
Retinitis pigmentosa (RP) is a family of inherited 
diseases with clinical and genetic heterogeneity causing 
retinal dysfunction and eventual photoreceptor cell death 
[1-3]. RP can be either autosomal dominant, autosomal reces-
sive, or X-linked [4-6]. Mutations in the phosphodiesterase 
6B, cyclic guanosine monophosphate-specific, rod, beta 
(PDE6B) gene encoding the beta subunit of phosphodiesterase 
have been linked to autosomal recessive RP (arRP) in humans 
[7-9]. Retinitis pigmentosa resulting from mutations in the 
PDE6B gene is one of the earliest onset and most aggressive 
forms of this disease, accounting for up to 5% of arRP [7,9]. 
Rod PDE is a membrane-associated protein composed of 
two distinct catalytic subunits (PDE6Α, PDE6Β) of approxi-
mately 99 kDa, and two identical gamma inhibitory subunits 
(approximately 10 kDa). Both catalytic subunits contain two 
high-affinity non-catalytic cyclic guanosine monophosphate 
(cGMP) binding sites and a C-terminal half representing 
the catalytic domain [10,11]. PDE is an essential part of the 
phototransduction cascade, playing a role in hydrolyzing the 
cGMP second messenger and resulting in channel closure in 
response to light [12]. Mutations in Pde6b result in a nonfunc-
tional PDE and an accumulation of cGMP [13-15]. In cells 
with the defective PDE6B enzyme, increased levels of cGMP 
lead to photoreceptor cell death [3,15-17]. In this review, we 
describe the role of two well-characterized, naturally occur-
ring mouse lines with defects in Pde6b as ocular models for 

the human disease [18,19], particularly focusing on various 
therapeutic studies to compare the potential for treating this 
form of RP.

Naturally occurring mouse models of Pde6b retinitis pigmen-
tosa: The rd1 (rodless) mouse model of arRP is characterized 
by severe, early onset, rapid retinal degeneration caused by 
mutations in Pde6b [13,20]. The mutant Pde6b gene in rd1 
mice, mapped on chromosome 5 [21], contains a murine 
leukemia provirus insertion in intron 1 and a point mutation, 
which introduces a stop codon in exon 7 (Figure 1) [22,23]. 
A rodless retina (gene symbol, r, rd, rd1) was discovered in 
mice by Keeler and was first reported in 1924 as an auto-
somal recessive mutation leading to the absence of visual 
cells (rods), including the outer nuclear layer [24,25]. This 
animal-related work continued in the United States and 
Europe over the next decade, but Keeler’s stock was lost by 
the end of World War II [26]. In 1951, Bruckner reported a 
similar retinal abnormality that he first recognized in wild 
mice with ophthalmoscopy [27]. Using PCR analysis of DNA 
from archival retinal sections, Pitler et al. demonstrated that 
this line of rd mice contained a homozygous nonsense point 
mutation in exon 7 (codon 347) and intronic polymorphisms 
in the Pde6b gene identical to those in the rodless strain 
initially discovered by Keeler [28]. Histological analysis 
showed that the outer segments (OSs) and inner segments 
(ISs) of the photoreceptors were never well developed in rd 
mice [13,29]. At P10, the OS discs showed signs of disrup-
tion, the chromatin was fragmented, and TUNEL-positive 
photoreceptor cells increased with a rapid loss of rods by P14. 
In all regions of the eye, rapid rod degeneration preceded 
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cone degeneration. Only about 2% of the rods remained in 
the posterior region at P17, and none by P36. In contrast, at 
least 75% of the cone nuclei remained at P17 in rd mice. As 
the retinal degeneration developed, the outer nuclear layer 
(ONL) became rapidly thinner but left a single row of cone 
perikarya at 18 months of age [29,30].

In addition to the established role as an animal model for 
recessive RP, the rd1 mouse, as a source of rodless retinas, 
has been used for cDNA microarray gene expression studies 
to elucidate the molecular pathways underlying photoreceptor 
cell death [31], and to determine the endogenous source of 
mRNA transcripts for proteins whose cellular localization is 
unknown [32,33]. Comparative studies use real-time quantita-
tive reverse transcription (RT)–PCR using cDNA samples 
from rd1 retinas devoid of photoreceptor cells and wild-type 
controls have confirmed either the rod-specific expression 
of genes or whether a particular transcript originates mainly 
from the inner retina [32,33]. Rodless mice have also been 
used to study circadian entrainment, pupillary constriction, 
and intrinsically sensitive melanopsin-positive ganglion cells 
[34-37].

The rd10 mouse, first described by Chang et al. in 
2002, carries a missense mutation (R560C) in exon 13 of 
the Pde6b gene, and represents another useful natural model 
of recessive retinal degeneration [20,38]. In contrast to rd1, 
in which PDE6B protein expression and activity are unde-
tectable, rd10 mice are characterized by a relatively slower 
onset of retinal degeneration, with decreased PDE activity. 
PDE6B protein can be detected early in rd10 mouse retinas 
(P10) with western blotting and immunostaining, although 
the level of expression was significantly reduced compared 
to that of age-matched wild-type controls [38]. In rd1 mice, 
peak photoreceptor cell death occurs before full development 

of the retinal structures, whereas most cells in rd10 mouse 
retinas have terminally matured before degeneration occurs 
[38,39]. Histological examination reveals progressive ONL 
degeneration in rd10 mice, starting from the central retina 
at P16 and spreading to the peripheral retina by P20. Rapid 
degeneration occurs between P18 and P25, and by P60, most 
of the photoreceptors disappear, although the thickness of the 
INL and the ganglion cell layer is not yet affected. Sclerotic 
retinal vessels appear at 4 weeks of age in rd10 mice, and 
retinal degeneration can be easily distinguished at 2 months 
of age with fundoscopy [38,39]. Dark-rearing rd10 mice 
further slows the retinal degeneration rate by as much as 3 
months [38,40].

The maximal electroretinogram (ERG) response in cyclic 
light-reared rd10 occurs at 3 weeks and is undetectable at 2 
months of age [38]. In contrast, rd1 mice do not generate a 
scotopic ERG response at any age due to a complete lack 
of functional PDE6B. Furthermore, aggressive rd1 retinal 
degeneration cannot be delayed by rearing the mice in dark-
ness (Figure 2) [38]. The residual activity of PDE6b in rd10 
retinas may prevent a toxic increase in cGMP early in the 
mouse’s life, thus delaying the onset of photoreceptor cell 
death, and extending the window for therapeutic interven-
tions. Many missense pathogenic human mutations in PDE6B 
leading to autosomal recessive retinitis pigmentosa are 
located within the catalytic domain [9], potentially resulting 
in partial loss of function and reduced PDE6B enzymatic 
activity, as seen in rd10. Thus, the rd10 represents a better 
mouse model than rd1 for developing strategies for treating 
human patients with recessive RP.

Figure 1. Schematic representation of the mouse PDE6B gene and protein, and the localization of spontaneous mutations in animal models. 
The rd1 mouse contains a murine leukemia provirus insertion in intron 1 and a point mutation, which introduces a stop codon in exon 7. 
The rd10 mouse carries a missense mutation (R560C) in exon 13. Two canine models, the rcd1 Irish setter and the Sloughi dog, contain 
a nonsense amber mutation at codon 807 (W807ter) and an 8 bp insertion after codon 816, respectively. The PDE6B protein contains two 
high-affinity non-catalytic cGMP binding sites (GAF domains) and a catalytic domain in which the majority of human mutations are located. 
Reprinted from Vision Research, vol. 49(22), Baehr W. and Frederick J.M., Naturally occurring animal models with outer retina phenotypes, 
2636–2652, 2009, with permission from Elsevier.
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Therapeutic approaches:

Pharmacological treatment—Several pharmacology-
based treatments were developed to temporarily delay the 
photoreceptor degeneration in mouse models caused by 
PDE6B deficiency [41]. In 1999, one study showed that 
D-cis-diltiazem, a calcium-channel blocker that also acts on 
light-sensitive cGMP-gated channels, rescued photorecep-
tors and preserved visual function in the rd1 mouse [42]. 
The dihydropyridine, diltiazem, is a competitive antagonist 
of L-type calcium channels. The D-cis stereoisomer is the 
active compound in several commonly used prescription 
drugs. Since rd1 rods begin to degenerate due to apoptosis 
caused by Ca2+ overload around P10 [43,44], intraperitoneal 
injections of D-cis-diltiazem was applied at P9. Retinal whole 
mounts and sections were labeled with an antibody against 
rhodopsin and showed more positive staining in treated mice, 
which were supported by a measurable scotopic ERG b-wave 
(approximately 20 μV) at P36. Additionally, the diltiazem-
treated cohort at P36 had approximately 18,600 surviving 
rods, a two- to threefold increase compared to 7,500 rods in 
the untreated eyes; a modest protective effect on cone survival 
was also observed [42]. Other laboratories also concluded that 
D-cis-diltiazem could partially protect photoreceptor cells for 
the short term in the rd1 mouse [45]. These studies provided 
evidence that suitable pharmacological approaches to vision 
protection could be obtained through managing Ca2+ overload 
[46,47]. Controversially, Pawlyk et al. concluded that there 
was no significant difference between treated and untreated 
rd1 mice following D-cis-diltiazem treatment [48].

LaVail et al. have shown that intravitreal delivery of 
survival factors, such as brain-derived neurotrophic factor 
(BDNF), neurotrophin-3, neurotrophin-4, and ciliary neuro-
trophic factor (CNTF), in several animal models of retinal 
degeneration, including rd1, can slow the progression of 
photoreceptor cell death [49]. CNTF, especially, has been 
shown to increase photoreceptor survival as a neuroprotective 
factor [50,51]. A study by Cayouette et al. used an adenoviral 
vector to deliver CNTF intravitreally to rd1 mouse eyes, 
resulting in increased photoreceptor survival [52]. Treatment 
with CNTF in combination with BDNF was also shown to 
rescue photoreceptors in cultured rd1 retinal explants [53]. 
The therapeutic efficacy of encapsulated CNTF-secreting 
cell therapy was demonstrated in the rcd1 canine model of 
RP [51,54].

Frasson et al. attempted to treat rd1 degeneration by 
delivering glial cell line–derived neurotrophic factor (GDNF) 
into the rd1 eyes at 13 and 17 days of age via sub-retinal 
delivery [55]. GDNF provided histological and functional 
neuroprotective benefits on rod photoreceptors in the rd1 
mouse, although the effects were partial and temporary. 
Ohnaka et al. have also shown that GDNF can temporarily 
slow photoreceptor cell loss in rd10 mice [56].

Systemic administration of recombinant erythropoietin 
(Epo), an oxygen-regulated hormone, has also been shown to 
have protective effects on photoreceptor cells in either light-
induced or certain inherited forms of retinal degeneration 
[57,58]. Rex et al. have shown that Epo protein expression 
following systemic adeno-associated viral (AAV)–mediated 

Figure 2. Retinal morphology of rodless rd1 and rd10 mice, at 24 days of age. Both rodless rd1 (left panel) and rd10 (middle panel) retinas 
exhibit marked thinning of the photoreceptor layer. Note the normal ONL thickness of the dark-reared rd10 mouse retina (right panel), 
in contrast to that of the cyclic light-reared rd10 (middle panel); ONL, outer nuclear layer; IS, inner segments; INL, inner nuclear layer; 
GCL, ganglion cell layer; Reprinted from Vision Research, vol. 47(5), Chang B, et al., Two mouse retinal degenerations caused by missense 
mutations in the beta-subunit of rod cGMP phosphodiesterase gene, 624-33, 2007, with permission from Elsevier.
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gene delivery resulted in improved retinal morphology in 
the rds/peripherin (Prph2), but not the rd10 mouse model of 
retinal degeneration [58]. Another study indicated that activa-
tion of bone marrow–derived microglia following systemic 
injections with Epo and granulocyte colony-stimulating 
factor slowed retinal degeneration in rd10 mice, as indicated 
by increased outer nuclear layer thickness at P30 [59].

An indirect way of extending photoreceptor survival 
without pharmacological treatment is environmental enrich-
ment, which may lead to an increase in the endogenous levels 
of potentially beneficial trophic factors. Barone et al. have 
shown that prolonged exposure of rd10 mice to an enriched 
environment from birth had protective effects on retinal func-
tion and morphology, leading to a decrease in their retinal 
degeneration rate and increased expression of retinal CNTF 
mRNA [60].

Tauroursodeoxycholic acid (TUDCA), the active anti-
oxidant component in bear bile, has been used in traditional 
Chinese medicine for thousands of years. TUDCA acts via 
a phosphatidylinositol 3-kinase (PI3K)-dependent signaling 
pathway to block neuronal death triggered by amyloid-β 
peptide [61]. In 2006, Boatright et al. showed that more photo-
receptors survived and better photoreceptor morphology 
was maintained, and the dark-adapted ERG a- and b-wave 
amplitudes were significantly greater by P18 when TUDCA 
was injected subcutaneously in the nape of P6 rd10 mice [62]. 
TUDCA-treated retinas showed almost no TUNEL signal and 
much less immunoreactivity for activated caspase-3. These 
findings clearly indicate that TUDCA injections suppress 
apoptosis in rd10 mice. Similar studies also found that the 
overall morphology of the photoreceptor cells was better 
preserved in the TUDCA-treated rd10 eyes at P30 and P38 
[63-65].

Komeima et al. have demonstrated the beneficial effects 
of antioxidants in slowing the photoreceptor degeneration 
process in rd1 and rd10 mice [66,67]. Systemic delivery of 
combined antioxidants, including alpha-tocopherol, ascorbic 
acid, and alpha-lipoic acid, reduced cone cell death in both 
models. The rd10 mouse displayed substantial therapeutic 
effects, such as better preservation of cone function and 
retinal morphology, due to the later onset of photoreceptor 
cell death in this model compared to rd1. Another study 
showed that a combination of antioxidants, such as lutein, 
zeaxanthin, and alpha lipoic acid, slowed rd1 rod photore-
ceptor degeneration following early administration [68].

Cell-based therapy and optogenetic approaches: Stem cell-
based therapy and optogenetic approaches have the potential 
to restore visual function for late stages of retinal degenera-
tion, by either focusing on replacing the lost photoreceptor 

cells or by rendering the remaining bipolar and ganglion 
cells photosensitive [69-72]. Adult bone marrow contains 
a population of hematopoietic stem cells (HSCs) that can 
be divided into lineage positive (Lin+) and lineage nega-
tive (Lin–) cells. The Lin– subpopulation contains various 
progenitor cells capable of becoming vascular endothelial 
cells [73]. These endothelial progenitor cells can mobilize 
in response to various signaling molecules and target sites 
of angiogenesis in ischemic peripheral vasculature. Otani et 
al. reported that intravitreal injection of adult bone marrow–
derived Lin– HSCs at P6 could completely prevent retinal 
vascular degeneration in the rd1 mouse [74]. Furthermore, 
this vascular rescue correlated with neuronal rescue: The 
INL remained nearly normal, and the ONL was partially 
preserved, with the rescued cells predominantly cones [74]. 
This study suggests that the rescue effect of Lin– HSCs can 
last for as long as 6 months if the cells are injected just before 
the onset of degeneration, but the ERG amplitudes were only 
8–10 μV at 2 months after treatment. The ERG amplitudes in 
the rescued eyes were considerably lower than that of the gene 
therapy-based rescue studies (see below). Sasahara et al. later 
showed that endogenous bone marrow–derived microglia 
played a protective role in vascular and neural degeneration 
in rd1 and rd10 mice [59].

In addition to stem cells, Barber et al. have shown that 
photoreceptor transplantation is feasible in several mouse 
models at different stages of retinal degeneration, including 
rd1, and the recipient microenvironment affects the trans-
planted receptor morphology [75]. In another recent study, 
Singh et al. showed that transplanted rod precursors can 
form an outer nuclear layer in degenerated rd1 mouse retinas 
[76], and this approach may hold the potential to recreate 
a new functional photoreceptor layer in advanced retinal 
degeneration.

The rd1 mouse represents a useful model for testing 
optogenetic tools for treating late stage RP [77]. Studies have 
shown that exogenous expression of opsins, such as chan-
nelrhodopsin 2 (ChR2) or melanopsin, in surviving retinal 
neurons can render them photosensitive, and restored some 
visual function in rd1 mice in which all photoreceptor cells 
were lost [34,78]. Bi et al. found that following intravitreal 
delivery of AAV2-ChR2-GFP in the rd1 mouse, expression of 
ChR2 was achieved in retinal ganglion cells, leading to resto-
ration of visually evoked cortical responses [79]. ChR2 gene 
delivery in ON bipolar cells was also achieved, leading to 
restored photosensitivity and behavioral responses in animal 
models [80,81]. Caporale et al. used an AAV2-mediated 
intravitreal delivery of an engineered light-gated ionotropic 

http://www.molvis.org/molvis/v19/2579


Molecular Vision 2013; 19:2579-2589 <http://www.molvis.org/molvis/v19/2579> © 2013 Molecular Vision 

2583

glutamate receptor to restore light responsiveness to the 
retinal ganglion cells of adult rd1 mice [82].

Gene replacement therapy: Due to the early and rapid 
rate of photoreceptor cell loss in the rd1 mouse, providing 
effective gene therapy in a timely manner to rescue visual 
function in this animal model have proved difficult. In the 
early 1990s, Bennett et al. found that the photoreceptors of 
the rd1 mouse could be partially rescued with in vivo gene 
therapy, thus supporting the feasibility of treating inherited 
retinal degeneration with somatic gene therapy [83]. Bennett 
et al. conducted an experiment with sub-retinal injection of a 
recombinant replication-defective adenovirus that contained 
murine cDNA for β-PDE, Ad-CMV-βPDE. Sub-retinal 
injection of Ad-CMV-βPDE resulted in β-PDE transcripts, 
increased PDE activity, and delayed photoreceptor cell death 
by 6 weeks. However, this early generation of adenoviral 
vectors had limitations, including short-term expression of 
the transduced gene due to immune response against the 
adenoviral vector. Additionally, the rescue effect was not long 
lasting. Subsequently, other researchers switched to an encap-
sidated adenovirus minichromosome (EAM), which showed 
relatively longer transgene expression [84,85]. EAM-medi-
ated delivery of the β-subunit of cGMP phosphodiesterase 
cDNA to rd1 mice showed prolonged β-PDE expression and 
rescue of rod photoreceptor cells [84]. RT–PCR analysis from 
the injected retina indicated that transgene products were 
present for up to 18 weeks post-injection. Examination of 
outer nuclear thickness showed significant differences until 
12 weeks post-injection [84].

Jomary et al. also evaluated the efficacy of a recombinant 
AAV vector for delivering and expressing the β-PDE gene in 
the retinas of rd1 mice [86]. Following intravitreal injection of 
AAV2-β-PDE, increased retinal expression of immunoreac-
tive PDE protein was observed, including expression within 
photoreceptor cell bodies. Compared with the age-matched 
untreated controls, the treated eyes showed only a modest 
delay in photoreceptor degeneration. A major limitation of 
that study was the use of a low-titer traditional AAV2 vector 
in an animal model of rapid retinal degeneration. Since 
then, major progress has been made in vector purification 
methods and capsid engineering, resulting in high-titer 
AAVs of different serotypes with faster onset of expression 
and improved transduction efficiency [87-89]. Sub-retinal 
delivery of these optimized vectors in the rd10 mouse with 
a slower degeneration rate, as described below, has led to 
significant recovery of retinal function and morphological 
preservation by providing therapeutic levels of transgene 
expression before the photoreceptor cell loss.

Researchers also showed that lentiviral vectors based on 
human immunodeficiency virus (HIV) type 1 can achieve 
stable and efficient gene transfer into retinal cells [90,91]. 
Takahashi et al. tried the HIV1-based lentiviral vector to 
rescue retinal degeneration in rd1 mice [92]. Lentiviral vector 
containing Pde6b under the control of the cytomegalovirus 
promoter or rhodopsin promoter was injected into the sub-
retinal space of rd1 eyes between P2 and P5. One to three 
rows of photoreceptor nuclei were observed in the eyes for 
at least 24 weeks post-injection. In summary, sub-retinal 
injection of adenoviral, adeno-associated viral, or lentiviral 
vectors encoding the Pde6b gene in neonatal rd1 mice 
resulted in partial preservation of photoreceptor structure 
although retinal function with ERG was never well restored.

The rd10 mouse is more amenable to successful gene 
replacement therapy than rd1, since the rd10 mouse displays 
a later onset and slower retinal degeneration process, thus 
providing a longer therapeutic window for intervention [38]. 
In 2008, Pang et al. reported a successful gene replace-
ment therapy using AAV5 to rescue rd10 mice [93]. Since 
light exposure may speed up retinal degeneration, dark-
reared P14 rd10 mice were injected sub-retinally with an 
AAV-5-smCBA-PDEß vector under dim light, resulting in 
prolonged photoreceptor survival and improved ERG and 
vision-guided performance for at least 3 weeks after sub-
retinal injection. However, the therapeutic effects faded 6 
weeks after treatment. Since photoreceptor degeneration 
starts around P16 in rd10 mice, and the AAV5-PDE6b vector 
takes at least 1 week to express enough functional protein 
following sub-retinal injection, treatment earlier than P9 in 
the rd10 mouse could lead to even more rescue. In reality, it 
is difficult to detach a significant fraction of the mouse retina 
following trans-cornea sub-retinal injection with minimal 
injection-related damage before the mouse eyes open around 
P14 [94]. Although trans-sclera sub-retinal injection can be 
used for neonatal mouse treatment, the injection transduces 
only a small part of the retina with extensive sub-retinal 
injection-related complications [95,96]. For example, in rd10 
mice, AAV5-mediated rescue following P14 treatment [93] 
is more robust than that following P2 treatment [97] with a 
similar AAV5 vector when both cases are evaluated at P35. 
An optimal stable rescue could be related to the extent of 
retinal coverage by the vector and might be offset by injec-
tion-related damage to the neonatal mouse eye [98]. Yao et al. 
have shown that an AAV5-mediated delivery of the X-linked 
inhibitor of apoptosis at P4 can significantly slow photore-
ceptor degeneration in combination with gene-replacement 
therapy and may extend the window of treatment [99].
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A tyrosine-capsid mutant AAV8 (Y733F) vector capable 
of transducing most of the photoreceptors within several 
days following sub-retinal injection represents a useful tool 
for treatment in animal models with early onset of retinal 
degeneration [100]. Consequently, a more significant rescue 
was achieved by using this capsid mutant serotype, compared 
to an AAV5 vector containing the same Pde6b gene [98]. 
Sub-retinal injection of the tyrosine-capsid mutant AAV8 
(Y733F)-smCBA-PDE6b in the same dark-reared P14 rd10 
mice led to restored retinal function and improved visual 
behavioral performance. Additionally, more than half of the 
photoreceptors were preserved for at least 6 months, as deter-
mined with ERG, optomotor behavioral tests, spectral domain 
optical coherence tomography (SD-OCT), and histology. 
Secondary retinal degeneration and remodeling in older rd10 
mice were also prevented in rd10 eyes treated at P14, which 
lasted for at least 6 months [98]. Although the cause of the 
protective effect of dark-rearing on the progression of retinal 
degeneration is not completely understood, the effect may 
have implications for treating human patients with PDE-
based mutations [40]. The long-term rescue effect in rd10 
mice using the potent capsid mutant AAV8 vector provides 
a promising approach for gene therapy for patients with RP 
and paves the way for potential clinical trials in the future.

Mouse models of recessive RP have demonstrated that 
gene replacement therapy holds great promise for treating 
monogenic disorders [101-104]. Although both naturally 
occurring mouse models presented here mimic certain 
features of the clinical phenotype of recessive RP found in 
human patients with Pde6b mutations, the therapeutic find-
ings may not fully extend to the human disease [105]. Mouse 
eyes are not similar to those of humans, due to the small size, 
low cone to rod ratio, and absence of a macula. The successful 
restoration of retinal function in mouse models of arRP, such 
as rd10, can be attributed in part to the ability to transduce 
the entire retina following a single sub-retinal delivery of a 
small volume of vector. We noticed the rescue effect fades 
within several months if the treated retinal area is less than 
50% [98]. The widespread distribution of the vector following 
intraocular delivery in mouse models allows the majority of 
mutant photoreceptors to receive the missing functional gene. 
In contrast, transduction in human patients is restricted to a 
small area (10%–15%) of the retina following a single sub-
retinal injection, and the remaining untreated photoreceptors 
may exert a negative effect on the neighboring cells during 
the course of degeneration. Consequently, one major goal of 
current gene therapy studies is to develop highly efficient and 
penetrating AAV vectors that can transduce photoreceptor 
cells over the entire retina following intravitreal delivery 
[100,106], and avoid the damage associated with sub-retinal 

surgical procedures, especially around the sensitive foveal 
region [107]. As demonstrated by experiments in animal 
models of recessive RP, gene therapy is most effective when 
treatment is initiated early, before the onset of photoreceptor 
cell death [108,109]. A recent study of human patients with 
RPE65-associated Leber congenital amaurosis (LCA2) has 
shown that although gene therapy led to substantial visual 
improvement, retinal degeneration continued to progress 
in the treated and untreated regions of the retina [110]. To 
better evaluate the treatment options for human patients 
with arRP caused by mutations in PDE6B, more studies are 
needed to explore the effects of therapeutic interventions 
in larger animal models at various stages of photoreceptor 
degeneration. Two naturally occurring canine models with 
recessive mutations in Pde6b have previously been described, 
the rcd1 Irish setter, which contains a nonsense amber muta-
tion at codon 807 (W807ter) causing a truncation of the PDE 
β-subunit, and the Sloughi dog, caused by an 8 bp inser-
tion after codon 816 [111,112]. A recent study identified a 
three base pair deletion in exon 21 in crd1 dogs, leading to 
partial loss of PDE6B function and a relatively slower rate 
in photoreceptor cell loss, similar to human patients [113]. 
These larger animal models more closely mimic the human 
eye and can provide more translational knowledge of disease 
progression and therapeutic interventions for arRP caused by 
Pde6b mutations.

Conclusions: This review focused on the pathogenesis of 
natural mouse models of recessive RP caused by Pde6b muta-
tions, and the current available therapeutic options. Although 
some of the treatments discussed lead to partial protection of 
the morphology and function of photoreceptors, gene therapy 
is the only currently available technology that halts apoptosis 
and maintains long-term functional rescue, when treatment 
is provided before photoreceptor cell death is initiated. 
The rd10 mouse model of recessive RP, with later onset of 
retinal degeneration than rd1, provides an invaluable tool for 
studying the effects of various therapeutic interventions on 
slowing or preventing progressive photoreceptor loss caused 
by a deficiency in functional PDE6B.

A combination treatment would perhaps provide more 
benefits to human patients with different stages of retinal 
degeneration, by focusing on replacing the defective gene as 
well as extending the therapeutic window and the survival 
of remaining photoreceptor cells. Optogenetic tools may 
represent a potential strategy for treating patients in advanced 
stages of RP. Following more preclinical and clinical studies, 
gene replacement therapy using intravitreal injections of 
highly efficient and penetrating AAV vectors combined with 
either antioxidants, growth factors, or other pharmacological 
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reagents, could become an important strategy for treating 
autosomal recessive RP in the future.
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