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Abstract
This manuscript proposes the image intra-class correlation (I2C2) coefficient as a global measure
of reliability for imaging studies. The I2C2 generalizes the classic intra-class correlation (ICC)
coefficient to the case when the data of interest are images, thereby providing a measure that is
both intuitive and convenient. Drawing a connection with classical measurement error models for
replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging
studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2
estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero
I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication
studies arising from different brain imaging modalities and settings: Regional Analysis of
VolumEs in Normalized Space (RAVENS) imaging for characterizing brain morphology, seed-
voxel brain activation maps based on resting state functional MRI (fMRI), and fractional
anisotropy (FA) in an area surrounding the corpus callosum via diffusion tensor imaging (DTI).
Software and data are provided to ensure rapid dissemination of methods. Resting state functional
MRI (fMRI) brain activation maps are found to have low reliability ranging between 0.2 to 0.4.
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1 Introduction
Replication is the cornerstone of science. Its absence reduces any scientific endeavor to a set
of unverified beliefs. Brain imaging studies are no exception, though they have several
specific characteristics that conspire to make quantification of reliability especially difficult.
First, measurements are complex and idiosyncratic for each modality. Second, the definition
of the actual target to be measured is often imperfect. Third, the data sets are large and not
amenable to standard investigations of replication. Fourth, there is relatively little
crosspollination of research between different imaging modalities. Finally, setting up
replication experiments can be difficult under many scenarios.

A variety of methods have been proposed for measuring the reliability of images,
particularly in the context of functional neuroimaging studies (see [4] for an overview). One
approach, the intra-class correlation (ICC) ([33]), can be used to measure the similarity
between region of interest (ROI) summaries of activation, intensity or shape metrics in
multiple subjects under two or more experimental replications. Another approach, the Dice
coefficient ([28]) measures what proportion of voxels exceed a threshold, such as one
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indicating activation, in both of two separate imaging sessions. A third approach, predictive
modeling, measures the ability of a training data set to predict the structure of test data. One
of the best established predictive modeling techniques within functional neuroimaging is the
nonparametric prediction, activation, influence, and reproducibility sampling approach
(NPAIRS [34]), which has been used to illustrate how small changes in an fMRI processing
pipeline can have dramatic effects on final results.

In this work, we propose a general model for brain imaging replication studies and introduce
the image intra-class correlation (I2C2) as a measure of data reliability. This measure
generalizes the classic (scalar) ICC to the case when the measurement target is an image.
Resampling approaches are then developed to quantify I2C2 variability under the replication
design and to test whether it is different from the I2C2 obtained under a random
permutations of subject matching. Notably, the proposed framework is applied to three
replication studies utilizing data from different brain imaging modalities. These include:
Regional Analysis of Volumes in NormalizEd Space (RAVENS) imaging (a technique used
to investigate localized changes in brain morphology) [13], seed-voxel brain connectivity
maps based on resting state functional magnetic resonance imaging (rs-fMRI), and fractional
anisotropy (FA) measured using diffusion tensor imaging (DTI) in an area surrounding the
corpus callosum.

2 The image intra-class correlation coefficient
To better understand the underlying issue, consider the most basic replication study where J
= 2, scalar replicate measurements are collected for each of I subjects. An example would be
measuring total white matter brain volume from two imaging sessions. Yet even in such a
straightforward setting, the study of and expectations for the extent of replication can vary
quite dramatically. For example, consider the difference between study designs: in one
study, replicate images are collected on the same day, using the same brand of scanner,
processed by the same technicians versus a second study, where replicate images are
collected weeks apart, in different laboratories, with different technicians and different
scanners. Using our example for context, let Xi denote the true (unknown) white matter
volume and Wij the white matter volume measurements from two replications. Succinctly,
the observed Wij are the measured proxies of the measurement of interest, Xi. The classical
measurement error model [6, 17] in replication studies is

(1)

with assumptions that the measurements, Xi, are independent across subjects and the
measurement errors, Uij, are independent across both subjects and replicates and are
mutually independent of Xi, for i = 1, …, I, and j = 1, J = 2. Conceptually, Uij is the error
that occurs during each individual measurement of the true target, Xi. The classical
measurement error model further assumes that the measurement error variates, Uij have the

same variance, . Likewise, we denote the variance of Xi by . This model is then
equivalent to an one-way ANOVA model with random effects. Notice that the observed
measurements, Wij, for the same subject, i, are correlated, as they share the same Xi.
Specifically, the correlation is equal to

This is the well known intra-class correlation (ICC) coefficient. Here the “class” is the
replication experiment and the correlation is between replicated measurements for the same
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subject. In the measurement error literature ICC is referred to as the reliability ratio. The
ICC is a scale-free quantity between 0 and 1, where 0 corresponds to exact independence of
measurements Wi1 and Wi2; that is, they are unrelated, despite attempting to measure the
same underlying quantity. Correspondingly, 1 indicates perfect reliability for every subject,

Wi1 = Wi2 = Xi. Estimation is simple;  can be estimated as the variance of the Wij and 
can be estimated by the variance of (Wi2 − Wi1)/2.

Generalizations of the ICC to high-dimensional multivariate settings, such as images, are not
obvious. However, a need for reliability metrics from these settings arises frequently. For
example, the target of measurement might be a measure of brain morphology in a template
(see Section 4.1), an rs-fMRI connectivity map (see Section 4.2), an FA map in a region of
interest such as the area surrounding the corpus callosum (see Section 4.3), etcetera. In
specific terms, let Xi(υ) be the (unknown) true image and Wij(υ) be the proxy measurements
of Xi(υ) at voxel υ. The classical image measurement error can then be written as

(2)

where all images are represented as V × 1 dimensional vectors; Wij = {Wij(υ) : υ = 1, …, V}
are the observed proxy images; Xi = {Xi(υ) : υ = 1, …, V} are the true images, assumed to be
independent across subjects, and Uij = {Uij(υ) : υ = 1, …, V} are the measurement error
images, assumed to be independent across subjects, replicates and (mutually) of Xi. Here, i =
1, …, I, and j = 1, …, Ji. Thus, we consider a general case involving different numbers of
replicates per subject, Ji of any value greater than or equal to 2.

The model further assumes that the measurement error vector, Uij, has covariance KU and Xi
has covariance, KX; that is, cov(Uij, Uij) = KU and cov(Xi, Xi) = KX. These cannot be directly
estimated, as the Uij and Xi are unobserved. Note that the covariance operator of the
observed data KW = cov(Wij, Wij), a quantity directly estimable from the data, can be written
as KW = KX + KU via the straightforward application of the multivariate variance operator to
(2). Exactly, paralleling the univariate setting, KX is interpreted as the within-subject
covariance and KU as the covariance of the measurement error.

Based on the aforementioned connection with the classical measurement error model (1), we
propose the following image intra-class correlation (I2C2) coefficient

(3)

One possible way of calculating I2C2 is to estimate the smoothed covariance matrices using
Multilevel Functional Principal Component Analysis (MFPCA) [14] or its extension to high-
dimensional data [37]. Alternatively, we obtain the following method of moments estimators
based on formulas from [6] to reduce the computational cost,

and
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Here W̅‥(υ) = ∑i,j,υ Wij(υ)/IJ is the average of all images over all subjects and visits and

 is the average image for subject i over all visits j. Thus, an
estimate of I2C2 can be reached by entering these estimates into equation (3).

Calculating the I2C2 is both quick and scalable, because it does not require dealing with the
V × V dimensional matrices. Indeed, the computational burden for calculating trace(KW) and
trace(KU) is linear in V. Moreover, the formulas separate by subject, making the calculations
simple and easy to implement even on very modest computational resources. Both
MATLAB [23] and R [27] code are provided for calculating I2C2 at http://
www.biostat.jhsph.edu/~ccrainic/software.html. In practice one may also be interested in the
reliability of imaging in a particular region of interest (ROI). The formulae for an ROI are
almost identical to the ones for the whole-image, except that the summation over υ is done
only within the ROI mask. This is especially useful when one suspects that the reliability of
image measurements varies across functional or anatomical area brain regions.

To assess the variability of the I2C2 parameter, a method is proposed to calculate a
confidence interval by nonparametrically bootstrapping subjects and applying the same
estimation procedure for every bootstrap sample. There are multiple sources of variability
for the I2C2 estimator, but the major source will be the limited number of subjects, I, and
the imbalance in the number of replicates, where applicable.

Lastly, the distribution of the I2C2 under complete random sampling, i.e. no reliability, is
investigated. In this case, the model is Wij = Uij, and recall that the Uij are independent.
Draws from such a null distribution can be realized using using permutation sampling. More

precisely, all indexes, (i, j), are collected and relabeled as ki,j for . Let
σ(ki,j) be a random permutation obtained by sampling the k-vector without replacement.
Denote the image corresponding to σ(ki,j) by W̃ij and estimate the I2C2 coefficient for the
model W̃ij = X̃i + Ũij. Under permutation, the (i, j) pairing does not have the same sense as
before, because the images W̃ij are not necessarily from the same subject. By breaking the
subject associations via random permutation, a null distribution that is otherwise close to the
variation in the data is obtained. Because the number of resamples must be large to
minimize Monte Carlo error, for both bootstrapping and permutation testing, the speed of
the proposed methods is crucial. Below, we first investigate the “reliability” of this proposed
metric in the next section, and show how these quantities can be calculated and used in three
different imaging applications in section 4.

3 Simulations
The I2C2 metric is developed based on the assumptions that the signal and noise are
independent and normally distributed across repeated measurements. Using extensive
simulations we investigate the effects of various model violations on estimating I2C2. In
particular, we examine the performance of our algorithm when the model is correctly- and
incorrectly specified. When the model is miss-specified we study scenarios where: 1)
replication errors are non-Gaussian; 2) replication errors are correlated over repetitions; and
3) the signal is correlated with the replication errors.

3.1 Correctly-specified model
Consider the data generating mechanism Wij(υ) = Xi(υ) + Uij(υ), i = 1, 2, ⋯, I; j = 1, Ji; υ ∈

 where each subject i has Ji images repeatedly measured on a group of voxels  Let Uij(υ)
= Vij(υ) + εij(υ), where Xi(υ) and Vij(υ) are mutually uncorrelated with smooth covariance
operators, and εij(υ) are the i.i.d. for each voxel, repetition and subject. Generate
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 and , where  and

. To approximate the DTI-MRI example in Section 4, we set μ(υ) to be the
vector obtained by concatenating the population average of corpus callosum images. Let =

{υ1, υ2, ⋯, υV}, then V = 38 × 72 × 11. We set K1 = K2 = 4,  and

, k = 1, 2, 3, 4. The eigenfunctions ϕk(υ) and ψk(υ) are chosen to be
orthonormal blocks as in [37]. Data was simulated for I = 200 subjects, each with Ji = 2

replications. By definition, the theoretical I2C2 is .
We show the results for the following distributions of εij(υ): Gaussian, heavy-tail t and
mixture normal with two components. For each scenario, we conduct 100 iterations.

• εij(υ) ~ N (0, σ2). The model is correctly specified and results are highly reliable;
see the left panel in Figure 1. The boxplots show the distribution of estimated I2C2
over 100 iterations with respect to a range of signal-to-noise ratios. The red line
indicates the theoretical I2C2 values as a function of σ2.

• εij(υ) ~ t3/s, s = 0.5 × (1 : 20). Here the t distribution generates measurement errors
with a heavy tail distribution and a variance controlled by s. Results are displayed
in the right panel of Figure 1. Performance is very good, though a slight
overestimation can be noted in the very low signal-to-noise scenarios.

• . This scenario corresponds to the case when
measurement error has two possible sources. We simulate the case when the noise
distribution is a mixture of two normal components. We consider the following
three settings corresponding to three different reliability ratios: 1) p = 0.8, μ1 =
−0.2, μ2 = 0.8, s1 = 0.005 and s2 = 0.1; 2) p = 0.5, μ1 = −0.02, μ2 = 0.02, s1 = 0.02
and s2 = 0.1; 3) p = 0.3, μ1 = −1, μ2 = 0.43, s1 = 0.05 and s2 = 0.1. The parameters
are chosen so that the distribution of the noise has mean 0. The density of selected
distributions and the estimated I2C2 under each setting are shown on Figure 2
indicating excellent performance of the I2C2 estimators.

We conclude that the I2C2 is properly recovered when the model is correctly specified. This
is due to the fact that we use a method of moments estimator that is insensitive to the
distribution of measurement error.

3.2 Misspecified model
When the model assumptions are violated, we show that the estimated I2C2 still reflects the
magnitude of reliability. Note that the theoretical I2C2 can be equivalently defined as I2C2
= ∑υ∈  Cov{Wij(υ), Wij′ (υ)}/∑υ∈  Var{Wij(υ)}. Thus, I2C2 is a measure of the fraction of
variability that is shared among repeated measurements, without distinguishing whether the
correlation is from the signal or the noise. We consider the following scenarios where
correlation among images is not only due to signal, but also to the correlation of replication
errors. This violates a basic assumption of measurement, though, in the absence of gold
standard measurements it is hard to check whether the true errors are correlated.

• Correlated noise across replications. Consider the case when εij(υ) ~ N (0, σ2), and
corr{εij(υ), εij′ (υ) = ρ} for every j ≠ j′. The theoretical I2C2 is

, which is larger than the one in the
uncorrelated case. Similarly to the previous analysis, we examine the estimated
I2C2 with respect to σ2 and ρ. The mean square errors (MSEs) of the estimated
I2C2 under a range of correlations ρ are shown in the left panel of Table 1.
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The case when noise variables are not exchangeable is more difficult because
defining the true I2C2 becomes tricky. For example, consider the case of AR(1)
dependence, that is εij+1(υ) = αεij(υ) + zij+1(υ), εi1(υ) ~ N (0, σ2), and zij(υ) ~ N (0,
(1 − α2)σ2) to ensure that εij(υ)′s have the same marginal distributions. A possible
way to define I2C2 is to start with the pairwise correlations

The true I2C2 could then be defined as the average of all possible pairs

. This is a rather contrived example, though our
simulations indicate good estimation of this I2C2 (results not shown).

• Consider now the case when the true underlying image intensity is correlated with
the magnitude of noise at each voxel. Consider Wij(υ) = X̃i(υ) + Ũij(υ), where X̃i(υ)
= Xi(υ) + zi and Ũij(υ) = Vij(υ) + υij and Xi(υ), Vij(υ) are generated as the previous
sections. Correlation between signal and noise is using the trivariate normal
distribution N (0, Σ) for {zi, υi1, υi2}, where

We assume that  and . In this case the theoretical I2C2 is

. By varying the
correlation ρ, we examine the estimated I2C2 in right panel of Table 1.

Simulation results demonstrate the robustness of the I2C2 estimation approach when there is
correlation among noise variables or between the signal and the noise. However, it is
important to note that I2C2 is not designed to distinguish between these cases and is
unbiased with respect to the true correlation; this true correlation may be different from the
proportion of variability explained when model assumptions are violated. We now proceed
to show how I2C2 can be calculated and used in three different imaging applications.

4 Methods
4.1 RAVENS acquisition

This work employs the “Multimodal MRI Reproducibility Resource” [22], colloquially
known as the Kirby21 dataset, which is publicly available through the Neuroimaging
Informatics Tools and Resources Clearinghouse (www.nitrc.org). The Kirby21 dataset
consists of test-retest structural MRI and resting state fMRI scans from 21 healthy adult
volunteers with no history of neurological conditions (11 male and 10 female, aged 31.76 ±
9.47 years) who were each scanned twice on the same day. Further details of the study can
be found in [22].

The structural MRI data were acquired on a 3.0T scanner (Achieva, Philips Medical
Systems) using a high resolution 3D magnetization-prepared rapid acquisition of gradient
echoes (MPRAGE) sequence with resolution: 1.0 × 1.0 × 1.2 mm; TR:~6.7ms; TE:3.1ms;
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TI=842ms; flip angle: 8°; SENSE factor:2). All images were spatially normalized via
registration of T1 maps into the mean template generated using ANTS [2, 1]. Details of how
the average template are generated can be found in [7]. All T1 images were segmented into
ventricles (VN), gray matter (GM), and white matter (WM) using Lesion-TOADS [32].
After segmentation, the final tissue maps of VN, WM and GM were spatially normalized
using the HAMMER-SUITE [31] to generate RAVENS images. Finally, the RAVENS maps
were smoothed individually with a 4-mm FWHM Gaussian kernel using SPM8.

4.2 fMRI acquisition
The Kirby21 data set was also used to investigate the reproducibility of seed-based
functional connectivity analysis using the Kirby21 dataset follows. In short, two 7-min
resting state scans were acquired from each participant using a single-shot, partially parallel
(SENSE) gradient-recalled echo planar sequence with an ascending slice order (TR/TE =
2000/30 ms, FA = 75, 3-mm axial slices with a 1-mm slice gap) and an 8-channel head coil.
Participants were instructed to relax and fixate on a cross-hair while remaining as still as
possible. The two resting state scans were separated by a short break during which the
participant exited the scanner; the T1-weighted anatomical image described in section 4.1
was also acquired to be used as a template for spatial registration of the functional images.

Image processing was performed using SPM8 and custom MATLAB scripts. Anatomical
images were registered to the first functional volume and normalized to MNI space using
unified segmentation/normalization (SPM8). Functional data were adjusted for slice time
acquisition as well as participant motion and were transformed to MNI space. Nuisance
covariates from white matter and CSF were estimated using CompCor [3] and regressed
from the data along with the motion realignment estimates, their derivatives, global mean
signal, and linear trends. Data were then spatially smoothed (6-mm kernel) and temporally
filtered using a 0.01–0.10 pass-band filter. Data from one participant was excluded from
analysis due to a misalignment of the first and second resting state scans.

Seed voxel analysis is commonly used in fMRI studies to analyze the functional
connectivity of the brain via a seed voxel from a region of interest. Here, we investigated the
reproducibility of this approach for our dataset considering 4 different seeds, each with a 6-
mm radius: the posterior cingulate cortex (labeled PCC) [16], the premotor area (labeled
M3) [9] and 2 seeds from the dorsal-ventral extremes of the motor strip, the dorsal seed
representing lower limb control (labeled M1) [24] and the ventral one corresponding to
oromotor function (labeled M5). MR time series were averaged across voxels within each
seed, and a correlation map for each of the resulting 4 time courses was then obtained with
each voxel in the brain.

4.3 DTI-MRI acquisition
The data were collected as part of an ongoing observational study being conducted at the
National Institutes of Health and at Johns Hopkins University. Study participants with MS
were recruited from the outpatient neurology clinic and healthy volunteers from the
community. Prior to MRI scanning, all participants gave signed, informed consent, and all
procedures were approved by the institutional review board. Cohort characteristics are
summarized in [15, 18]. Longitudinal analyses of the DTI-MRI sub-study can be found in
[19, 38].

Scans were performed on a 3T scanner (Intera; Philips, Best, The Netherlands) over a 4.6
year period, using the body coil for transmission and either a 6-channel head coil or the 8
head elements of a 16-channel neurovascular coil for reception (both coils are made by
Philips). Each session included two sequential DTI scans using a conventional spin-echo
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sequence and a single-shot EPI readout. Whole-brain data was acquired in nominal 2.2mm
isotropic voxels with the following parameters: TE, 69ms; TR, automatically calculated
(shortest); slices, 60 or 70; parallel imaging factor, 2.5; non-collinear diffusion directions, 32
(Philips overplus high scheme); high b-value, 700 s/mm2; low b-value (b0), approximately
33 s/mm2; repetitions, 2; reconstructed in-plane resolution, 0.82 × 0.82 mm. A 3D gradient-
echo magnetization-transfer sequence was also performed with segmented EPI readout
(nominal acquired resolution, 1.5 × 1.5 × 2.2 mm; TE, 15ms; TR, 64 ms; parallel imaging
factor, 2; EPI factor, 7; magnetization-transfer pulse, sinc-shaped, 1.5kHz off-resonance;
repetitions, 3), the data from which were rigidly registered to the DTI scan before
calculation of MTR maps (defined as 1 minus the voxel-wise ratio of data from this
sequence to those obtained using the same sequence without the magnetization-transfer
pulse). Prior to analysis, data were adjusted to account for changes in average tract-specific
MRI indices that resulted from the scanner upgrades that inevitably occur over the course of
a study such as this. The procedure by which this adjustment was made has been previously
described [20].

The diffusion-weighted scans were processed using CATNAP (Landman et al., 2007) to
create maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and
radial diffusivity (RD). These four quantities, together with MTR, are hereafter termed MRI
indices. Whole-brain MRI indices were calculated by slice-wise averaging of all diffusion-
weighted images, removal of the low-intensity voxels that are characteristic of extracerebral
tissues on these images, and final removal of voxels with MD > 1.7µm2/ms to exclude
cerebrospinal fluid [26]. The resulting brain mask was applied to all DTI maps and also to
the coregistered MTR maps. The images were obtained from a natural history study, where
176 MS patients were followed up to 5.5 years, which generated a total of 446 MRI scans.
The number of scans per subject varied from 1 to 6. The scanning time is shown in Figure 5
where time zero indicates the first scan. For illustration purposes, we focus on the
measurements in a region of 30096 voxels that contains the corpus callosum. At each voxel,
data are FA weighted by the probability of being in the corpus callosum. Images are
registered using affine transformations.

5 Results
5.1 RAVENS replication results

RAVENS maps produce an image of the deformation of the brain necessary to fit in a given
template and are proxies of brain morphology. Here the focus is on ventricular, white matter,
and gray matter regions considered separately, segmented via Lesion-TOADS [32]. The
measurement error is an uncontrollable combination of sources including image acquisition,
biological error (natural within-day brain variation), movement, magnetic field
inhomogeneities, pre-processing, spatial normalization, and segmentation. Apportioning
error variability is beyond the scope of this paper. Instead, interest lies in first establishing
that estimating the effect of total measurement error variability (regardless of its source) is
possible and then in investigating its impact on image reliability.

Figure 3 displays the I2C2 estimators (ρ̂) as a red line with 95% equal tail probability
confidence intervals obtained using the nonparametric bootstrap of subjects. The reliability
in the ventricles is by far the largest roughly (0.9) followed by reliability in white matter
(0.55) and gray matter (0.45). Determining the source and type of error could be done, for
example, by investigating various ROI’s or by inspecting the principal components of
measurement error variability based on HD-MFPCA [37]. The distributions of I2C2
estimators under zero reliability ρ̂0 is shown in gray with the median displayed as a black
horizontal line. These results indicate strong evidence that the observed reliability values are
inconsistent with zero reliability. Interestingly, the null distribution (gray histogram plot) for
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ventricles has a long right tail with non-trivial probability above 0.3. This is somewhat
unexpected, and may indicate stronger between subject correlations of measurement error
processes in the ventricles. Further investigating this postulate is left for future study.

5.2 fMRI replication results
The I2C2 metric was used to quantify the reproducibility of the resulting connectivity map
(correlation matrix) for each of the four seed regions. Results are shown in Figure 4 using
the same notation and symbols as in Figure 3. The overall message is that the seed-voxel
based correlation maps are not reliable, with the reliability estimates varying between
approximately 0.20 (for M1, M3, and M5) and 0.37 (for PCC). These low values suggest
that state-of-the-art seed-voxel-based correlation maps based on resting state fMRI data are
unreliable, though the PCC seems to indicate higher (nearly double) reliability than other
regions. Thus, caution is warranted in the interpretation of these maps and in the analysis of
connectivity maps obtained from thresholding unreliable fMRI resting state correlation
operators. These results are inconsistent with the large and increasing literature [5, 8, 12, 21,
25, 29, 30, 35, 36, 39, 40] on resting state fMRI that reports high reliability of
measurements. Much deeper investigation is needed to address these divergent findings,
establish identical estimands, estimators and evaluation procedures. Our procedure provides
a clear, simple, and easy to use step in this direction.

5.3 DTI-MRI replication results
To highlight methods, a subset of the complete data collection consisting of subjects who
have more than 6 visits was selected. This reduced the data set to 117 scans from 18
subjects: 14 subjects with 6 scans, 1 with 7, 2 with 8, and 1 with 10. Henceforth, the subset
is viewed as the complete data set with no further reference of the omitted subjects. We also
consider four further subsets labeled as “T≤4”, “T≤3”, “T≤2”, and “T≤1”. The notation
refers to the number of years since the baseline scan, as, for example, the T≤4 dataset
considers only images obtained within the first 4 years from the baseline scan, resulting in
110 scans from the 18 subjects (4 ~ 5, 11 ~ 6, 3 ~ 8 where 4 ~ 5 refers to 4 subjects with 5
scans). The T≤3 dataset contains 88 scans broken down as 6 ~ 4, 9 ~ 5, 2 ~ 6, and 1 ~ 7. The
T≤2 data set contains 70 scans broken down as 7 ~ 3, 7 ~ 4, 3 ~ 5, 1 ~ 6, and 1 ~ 7. Finally,
the T≤1 data set contains 45 scans, 1 ~ 1, 1 ~ 4, 8 ~ 2, and 8 ~ 3.

In [38] the existence of a longitudinal change over time in these data was studied with the
finding that less 1% of the variability was explained by longitudinal within-subject changes.
Thus, modeling these data as exchangeable image measurement error processes is likely a
valid approximation of the underlying processes. All five data sets are unbalanced, having a
different number of replicates per subject. The left panel in Figure 6 displays the reliability
estimators (red horizontal line) and the associated equal tail probability 95% confidence
intervals. These results indicate that the reliability of these measurements hovers slightly
below 0.8, which is consistent with the findings in [38].

Our work investigated the reliability of the imaging studies as a function of time by selecting
subjects who have at least two replications and constructing five additional replication sub-
studies labeled “1 apart”, “2 apart”, “3 apart”, “4 apart” and “5 apart”, respectively. To be
specific, each such sub-study contains exactly two replicates per subject: the baseline
observation and the replicate that is closest to being 1, 2, 3, 4, or 5, years apart, respectively.
The number of subjects in each data set was 119, 64, 49, 31, 18, respectively, with more
subjects in data sets with shorter between-observations intervals.

The right panel in Figure 6 displays the reliability estimators for these replication studies as
a function of how many years apart images were taken. The estimated reliability of
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observations taken within one year of each other is quite high, roughly 0.9, which indicates
that there are very few changes in the FA measurements along the corpus callosum of MS
subjects within one year. This may be good news for individuals with MS if the lack of
measured neuronal fiber integrity via FA represents actual fiber integrity. However, this
finding may be disheartening to investigators searching for biomarkers of neuronal fiber
degradation, if degradation is actually there. As expected, the reliability of image replication
decreases with the increased time between visits, with median reliability roughly around 0.8
for images collected 5 years apart. However, this decline in reliability is relatively small and
likely to be indicative of small observable longitudinal changes. The variability around the
estimated I2C2 also increases from the replication study “1 apart” to “5 apart”, though this is
most likely due to the decrease in sample size from 119 to 18 subjects with repeat samples.

6 Discussion
This manuscript proposes an extension of the classical intra-class correlation coefficient to
image replication studies. The resulting parameter, denoted I2C2, provides a global
measurement of reliability that is intuitive and easy to calculate. Moreover, I2C2 can readily
be calculated for given ROIs by simply restricting the summations in Section 1 to those
voxels within the ROI mask. In practice, one may actually report the I2C2 on a partition of
the image in mutually disjoint ROIs, say R1, …, RP. Then I2C2 can be calculated for each
Rp, p = 1, …, P and compared to the overall I2C2. Areas of unexpectedly small estimated
I2C2 may further indicate the source and type of measurement error. Another practical
approach would be to calculate the I2C2 hierarchically, i.e. at the voxel level, then at
overlapping neighborhoods of increasing size and, ultimately, at the image level. This could
provide an interesting multi-resolution approach to visualizing the structure of the
measurement error.

An equally simple measure of reproducibility could be the average of ICC at the voxel
levels. An unbiased estimator of the average ICC would then be

Irrespective of the replication estimand and estimation procedure the subject-level bootstrap
and permutation tests introduced in this paper can be applied. However, there are reasonable
arguments for considering I2C2. Indeed, the variability attributable to variation among
subjects is equal to trace(KX) whereas the variability attributable to visits is trace(KU). Thus,
I2C2 is the proportion of variability explained by subject-level variability out of the total
variability of the data in the multivariate image measurement error model. In contrast, the
average ICC is the average of the proportion of variability explained by subject-level
variability out of the total variability of the data in the sequence of univariate (marginal)
measurement error models. This distinction has practical implications. Consider, for
example, the case of an experiment where there are 1000 voxels in every image. At 500
voxels the absolute variability of the data and reliability is very low. However, at the other
500 voxels the variability and reliability are large. In this context the average ICC would
place too much emphasis on the low variability voxels because it ignores the relative
variability of the data at different voxels. A second problem occurs at locations with small
visit-to-visit variability, as this variance is used in the denominator of the ICC estimator and
may lead to serious computational instabilities.

While data rarely satisfy the measurement error model (2) exactly, the model is a reasonable
starting point for defining the data structure under explicit assumptions. Model assumptions
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notwithstanding, we prefer this explicit statistical approach to an algorithmic one that
obscures assumptions. Moreover, the model can easily be extended to include some obvious
data supported complications. For example, if each visit has a different mean, one can easily
expand the model to include (so-called) batch or visit effects

as proposed in [14]. Here the images Bj are visit-specific fixed effect images. Such
deterministic changes across all subjects from one visit to another could be due to the use of
different scanners, imaging parameters, scanner drift, etc. In quality control, agriculture and
lab sciences such effects arise from a batch being run for measurement or assay (hence the
term “batch effect”). For subjects returning to a scanner, batches are visits. Note that the

visit-specific effects can be easily estimated as  and one can define the
I2C2 for the residuals Wij − B̂j.

In more complex models, one may also be interested in, or worried about, the longitudinal
effects of collecting the data. For example, in the DTI study, some images are taken within a
few months of each other, whereas other images are collected years apart. In such situations,
it is reasonable to add a term that accounts for longitudinal changes. A reasonable model for
such an approach could be

where B(Tij) is an effect that depends on time of the visit, Tij, as in most longitudinal studies,
visits are not equally spaced. In this model B (Tij) + Xi,0 is the true unobserved image at
baseline (Tij = 0), B(Tij) + Xi,0 + Xi,0Tij is the true unobserved image at time Tij > 0, and Uij
is the image measurement error process. Estimation of these type of models is thoroughly
discussed in [19, 38], but it is worth noting that reasonable assumptions about the data can
easily be incorporated into statistical models.

Regardless of the model under investigation, the image error process, Uij, deserves particular
attention. Indeed, from all models discussed in this paper one can estimate the covariance
operator, KU, and the first eigenvectors can be visually inspected. This provides clues into
the structure of measurement error. For further reading on measurement error modeling we
recommend [6, 17]. For the effect of image measurement error on estimating associations
with outcomes we recommend [10] while for inference in the means of two imaging
processes we recommend [11].
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Figure 1.
Left panel: true I2C2 (red line) and estimated I2C2 (boxplots over 100 simulations) for εij(υ)
~ N (0, σ2) and a range of σ2. Right panel: true I2C2 (red line) and estimated I2C2 (boxplots
over 100 simulations) for εij(υ) ~ t3/s and a range of t distribution variances.
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Figure 2.
Left panel: density plots of the mixture normal distributions used for measurement noise.
Right panel: true I2C2 (red lines) and estimated I2C2 (boxplots) for the different mixtures of
normal distributions.
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Figure 3.
Estimated I2C2 (red horizontal lines) and 95% equal tail probability confidence intervals for
ventricles, white matter and gray matter RAVENS images. Gray distributions correspond to
the I2C2 estimator under the zero reliability assumption (random permutations of labels).
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Figure 4.
Estimated I2C2 (red horizontal lines) and 95% equal tail probability confidence intervals for
fMRI seed-voxel correlation maps for the posterior cingulate cortex (PCC), the dorsal region
of the motor cortex corresponding to control of the lower limbs (M1), the premotor cortex
(M3) and the ventral-most region of the motor cortex corresponding to oro-motor function
(M5). Gray distributions correspond to the I2C2 estimator under the zero reliability
assumption (random permutations of labels).
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Figure 5.
Image scanning time for 176 patients. Every person has a baseline scan at time 0. The x axis
is time in years. The y axis are patient IDs. We match visit number from different patients
by rounding their scan time to quarter month, as indicated by gray dashed lines.
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Figure 6.
Estimated I2C2 (red horizontal lines) and 95% equal tail probability confidence intervals for
FA in an area containing the corpus callosum. Gray distributions correspond to the I2C2
estimator under the zero reliability assumption (random permutations of labels). Left panel
results are based on 18 subjects who have at least 6 visits (“All”) and subsets of the “All”
data set containing all scans within the first 4, 3, 2, and 1 year from baseline, respectively.
Right panel results are based on pairs of imaging obtained at most 1, 2, 3, 4, and 5 years
apart. The number of subjects in each data set (from left to right) was: 119, 64, 49, 31, 18,
respectively.
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