monoclonal) antibody. The primary antibody was detected with the Envision+ system
(K4011, DakoCytomation) that uses horseradish peroxidase–labeled polymer conjugated to
goat anti-rabbit immuno-globulin antibodies. The immune complexes were identified using
a peroxidase reaction with 3,3′-diaminobenzidine-plus as chromogen. Slides were
counterstained with Mayer’s hematoxylin. Antibodies against ER (monoclonal, clone 1D5),
PR (monoclonal, clone PgR636), and HER2 (polyclonal) were all purchased from Dako and
used at 1:100, 1:200, and 1:1000, respectively.

Antibodies used in the immunofluorescence and immunoprecipitation analysis for
functional assessment of the germline Abraxas R361Q alteration

BRCA1 was detected by immunoblotting (IB) with mouse monoclonal antibody MS110 at a
1:10 dilution, and by IF with a rabbit polyclonal antibody 07-434 (Millipore) at 1:500. A
RAP80 rabbit polyclonal antibody was used for IB at 1:500 and IF at 1:100 dilutions.
BRCC36 was detected by IB with a rabbit polyclonal antibody (12). MERIT40 was detected
by IB at 1:1000 with a rabbit polyclonal antibody (14). Hemagglutinin (HA)–tagged proteins
were detected by IB at 1:1000 and for IF at 1:1000 dilutions with mouse monoclonal
antibody HA.11 (Covance).

Solyom et al. Page 7

Sci Transl Med. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r2_B36/
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
http://genetics.bwh.harvard.edu/pph


Cells
HeLa, 293T, MCF10A, and U2OS cells were cultured in Dulbecco’s modified Eagle’s
medium (Gibco) with 10% calf serum. Transient transfections were performed with
LipoD293 (SignaGen Laboratories) according to the manufacturer’s protocols.

Cell fractionation and immunoprecipitation
293T cells were lysed in NETN-150 buffer [150 mM tris-HCl (pH 7.4), 1 mM EDTA,
0.05% Nonidet P-40, 0.5 mM phenylmethylsulfonyl fluoride, and 5 mM β-mercaptoethanol]
for the production of whole-cell extracts. Nuclear and cytoplasmic fractions were obtained
from cells by Dounce homogenization of cells treated with hypotonic buffer [10 mM KCl,
10 mM tris-HCl (pH 7.4), 1.5 mM MgCl2]. Nuclei were lysed in NETN-150 buffer at 4°C
for 45 min. All subsequent steps were performed in NETN-150 buffer. The quality of our
fractionation was evaluated by the detection of specific markers: γ-tubulin for the
cytoplasmic fraction and proliferating cell nuclear antigen for the nuclear compartment.

DNA damage induction
All radiation exposures were performed with a Gammacell 40 irradiator (Nordion
International), which used cesium-137 as the radiation source.

IF analysis
U2OS cells were cultured on glass coverslips and transiently transfected with LipoD293
(SignaGen Laboratories) according to the manufacturer’s protocols. Cells were treated with
10 Gy IR and allowed to recover for the indicated times in a 37°C incubator. Cells were
washed with phosphate-buffered saline (PBS) and then fixed in 3% paraformaldehyde/2%
sucrose containing solution for 10 min at room temperature. Cells were subsequently
permeabilized with 0.5% Triton solution for 5 min at 4°C and then incubated with the
appropriate primary antibody for 20 min at 37°C. Cells were then washed with PBST (PBS–
Tween 20) and incubated with secondary antibody for 20 min at 37°C. Nuclei were then
stained by incubating the cells in a PBS solution containing Hoechst 33258 dye (1 μg/ml).
After four washes in PBST, coverslips were mounted onto glass slides with Vectashield
mounting media (Vector Labs) and visualized with a Nikon Eclipse 80i fluorescence
microscope.

G2 checkpoint assay
The G2 checkpoint assay was performed by assessing the percentage of mitotic cells at 0 Gy
and at 1 hour after 2 Gy IR as previously described (14). A rabbit polyclonal antibody
against phosphorylated histone H3 (Upstate Biotechnology) was used to detect mitotic cells.

Homology-directed DNA repair assay
Homology-directed DNA repair assay was performed as described (34). U2OS cells
containing stable integration of the direct repeat green fluorescent protein (DR-GFP)
reporter locus were transiently transfected with I-SceI and Abraxas plasmids and then scored
for homology-directed DNA repair by fluorescence-activated cell sorting (FACS) for GFP-
positive cells 72 hours after transfection.

Plasmids
The FLAG-HA–tagged version of Abraxas R361Q was created from Addgene vector 27495.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Identification of Abraxas mutation c.1082G>A (Arg361Gln) in breast cancer index cases
and cancer families. (A) Schematic diagram of the Abraxas protein and the site of
Arg361Gln. Chromatogram of c.1082G>A (Arg361Gln) is displayed directly below the
bipartite NLS 358-Lys-Arg-Ser-Arg-361 and 368-Lys-Arg-Ser-Lys-371 shown in yellow.
(B) Evolutionary conservation of Abraxas c.1082G and the encoded codon Arg361. The
conservation scoring was performed by PRALINE. The scoring scheme extends from 0 for
the least conserved alignment position up to * for the most conserved alignment position.
(C) Pedigrees of two Abraxas c.1082G>A mutation–positive breast cancer families where
segregation analysis was possible (BR-0194 and 96-653). Black circles represent breast (Br)
cancer cases; other cancer types [brain, colon (Co), endometrial (End), fibrosarcoma (Fsar),
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head, lip, lung, lymphoma (Ly), neuroblastoma (Nb), ovarian (Ov), pancreatic (Pan),
prostate (Pro), sarcoma (Sar), skin, stomach (Sto); Ca, unknown] are marked with gray
circles (females) or squares (males). Arrows point to index patients. A slashed symbol
indicates a deceased individual. Sample identification codes are provided for all individuals
where DNA specimens were available for mutation status analysis. Individuals are marked
with a plus sign if mutation-positive. The age at diagnosis is indicated below the patients.
The age at monitoring (or age at death), when known, is shown for the healthy individuals.

Solyom et al. Page 14

Sci Transl Med. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Abraxas R361Q disrupts nuclear localization and recruitment to DNA DSBs. (A) IF of HA-
tagged Abraxas wild-type (WT) and Abraxas R361Q transiently transfected in U2OS (top)
and MCF10A (bottom) cells demonstrates cytoplasmic localization for the Abraxas mutant
R361Q. DAPI, 4′,6-diamidino-2-phenylindole. (B) Quantification of cells presenting a
predominantly nuclear staining in HeLa, U2OS, and MCF10A stably expressing FLAG-HA
Abraxas WT or R361Q. Error bars represent means ± SD. P values were calculated by an
unpaired t test. ***P < 0.0001. (C) Immunoblot (IB) of complexes after FLAG
immunoprecipitation (IP) of FLAG-HA–tagged Abraxas from whole-cell lysates of 293T
cells (-) or 293T cell lines stably expressing either Abraxas WT or R361Q. The location of
endogenous and ectopic Abraxas protein is indicated. (D) IB of FLAG-HA–tagged Abraxas
complexes after FLAG-IP from cytoplasmic and nuclear fractions of HeLa S3 cell lines that
maintain stable expression of either Abraxas WT or Abraxas R361Q.
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Fig. 3.
Abraxas R361Q impairs BRCA1 and RAP80 DNA damage response functions. (A) IF in
U2OS cells at 7 hours after 10 Gy IR demonstrates decreased BRCA1 and RAP80 IRIF in
cells expressing Abraxas R361Q. (B) Quantification of the percentage of HeLa, U2OS, and
MCF10A cells expressing Abraxas WT or R361Q with greater than five BRCA1 or RAP80
foci per nucleus. The mean was calculated from more than 200 cells for each condition in
triplicate. Error bars represent means ± SD. P values were calculated by an unpaired t test.
*P = 0.0181; **P = 0.0056; ***P < 0.0001. (C) Clonogenic survival assay of U2OS cells
stably expressing Abraxas WT or R361Q after exposure to the indicated doses of γ-
radiation. Points represent the average of three independent experiments run in triplicate.
Error bars represent means ± SD. (D) Evaluation of the IR-induced G2-M checkpoint in
transiently transfected 293T cells. Mitotic cells were detected by FACS using an antibody
against phospho–histone H3. The mean mitotic cell population was calculated from three
independent experiments in which, in each sample, 10,000 cells were examined. Error bars
represent SD. P values were calculated by Student’s t test assuming unequal variances. ***P
< 0.0001. (E) Evaluation of the homology-directed DNA repair of a nuclease-induced DSB
after transfection of a DR-GFP reporter cell line with the indicated plasmids. GFP-positive
cells indicate the presence of homology-directed DNA repair. Data are representative of four
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independent experiments. Error bars represent means ± SD. P values were calculated by an
unpaired t test. **P = 0.0028; ***P < 0.0001.
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