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Abstract

Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR).
Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood.
We have identified a new interaction between Rad54 and the replicative DNA clamp, proliferating cell nuclear antigen
(PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-
conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed
sensitivity to DNA damage and showed HR defects similar to the null mutant, despite retaining its ability to interact with HR
proteins and to be recruited to HR foci in vivo. We therefore surmised that the PCNA interaction might be impaired in vivo
and was unable to promote repair synthesis during HR. Indeed, the Rad54-AA mutant was defective in primer extension at
the MAT locus as well as in vitro, but additional biochemical analysis revealed that this mutant also had diminished ATPase
activity and an inability to promote D-loop formation. Further mutational analysis of the putative PIP-box uncovered that
other phenotypically relevant mutants in this domain also resulted in a loss of ATPase activity. Therefore, we have found
that although Rad54 interacts with PCNA, the PIP-box motif likely plays only a minor role in stabilizing the PCNA interaction,
and rather, this conserved domain is probably an extension of the ATPase domain I
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Introduction Rad51-coated DNA end into a homologous donor template
(termed synapsis) produces heteroduplex DNA and displaces the
complementary strand to produce a structure known as a
displacement loop (D-loop). The invading end then serves as a
priming site for DNA synthesis to replace the lost and/or damaged
sequence. Once repair synthesis is complete, the DNA interme-
diates are resolved and bound proteins removed, allowing the cell
to resume normal cell cycle progression and growth.

Rad54, a member of the Swi/Snf2 protein family, has been
reported to act in multiple steps of HR from pre-synaptic to post-
synaptic phases (reviewed in [5,6,7]). Rad54 contains the classical

Homologous recombination (HR) is a conserved and vital repair
mechanism used for a spectrum of genome maintenance processes,
such as repair of DNA lesions, restart of replication fork
progression, telomere lengthening, and proper chromosome
segregation during meiosis (reviewed in [1,2]). In budding yeast,
the main steps of HR are carried out by a highly-conserved set of
proteins encoded by the RAD52 epistasis group (reviewed in [3,4]).
The process of HR is initiated by the nucleolytic processing of a
double-strand DNA break (DSB) into 3’ single-stranded DNA
(ssDNA) tails, which are rapidly coated by the single-strand seven motifs of the SF2 superfamily of helicases/translocases,
binding protein, RPA. With the help of the Rad52 protein, RPA is which mark proteins that translocate on DNA in an ATP
then replaced by Rad51 to form a nucleoprotein filament, which hydrolysis-driven fashion. Despite its SF2 membership, Rad54
mediates the search for homologous donor DNA. Invasion of the likely has both ATPase-dependent and -independent roles in HR
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[8,9]. The pre-synaptic stabilization of Rad51 filaments by Rad54
is ATPase-independent [10] and is likely mediated by Rad51-
Rad54 physical interactions [11,12,13]. During synapsis, DNA
strand invasion and subsequent D-loop formation is also facilitated
by the action of the Radb4 protein, possibly due to its dsDNA-
dependent translocase and/or chromatin remodeling activities
that allow sampling and accessibility of donor DNA sequences
[9,14,15,16,17,18,19]. In addition, Rad54 has been reported to act
after the Radb1 invasion step of HR [20]. This protein exhibits
several biochemical activities that may also be used in its post-
synaptic role: ATP-dependent branch migration activity, as well as
translocation on dsDNA and removal of Rad51 [21,22,23,24].
Displacement of Rad51 by Rad54 is postulated to free the 3'OH
of the invading DNA end to allow priming of repair synthesis [20],
followed by primer extension via the proliferating cell nuclear
antigen (PCNA)-dependent DNA  polymerase delta [20,25,
26,27,28].

Finally, Rad54 has also been implicated in the resolution of
replication and recombination intermediates [29,30]. Genetic
studies on RAD54 mutants also support the notion for its role in
post-synaptic steps of the HR pathway: rad544 mutants are
synthetic lethal with s7s24, since in the absence of Srs2, lesions are
increasingly channeled into HR which cannot be efficiently
completed without Rad54 [31,32,33]. The many potential roles
of Rad54 and how these are choreographed throughout the HR
process remains unclear.

In this work, we probed the function of a conserved PCNA
interaction motif within Rad54, the PCNA interacting protein box
(PIP-box) [34]. PCNA is a homotrimeric sliding clamp that
functions as a processivity factor to various DNA polymerases and
interacts with numerous proteins often via a PIP-box motif,
although there are some notable exceptions involving interactions
with post-translational modifications of PCNA [35], as well as a
recently described AIkB homologue 2 PCNA interaction motif
(APIM) [36]. PIP-domains form a hydrophobic plug that binds to
PCNA through a hydrophobic pocket in the interdomain-
connecting loop [37,38]. It is likely that many PIP-containing
proteins compete for the hydrophobic pocket of PCNA. However,
since PCNA is a homotrimer, it is possible that PCNA binds
multiple binding partners simultaneously, perhaps to facilitate
enzyme exchange such as in the ‘tool belt’” model of translesion
repair polymerase exchange [39].

PCNA has long been implicated in repair processes, as multiple
PCNA mutants have been described that result in increased DNA
damage sensitivity [40]. Importantly, in the pena-79 mutant that
disrupts the interdomain connecting loop (IDCL) to which PIP-
containing proteins bind, cells show increased sensitivity to the
DNA damaging agents methyl methane sulfonate (MMS),
hydroxyurea (HU) and ultraviolet (UV) light [41]. It has been
postulated that PCNA scans the genome for damage and might
recruit repair proteins and auxiliary components such as
chromatin assembly factors to break sites [42,43]. The PIP
domain in Rad54 is very well conserved in flies, worms, mice and
humans, suggesting that this domain is important for HR function
in higher eukaryotes.

Here we wanted to decipher the role of Rad54-PCNA
interactions, in the hopes that it might provide clues to the
multiple roles of the Radb4 protein in HR, particularly in
assembly of the DNA repair synthesis machinery. Our results show
that Rad54 can indeed bind directly to PCNA, but surprisingly,
the mutation of two critical hydrophobic residues in the Rad54
PIP-box just slightly weakens this interaction. Arguing for the
domain’s importance for i vwo function, this mutant showed
significant defects in recombination assays and in the primer
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extension step of DNA repair synthesis. However, the HR
phenotype of the PIP-box mutant seems to be attributable to
defects in Rad54 ATPase activity, rendering its branch migration,
and D-loop functions ineffective. In fact, other mutations in the
canonical PIP-box that showed evidence for recombination defects
in vivo were also ATPase-defective. Overall, our data suggests that
the putative PIP-box motif within Rad54 might be an integral part
of its ATPase domain and is not essential for PCNA interaction.

Results and Discussion

Rad54 directly interacts with PCNA

Sequence analysis of the Rad54 family of proteins revealed the
presence of a conserved PCNA interaction protein motif, or PIP-
box, immediately adjacent to the central motif III of the Snf2
family ATPase domains (Fig. 1A and B). We confirmed that
Rad54 directly interacts with PCNA using purified proteins in
pull-down experiments (Fig. 1C). In addition, a peptide containing
the Rad54 PIP-box domain was capable of competing with full-
length Rad54 for interaction with PCNA (Fig. 1D), indicating that
the Rad54 binding site is likely near the interdomain-connecting
loop of PCNA.

It has been shown that two aromatic residues located within the
PIP motif are essential for interaction with PCNA [44]. Therefore,
we tested whether a mutant Rad54 protein in which the two highly
conserved aromatic residues Y494 and F495 were changed to
alanine (Rad54-AA) could bind to PCNA. Accordingly, a peptide
derived from the Rad54-AA mutant PIP-box (pAA) was unable to
compete with full-length Rad54 for interaction with PCNA, in
contrast to the corresponding intact PIP-box peptide (pFF,
Fig. 1D), indicating that the interaction between Rad54 and
PCNA is mediated by the PIP-box and IDCL domains To
determine whether the PIP-box in full-length Rad54 protein was
responsible for the interaction with PCNA, we purified both wild
type Rad54 and Rad54-AA mutant proteins in parallel. Rad54
wild type protein efficiently binds PCNA, albeit with lower affinity
at 200 mM KCI than at 100 mM KCIL Surprisingly, Rad54-AA
protein shows proficient binding to PCNA at 100 mM KCI, and
only slightly diminished binding at 200 mM compared to the wild-
type Rad54 (Fig. 1E), suggesting that this PIP-box is utilized for the
interaction only to a small extent. In summary, our pull-down
experiments suggest that Rad54 binds to the IDCL domain in
PCNA, however, the putative PIP-box in Rad54 plays only a
minor role in the interaction. Therefore, it is possible that Rad54
binds PCNA through an alternative, yet to be determined domain,
such as the PIM (PCNA-interaction motif), which also binds to
IDCL domain on PCNA [45,46], or APIM (AlkB homologue 2
PCNA-interaction motif) [36].

Moreover, individual interactions between PCNA and Rad54
may be transient in nature and the PIP-domain may still play a
role in stabilizing the overall Rad54-PCNA interaction, since
reported PIP-box-PCNA interactions range from fairly weak to
very strong [34]. The Rad54-PCNA interaction is on the weak
side, unlike the strong Pol32 interaction, which interacts through
both the PIP-domain and other domains [47]. On the other hand,
the Rad54-Rad51 interaction is extremely strong, and is unim-
peded by the PIP-box mutation in Rad54 (Fig. S1A in File S1). In
fact, Rad51 can outcompete PCNA for interaction with Rad54
(Fig S1B in File S1), indicating that the PCNA binding is weaker
than Rad51, and the two proteins overlap in their binding sites.
Although many proteins interact with PCNA, Rad54 is the first
protein that is also involved in promoting homologous recombi-
nation. It is therefore tempting to speculate that interaction with
Rad54 could govern the progression of recombination from
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synaptic (Rad51) to post-synaptic (PCNA) modes via such a
competition.

The rad54 PIP-box mutant has defects in resistance to
DNA damaging agents and in homologous
recombination

The slight loss of Rad54-AA interaction with PCNA in near-
physiological salt suggested it might have a more profound defect
in cellular conditions. Therefore, we tested whether the mutant
retained its biological function to repair spontaneous and induced
DNA damage and promote homologous recombination i vivo.
Null mutations in RAD54 show sensitivity to a variety of DNA
damaging agents including ionizing radiation [48], a decrease in
gene conversion events (GC), and a concomitant increase in the
rate of single-strand annealing events (SSA) [49,50]. We found
that the rad54-AA mutant is sensitive to MMS, HU and UV
damage and its sensitivities were indistinguishable from the rad544
strain (Fig. 2A). Likewise, spore viability, a measure of successful
meiotic recombination, was impaired in the rad54-A4 mutant,
although not quite as severe as in the rad544 mutant (Fig. 2B).

The effect of the rad54-AA mutant on the rate of spontaneous
recombination was measured using a recombination cassette at the
LEU?2 locus where two non-functional /lex2 alleles flank URA3. In
this assay, gene conversion rates are measured by the number of
events producing a functional LEUZ gene, while rates of another
Rad51-independent HR pathway, single-strand annealing (SSA),
are determined by the number of events where the intervening
URA3 sequence is lost [51]. Gene conversion events, Leu* Ura*
recombinants, were reduced 14-fold in the rad54-44 mutant, while
deletion or single-strand annealing events were increased 6-fold
(Fig. 2B). These recombination rates in the rad54-A4 mutant are
similar to that found in the deletion mutant. Lastly, we measured
spontaneous mutagenesis at the CANI locus and observed an
increase of 13-fold, again a level similar to that in the 7ad544 strain
(Fig. 2B). These data indicate that the rad54-AA strain is impaired
for HR in the repair of spontaneous damage during replication
and hence error-prone repair pathways are used instead. Taken

MMS (0.016%)  HU (200 mM)

YPD
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together, we conclude that the Rad54 PIP-box is critical for its
function in homologous recombination repair.

Rad54 PIP-box mutant cells show defects in the post-
synaptic stage of recombination

The role of PCNA as a replication clamp immediately suggested
a function for this interaction in the repair synthesis step of
recombination, so we tested whether this interaction affected later
step in HR. Interestingly, we observed an increase in the number
of spontaneous Rad52 recombination foci in the presence of the
rad54-AA mutant, to levels similar to the rad544 (Fig. S2A in
File S1). Increases in spontaneous Rad52 foci can result from
different scenarios. Either the incidence of Rad52 foci increases
during the cell cycle, or protein foci (occurring with the same
frequency as wild type) last longer due to a defect in recombination
or disassembly of repair complexes. To distinguish between these
possibilities, we measured Rad52 focus incidence and duration
using time-lapse microscopy. Interestingly, the average duration of
a Rad52 focus was over 3 times longer in rad54-AA or rad544 cells
compared to wild type cells, while the incidence remained
unchanged (Fig. S2B in File S1). This result led us to hypothesize
that the rad54-AA mutant had a defect in the completion of HR,
since the foci were not disassembled promptly. A later role of
Rad54 in recombination was proposed to be responsible for
synthetic lethality when deleted together with the SRS2 gene [52].
Fittingly, rad54-AA also shows synthetic lethality with s524
(Fig. S2C in File S1) supporting the notion that the mutant could
be defective in a post-synaptic HR step.

We then tested whether the rad54-A4 mutant was affected in its
ability to carry out the repair synthesis steps of recombination. To
this end, we used an assay developed by the Haber lab to detect
primer extension intermediates produced by DNA synthesis
following strand invasion from an HO-induced DSB at the MAT
locus in living cells [33]. In this reaction, Rad54 is required for
production of the primer extension intermediate, but not for
earlier steps of Rad51 binding to the DSB, or for synapsis with the
homologous donor template ([33]; Fig. 3A). We find that the

UV (150 J/m?)

B
Genome Instability Rates
Gene conversion Single Strand Annealing Mutagenesis Spore Viability
RAD54  6.6+1.2x10% (1.00) 2.1+0.3x10° (1.00) 9.3 x 10 (1.00) 94%
rad54-AA 5.0+2.0x 107 (0.08) 1.2+0.1x10% (5.71) 1.2x10% (13.33) 80%
rad54A 9.1+1.9x10® (0.01) 1.7+£02x10* (8.10) 1.5x 10 (16.67) 68%

Figure 2. The Rad54 PIP-box mutant renders cells defective in homologous recombination and genome stability functions. A. Cells
with the rad54-AA mutation are as sensitive to DNA damaging agents as the null mutant. Shown are 10-fold dilutions of cells spotted onto
plates treated with methylmethane sulfonate (MMS), hydroxyurea (HU) or ultraviolet (UV) light, at the indicated doses. The spot assay was performed
as described in the methods. B. The rad54 PIP-box mutant is defective in mitotic recombination and genome stability functions. Results
from wild type, rad54A and rad54-AA mutant strains in recombination assays are shown, and the fold change from the wild type is shown in
parentheses. Gene conversion and deletion (single-strand annealing) event rates were determined by fluctuation tests with the leu2-EcoRl::URA3-leu2-
BstEll reporter as described in the methods. The mean of the rates from three independent experiments are shown with standard deviations.
Spontaneous mutagenesis rates in the rad54-AA mutant were determined two or three times by fluctuation tests, as described. Significance was
determined using a t-test (p<<0.05). For spore viability, diploids homozygous for RAD54, rad544, or rad54-AA were sporulated and dissected, and the
surviving spores quantified. At least 100 spores were analyzed for each strain.

doi:10.1371/journal.pone.0082630.g002
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rad54-A4 mutation renders cells defective in formation of primer
extension intermediates (Fig. 3B). This was also confirmed by our
in vitro reconstituted DNA repair extension system ([27]; Fig. 3C).
However, the formation of primer extension intermediates was not
completely blocked and residual product (about 20% of wild type
levels) is still formed in the presence of rad54-AA4 (Fig. 3B). This
defect is specific to the Radb54 PIP-box mutant, since the
corresponding mutation in the Rad54 paralog Rdh54, did not
affect DNA repair synthesis in this assay (Fig. 3B). This result
suggests that the PIP-box domain of Rad54 is critical for its HR
functions i viwo, particularly for late recombination steps such as
repair synthesis.

Characterization of Rad54 PIP-Box Domain

The Rad54-AA mutant protein is deficient in most of its
biochemical activities

Since the i viwo interaction with Rad51 was unaffected by the
rad54 PIP-box mutation, but showed a profound recombination
defect (Fig. S1A in File S1 and 2B, respectively), we tested whether
this defect might lie in the inability of the Rad54-AA protein to
localize to Rad52 recombination centers. Therefore, we fused
rad54-AA at its endogenous chromosomal locus to the YFP
reporter gene and examined its localization using fluorescence
microscopy. As shown in Fig. S2D in File S1, the Rad54-AA-YFP
protein forms foci and colocalizes with Rad52 foci about 70% of
the time, which is indistinguishable from the 75% of wild type

Rad54 foci that colocalize with Rad52 foci. This indicated that the

A
F> <pC ., pA>
P w__X P va P el HML o
| X
< > = MATa
Ya <pB
B
RAD54 rad54A rdh54-AA rad54-AA
I I B
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12 65§ 1 2 5 1 2 5 1 2 5 postHO
(o
Rad54 wt Rad54-AA
PCNA[NM] - 06 3 15 06 3 15 - 06 3 15 06 3 15
RFC - - - - + + + - - - - + + +
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oligo —

D-loop [%]

Extended D-loop [%] O Q Q Q I =T S EENY Q Q 9 Q ® [}

Figure 3. Rad54-AA is defective in strand invasion and primer extension activities. A. Schematic of the MAT chromosomal locus
used for the examination of DNA repair synthesis. Arrows depict the direction of primers used for detection of primer extension intermediates
by PCR. B. The primer extension step of recombination is compromised in the rad54 PIP-box mutant. The top panel shows the formation
pA-pB product, which results from minimal DNA synthesis from the invading strand. Samples were taken at 1, 2 or 5 h after HO endonuclease cutting.
The bottom panel shows pC-pF control product. C. Rad54-AA is defective in DNA repair synthesis in vitro. Rad51 and DNA substrates were
pre-formed into nucleoprotein filaments as described, then either Rad54 wild type (wt, lanes 1-7) or Rad54-AA (lanes 8-14) was incorporated and D-
loop formation was initiated. DNA synthesis reactions were then performed using Polymerase o (15 nM), and increasing concentrations (2.5, 5, 10,
20 nM) of the PCNA clamp, with or without the PCNA clamp loader, RFC (10 nM), in the presence of RPA (666 nM). The reactions were monitored
using labeled a-[**P]-dATP, and percentage of each reaction product shown below.

doi:10.1371/journal.pone.0082630.g003
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Rad54-AA mutant protein is fully capable of being recruited to
sites of HR in the cell. Altogether, these data suggest that the
Rad54 PIP-box mutation does not affect the Rad51-Rad54
interaction or recruitment to recombination centers.

However, since the PIP-box mutant shows a recombination
phenotype similar to that of Rad54 deletion mutant, we checked
the effect of this mutation on other Rad54-mediated biochemical
properties, particularly ones required for later steps in HR.
Therefore, we compared the D-loop formation activities of wild
type and the Rad54-AA protein. While we found a significant
defect in D-loop formation when performing the i vitro DNA
extension assay (Fig. 3C), we confirmed this observation by testing
D-loop formation with a range of Rad54 protein concentrations,
and found it defective in all tested conditions (Fig. S3 in File S1).
These results indicate that the Rad54-AA protein, while retaining
its interaction with Rad51, does not promote homologous pairing
and subsequent extension.

The failure to promote D-loop formation and DNA strand
extension despite an intact Rad51 interaction is reminiscent of the
ATPase defective Rad54 protein [53]. For this reason, we tested
the ATP hydrolysis of the Rad54-AA mutant and observed
dramatic reduction of ATPase activity compared to wild type
protein (Fig. 4A). Since Rad54 protein also requires ATP
hydrolysis for branch migration [24], we tested both proteins for
this activity. As shown in Fig. 4B, again the PIP-box mutant was
defective in branch migration of Holliday junctions at all
concentrations tested. Taken together, these data indicate that
the PIP-box region of Rad54 is an extension of the ATPase
domain III of the conserved helicase motifs within the Swi2/Snf2
family of translocases (Fig. 1A).

DNA binding and oligomerization of Rad54-AA protein

Since the ATP hydrolysis activity of Rad54 has been shown to
be stimulated by dsDNA binding [13], we wished to test whether
the ATPase defect of the Rad54-AA mutant was linked to an
mnability of this mutant to efficiently bind dsDNA. When using
double-stranded plasmid DNA we found that the Radb54-AA
mutant bound DNA slightly less efficiently than the wild type
whether in the absence or presence of ATP (Fig. 5A and 5B,
respectively). However, when we performed the assay using a short
49-mer dsDNA as substrate, we observed no difference between
the wild-type and Rad54-AA proteins (Fig. S4 in File S1).
Furthermore, an additional PIP-box mutant defective in ATPase
activity (Radb54-1.491Q (Rad54-L/Q)) showed similar DNA
binding compared to wild type protein (Fig. S5 in File S1). Taken
together, these results indicate that the PIP-box sequence of
Radb54 plays only a minor role, if any, in the binding of dsDNA
and is more likely to be directly required for the ATPase function
of the protein.

Mutational analysis of the PIP-box domain

Additional mutations to the RAD54 PIP-box consensus
sequence were generated to study the effect of amino acid changes
in the hopes that they might differentially affect PCNA binding
and/or ATPase activity, to separate these activities and study the
PCNA interaction of Rad54 in isolation (Fig S6A in File S1).
Substitutions of other key conserved residues, such as the L491Q),
and Q488A mutants also drastically reduced ATPase and D-loop
formation activities of the Rad54 protein, whilethe F495H
(Rad54-F/H) substitution was the only mutation that retained
these activities (Fig. S6B and C in File S1). The rad54-F/H mutant
exhibited wild type resistance to MMS and a level of spontaneous
Rad52 foci that was indicative of proficient/timely completion of
HR (Fig. S6D in File S1). Since there was no appreciable defect in
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Figure 4. The rad54-AA mutant protein is deficient in most of
its biochemical activities. A. Rad54-AA has lower ATPase
activity compared to wild type Rad54. Rad54-AA and Rad54 wt
(75 nM, each), respectively, were mixed with dsDNA and o-[>?P]-labeled
ATP. At indicated times, samples were withdrawn and analyzed by thin-
layer chromatography. Error bars represent standard error produced by
3 experiments. B. Rad54-AA does not branch migrate mobile
Holliday junctions. DNA substrate was incubated with increasing
concentrations (2.5, 5, 10, 20 nM) of Rad54 wt (lanes 2-5) or Rad54-AA
(lanes 6-9), respectively, in the presence of ATP. Lane 1 shows the no
protein control reaction.

doi:10.1371/journal.pone.0082630.g004

several i viwo homologous recombination and DNA repair assays
(Fig. S6D in File S1 and data not shown), these results suggest that
this mutant is not deficient for noteworthy functional interactions.

PCNA i1s involved in myriad interactions during multiple facets
of DNA metabolism, including nearly all repair processes, and
now we include an obligate homologous recombination protein to
the list of interactors. How this interaction affects Rad54 function
is unclear at the present, given the inability to isolate a separation-
of-function mutant in which the PCNA interaction is abrogated
while preserving ATPase activity. Although the PIP-box motif of
the Rad54 family is a clear fit to the consensus sequence, it is
probable that this domain is an extension of motif III of the
ATPase domains, since several different mutations in this domain
substantially affect this critical biochemical activity (Fig. 4, and S3
in File S1). A complementary study performed independently in
the Heyer laboratory came to the same set of conclusions (see co-
submitted ms.). Given the ability of the Rad54-AA mutant to only
slightly reduce binding to PCNA under most biochemical
conditions, Radb4 likely interacts with PCNA via multiple
domains. Thus, extensive further mutational studies of Rad54
will be necessary to disrupt the cognate domains for dissecting the
functional relevance of the Rad54-PCNA interaction. How, and if
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Rad54-AA[nM] - - - - - - - 31.2562.5 125 250 500 1000
Rad54-WT [nM] - 31.2562.5 125 250 500 1000 - - - - - -
complex—
Free plasmid —
1 2 3 4 5 6 7 8 9 10 11 12 13
0 mMATP
Rad54-AA[nM] - - - - - - - 31.2562.5 125 250 500 1000
Rad54-WT [nM] - 31.2562.5 125 250 500 1000 - - - - - -
complex—
Free plasmid —
1 2 3 4 5 6 7 8 9 10 11 12 13
2.5 mM ATP
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12 DNA binding of Rad54 and Rad54-AA
1.0
0.8 1 —a&— Rad54-WT 0 mM ATP
x
% 0.6 1 —w— Rad54-AA 0 mM ATP
IS
3 04 —8— Rad54-WT 2.5 mM ATP
0.2 —v— Rad54-AA 2.5 mM ATP
0.0

0 200 400 600 800 1000
Rad54 [nM]

Figure 5. Rad54-AA cannot bind dsDNA as efficiently as wild type Rad54. A. Rad54-AA performs less well than the wild type in a
DNA binding assay in the absence of ATP. Purified S. cerevisiae Rad54 and Rad54-AA (31.25, 62.5, 125, 250, 500 or 1000 nM) were incubated for
10 min with linearized pBluescript plasmid to assess DNA binding. Prior to gel electrophoresis, the proteins were cross-linked to DNA with 0.1%
glutaraldehyde. After the addition of gel loading buffer, the reaction mixtures were resolved in a 0.8% agarose gel in TAE buffer and stained with
Midori Green DNA stain. B. Rad54-AA performs less well than the wild type in a DNA binding assay in the presence of ATP. DNA binding
assay as performed exactly as in A, except for the addition of 2.5 mM ATP, and an ATP-regenerating system to the reaction. C. Quantification of
the DNA binding reactions shown in A and B. Error bars represent the standard error from three independent trials.
doi:10.1371/journal.pone.0082630.g005

this interaction is linked to the inhibition of HR at replication forks cells, the PCNA interaction is likely also conserved, possibly for the
by PCNAS"™® interaction with Srs2 [54,55,56] is an important orchestration and timely completion of HR, and the maintenance
question for future study. Since the Rad54 sequence is highly of genome integrity.

conserved in C. elegans, D. melanogaster, as well as in mammalian
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Materials and Methods

Yeast strains and plasmids

Strains used in this study are listed in Table S1. Standard yeast
genetic techniques and growth conditions were used for creating
and propagating strains [57]. Strains were grown at 30°C unless
indicated otherwise. The RAD54 and RDH54 PIP-box mutations
were produced in the RADS derivative W303 yeast background
[58,59] by a cloning-free allele replacement method [60]. Primer
sequences are available upon request; all replacements were
confirmed by DNA sequencing.

Plasmid pRS316 with rad54-1Y4944 F4954 was digested with
Awvrll and AfIII to release a fragment containing the rad54-14944
F4954 mutations. This fragment was used to replace the
corresponding wild type fragment of RAD54 inserted into
pRS306. Subcloning of the rad54-14944 F495A fragment was
verified by the presence of a Nofl site, which marks the rad54-
Y4944 F4954 mutations and also by sequencing. The plasmid
PRS306-rad54-1Y4944 F4954 was digested with HindIIl and the
linear fragment was used to transform a wild type strain. After
confirming the integration, the strain was passaged on medium
containing 5-fluoro-orotic acid (5-FOA) to select for strains that
had lost one copy of RADS54. Strains with rad54-14944 F4954 were
confirmed by MMS sensitivity and DNA sequencing.

Plasmids for expression of Rad54 mutant versions (Rad54-AA,
Radb54 Q488A (Rad54 Q/A), Radbd4 L491Q (Rad54 L/Q),
Rad54 F495H (Rad54 F/H) and Rad54 LF491,495QH (Rad54
LF/QH)) protein were generated by site-directed mutagenesis of a
vector carrying wild type Rad54 [16].

Recombination and genome stability assays

Gene conversion (Leu” Ura® segregants) and single-strand
annealing (Ura™ segregants on 5-FOA medium) were performed
using the leu2-FEcoRI::URA3-leu2-BstEIl reporter. Fluctuation tests
were performed as described [46] using nine colonies for each test
and performing the tests on three spore segregants for each
genotype. Chromosome loss and mitotic recombination assays in
diploids were performed as described [31] using fresh zygotes for
each genotype. Nine zygotes were used for each test, and three
tests were performed for each genotype. Mutation rates were
calculated for canavanine resistant segregants as described [31].
Synthetic lethality was determined by mating a rad54-A4 strain to
an 57524 strain of opposite mating type. Diploids heterozygous for
the SRS2 and RAD54 loci were then sporulated and dissected using
standard techniques. Viable spores were scored for the srs24
genotype using histidine prototrophy conferred by the HIS3
replacement of SRS2, and for RAD54 using colony PCR, followed
by digestion of the product with the Nod restriction enzyme, which
specifically cleaves the rad54-44 mutation site.

Spore viability was determined by sporulation and dissection of
fresh diploids homozygous for RAD54, rad54-AA or rad54A.
Number of viable spores after 3 days growth on YPD were then
counted and expressed as a percentage of the total number of
spores dissected.

Spot assay

Sensitivities to MMS, HU and UV were performed as described
elsewhere [61].Live cell fluorescent microscopy of recombination
proteins.

Live cell fluorescent microscopy of recombination
proteins

Yeast cells were prepared for microscopy as previously
described and imaged on a Leica DM550B microscope described
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therein [62]. Volocity software (Improvision) was used to capture
11 Z-planes through the cells at 0.3 um distances for focus
frequency analyses. For Rad52 focus duration analyses, individual
foci were followed over 5 minute intervals using time-lapse
microscopy as described previously [63].

Purification of Rad54 and its mutant forms
The expression and purification of Rad54, Rad54-AA, Rad 54
Q/A, Rad54 L/Q, Rad54 F/H and Rad54 LF/QH mutants were

carried out as previously described [29].

Purification of other proteins
Rad51, RPA, Polymerase 8, RFC and PCNA were purified as
described previously [27].

Binding of Rad54 to PCNA Affi-beads

Affi-gel 15 beads containing PCNA (Afhi-PCNA; 5 mg/ml) or
bovine serum albumin (Affi-BSA, 12 mg/ml) were prepared as
described previously [64]. Purified Rad54 and Rad54-AA (3 pg of
cach), was mixed with 5 ul of Affi-PCNA or Affi-BSA in 30 pl of
buffer K (10 mM NayHPOy,, 1.8 mM KH,PO, pH 7.4 and either
100 mM or 200 mM KCI) for 30 min on ice. The beads were
washed twice with 150 pl of the same buffer before being treated
with 25 ul of 2% sodium dodecyl sulfate (SDS) to elute bound
protein. The input (I), a supernatant containing unbound proteins
(S), and the SDS eluate (E), were analyzed by 12% SDS
polyacrylamide gel electrophoresis (PAGE) and staining with
Coomassie Blue. The peptide competition assays were done in the
presence of either pFF (VILSGTPIQNDLSEYFALLSFSNP) or
PAA (VILSGTPIQNDLSEAAALLSFSNP) peptides derived from
Rad54 or Rad54-AA sequence, respectively. The Rad51 compe-
tition was performed as described above. One reaction containing
4 ug of Rad51 was pre-incubated with Rad54 (3 pg) before
applying the mixture on the Affi-PCNA beads. In the other
reaction, 4 or 15 pg of Rad51 protein was included to the Rad54
and PCNA complex pre-assembled on Affi-PCNA beads, followed
by washing and SDS elution as described above.

Affinity pull-down

Purified Rad51 (3 pg) was incubated with Rad54 or Rad54-AA
(3 ug each) in 30 pl of buffer T [20 mM Tris-HCI, pH 7.5,
150 mM KCI, 1 mM dithiothreitol (DTT), 0.5 mM EDTA, and
0.01% NP40] for 30 min at 4°C.. The reactions were mixed with
15 ul Ni-NTA Agarose (Novagen) at 4°C for 30 min. After
washing the beads twice with 150 ul of buffer T containing
150 mM KCl, the bound proteins were eluted with 30 ul of 5%
SDS. The supernatant (S), wash (W) and SDS eluate (E) fractions
(10 pl each), were analyzed on 12% SDS-PAGE.

DNA substrates
Oligonucleotides were purchased from VBC Biotech and the
sequences are shown in Table S2. All substrates were prepared by

mixing an equimolar amount of the constituent oligonucleotides in
the hybridization buffer as described in [29].

ATPase assay

Rad54 and its mutant forms (75 nM each) were incubated at
30°C with pBluescript dsDNA (10 uM nucleotides), | mM ATP
and 4 nCi/pl of [7-32P] ATP at 30°C in buffer AA (30 mM Tris
pH 7.5, 0.5 mM DTT, 0.1 mg/ml BSA, 0.9 mM MgCly).
Aliquots were withdrawn at 0, 2.5, 5, 10 and 20 min after the
incorporation of Rad54 or its mutants. The reaction was stopped
by adding SDS to 1% and reaction products were separated by
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thin layer chromatography on cellulose plates. These were
analyzed by phosphorimaging using a scanner FLA-9000 Starion
(Fujifilm) and the amount of labeled phosphate released during
ATP hydrolysis was quantified with MultiGauge software (Fuji).

Branch migration assay

Fluorescently labeled DNA substrate (6 nM) was incubated at
30°C with the indicated quantities of Rad54 or Rad54-AA in
buffer D (25 mM Tris pH 7.5, 1 mM DTT, 0.1 mg/ml BSA,
50 mM KCI, 7.5 mM creatine phosphate, 11.25 pg/ml creatine
kinase, 2.5 mM MgCl, and 2.5 mM ATP) for 15 min. The
reaction was stopped by the addition of SDS to 0.2% and
proteinase K to 0.5 mg/ml followed by incubation at 30°C: for
3 min. After adding loading buffer to the samples the reaction
products were resolved by electrophoresis on a 10% native
polyacrylamide gel in 1xXTBE buffer. Gels were scanned using the
image scanner FLA-9000 Starion imager (Fuji) and quantified by
MultiGauge software (Fuji).

DNA mobility shift assay

Purified Rad54 and Rad54-AA (31.25, 62.5, 125, 250, 500 or
1000 nM) were incubated with linearized pBluescript plasmid
(30 uM as nucleotides) at 30°C in 10 pl of buffer D (40 mM Tris-
HCI, pH 7.8, 50 mM KCI, 1 mM DTT, and 100 pg/ml BSA) for
10 min. Where indicated, 2.5 mM ATP, 3.5 mM MgCl, and an
ATP-regenerating system (10 pg/ml creatine phosphokinase and
20 mM creatine phosphate) were present in the reaction. Prior to
gel electrophoresis, proteins were cross-linked to the DNA by
addition of glutaraldehyde to a final concentration of 0.1%,
followed by incubation at 30°C.. After the addition of gel loading
buffer, the reaction mixtures were resolved in 0.8% agarose gel in
TAE buffer at 4°C. After electrophoresis, the gel was stained with
Midori Green DNA stain (Nippon Genetics). The DNA species
were visualized and quantified in the Fuji FLA 9000 Starion
imager (Fuji) with the Multi Gauge software (Fuji).

D-loop reaction and extension assay

The reactions were carried out essentially as described in Krejci
et al. [64]. Briefly, the fluorescently labeled oligonucleotide D1
(3 uM nucleotides) was incubated with Rad51 (1 uM) for 5 min at
37°C to assemble Rad51-ssDNA nucleoprotein filaments. After
incorporation of Rad54 or its mutant forms (75, 150 and 300 nM,
respectively) the reactions were incubated for 3 min incubation at
23°C.. D-loop formation was initiated by the addition of pBlue-
script replicative form I DNA (50 uM base pairs). The reaction
mixtures were incubated at 30°C for 5 min, deproteinized by
treatment with SDS (0.5%) and proteinase K (0.5 mg/ml) at 37°C
for 5 min, and then run in a 1% agarose gel in TAE buffer. The
gel was subjected to fluorescent imaging analysis in an FLA-9000
Starion imager (Fuji) with the Multi Gauge software (Fuji).

The wn vitro D-loop extension assay was performed as described
previously [27]. Briefly, primer extension was initiated by
formation of D-loop with either Rad54 or Rad54-AA (see above)
followed by incubation with RPA (660 nM), PCNA (2.5, 5, 10 and
20 nM), RFC (10 nM) and Pol § (15 nM) in buffer O (20 mM
Tris-Cl, pH 7.5, 5 mM DTT, 0.1 mM EDTA, 150 mM KCI, 40
pug/ml BSA, 8 mM MgCl2, 5% glycerol) and 100 uM each of
dGTP and dCTP. The reaction mixtures were then incubated for
5 min at 30°C and DNA synthesis was initiated by addition of
buffer S (100 pM dTTP and 0.375 puCi [0->*P] dATP in buffer
O). After 10 min at 30°C, the reactions were stopped, deprotein-
ized and loaded on a 0.8% (w/v) agarose gel. The gel was then
dried on DE81 paper and exposed to phosphorimager screen and
analyzed in Fuji FLA 9000 imager with the Multi Gauge software.
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In vivo primer extension assay

The rad54-AA and 1dh54-AA4 alleles were introduced into the
primer extension assay strain background [33] by transformation
of the wild type assay strain using PCR-based allele replacement
[60]. Primer sequences are shown in Supplementary information;
all replacements were confirmed by DNA sequencing. HO
induction, cell harvests, DNA extractions, and the primer
extension assays were carried out as described in [65].

Supporting Information

File S1 Contains Figures S1-S6 and Tables S1-S2.
Figure S1 Characterization of the Rad54-PCNA interac-
tion. A. The Rad54 PIP-box mutant retains interaction
with Rad51. Rad51 was preincubated with Rad54 (lanes 1-4) or
Rad54-AA (lanes 5-8) or alone (lanes 9-12) then mixed with Ni-
NTA agarose beads. After washing, the bound proteins were
cluted and the supernant (S), wash (W) and SDS eluate (E)
fractions were analyzed on 12% SDS-PAGE. Input (I) lanes show
starting material containing unbound protein as a control. B.
Rad51 outcompetes PCNA for interaction with Rad54. In
the pull-down experiment, Rad54 was either pre-incubated with
Rad51 and then mixed with Affi-PCNA beads (lanes 2, 6), or first
the complex between Rad54 and PCNA was formed, and later this
complex was challenged with equimolar concentration of Rad51
(lanes 3, 7) or with 10 fold excess of Rad51 over PCNA (lanes 4, 8).
In the control experiment, Rad54 was incubated with affi-PCNA
beads (lanes 1, 5). Supernatant (S), and eluate (E) fractions were
separated on a 12% SDS-PAGE gel, followed by Coomassie
staining.

Figure S2 The Rad54 PCNA interaction mutant (AA) is
defective in completion of recombination. A. Increased
levels of Rad52 foci in the rad54A and rad54-AA mutants.
Shown are representative single Z-planes of wild type and rad54-
AA strains expressing Rad52-RFP from the endogenous locus.
Scale bar, 5 microns. B. Rad52 foci last longer in the rad54A
and rad54-AA mutants. Points represent duration of individual
foci, the line marks the mean duration for each strain. Significance
from the wild type was determined by one-tailed T-test (p<<0.05).
C. rad54-AA is synthetic lethal with srs24. Diploids
heterozygous for rad54-AA and srs24 were sporulated and
dissected. The phenotype of the non-viable spores were gleaned
from that of viable sister spores. No viable rad54-AA srs24 were
observed, while single mutants were observed at the predicted
ratios. D. Rad54-AA-YFP is expressed at similar levels to
the Rad54-YFP protein and is able to be recruited to
Rad52 recombination foci. Shown is a representative Z-plane
of cells expressing Rad52-RFP and either Rad54-YFP or Rad54-
AA-YFP. Colocalization is shown in the RFP-YFP merge panel
(RY merge) with orange arrows. Differential Interference Contrast
(DIC) image is included to show cell morphology. Scale bar, 5
microns.

Figure S3 Rad54-AA is defective in D-loop formation.
Rad51 (1 pM) was first nucleated on labeled ssDNA, followed by
addition of increasing concentrations (75, 150, 300 nM) of Rad54
wild type (wt, lanes 2-4) or Rad54-AA (lanes 5-7), respectively. D-
loop reactions were started by addition of the donor plasmid. Lane
1 represents control reaction with no Rad54. After the addition of
gel loading buffer, the reaction mixtures were resolved in a 0.8%
agarose gel in TAE buffer.

Figure S4 Rad54-AA binds equally well short dsDNA
oligonucleotide. A. Rad54-AA and wild type bind equally
well to the short dsDNA in the absence of ATP. Purified S.
cerevisiae Rad54 and Rad54-AA (12.5, 25, 50, 100, 200 nM) were
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incubated for 10 min with fluorescently labelled dsDNA 49-mer in
the absence of ATP. After the addition of gel loading buffer, the
reaction mixtures were resolved in a 10% polyacrylamide gel in
TBE buffer. B. Rad54-AA and wild type bind equally well
to the short dsDNA in the presence of ATP. Purified S.
cerevisiae Rad54 and Rad54-AA (12.5, 25, 50, 100, 200 nM) were
incubated for 10 min with fluorescently labelled dsDNA 49-mer in
the presence of 3 mM ATP. After the addition of gel loading
buffer, the reaction mixtures were resolved in a 10% polyacryl-
amide gel in TBE buffer. C. Quantification of the DNA
binding reactions shown in A and B. Error bars represent the
standard error from three independent trials.

Figure S5 Rad54-L/Q binds dsDNA as efficiently as wild
type Rad54. A. Rad54-L/Q proficiently binds DNA.
Purified S. cerevisiae Rad54 and Radb54-L/Q (31.25, 62.5, 125,
250, 500 or 1000 nM) were incubated for 10 min with linearized
pBluescript plasmid to assess DNA binding. Prior to gel
electrophoresis, the proteins were cross-linked to DNA with
0.1% glutaraldehyde. After the addition of gel loading buffer, the
reaction mixtures were resolved in a 0.8% agarose gel in TAE
buffer and stained with Midori Green DNA stain. B. Quanti-
fication of the DNA binding reactions shown in A. Error
bars represent the standard error from three independent trials.
Figure S6 Rad54 PIP-box mutant analysis. A. PIP-box
motif and the location of the new mutations. The
consensus sequence of the PIP-box and the amino acid sequence
of Rad54 between Q488 and F495 is depicted. The mutations in
Rad54 (Q488A; 1491Q); F495H and 1.491Q,FF495H) are shown
below. B. Rad54 F495H mutant retains wild type ATPase
activity, while all others do not. Rad54 wild type (wt), Rad54
0Q488A (Radb4 Q/A), Rad54 L491Q (Rad54 L/Q), Rad54
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