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Abstract
Purpose of review—The paraoxonase (PON) gene family includes 3 members, PON1, PON2,
and PON3. In vitro and mouse studies have demonstrated that all three PONs are athero-
protective. Some but not all human epidemiologic studies have observed associations between
PON gene polymorphisms and risk of cardiovascular disease (CVD). In this review, we
summarize studies published within the past year elucidating involvement of PON1 and PON2 in
oxidative stress, cardiovascular disease, and innate immune responses.

Recent findings—In a prospective study, the PON1 192QQ genotype and low PON1 activity
were associated with increased systemic oxidative stress and increased risk for cardiovascular
disease. PON1 expression protected against Pseudomonas aeruginosa lethality in Drosophila,
suggesting that PON1 can interfere with quorum sensing in vivo. PON2 attenuated macrophage
triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. Over-expression of
PON2 protected against endoplasmic reticulum (ER) stress-induced apoptosis when the stress was
induced by interference with protein modification but not when ER stress was induced by Ca ++

deregulation.

Summary—Both mouse and human studies have demonstrated the anti-oxidative and athero-
protective effects of PON1. The mechanisms by which PON2 exerts its athero-protective effects
are emerging. Large-scale epidemiologic studies are needed to further examine the relationship
between PON2 genetic polymorphisms and risk for CVD. Elucidation of the physiological
substrates of the PON proteins is of particular importance to further advance this field.
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Introduction
The paraoxonase gene family contains three genes, PON1, PON2, and PON3. The PON
genes are located as a cluster on mouse chromosome 6 and human chromosome 7. The three
human PON genes share approximately 60% similarity at the amino acid level, and about
70% similarity at the nucleotide level. Human PON1 is a 45 kDa glycoprotein expressed
primarily in the liver and found associated with HDL particles in the blood [1, 2]. Human
PON3 is expressed primarily in the liver, with lower expression levels in other tissues such
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as kidney [3] and the gastrointestinal tract [4]. Human PON2, on the other hand, is
ubiquitously expressed and is found in a variety of tissues including the artery wall [5]. In
addition, whereas PON1 and PON3 associate with HDL in circulation, PON2 protein is not
associated with HDL or LDL, but appears to be associated with membranes of the
endoplasmic reticulum (ER) and the nucleus [5, 6]. Although all three PON members are
named “paraoxonase”, only PON1, but neither PON2 nor PON3 exhibit the ability to
hydrolyze organophosphates such as paraoxon [7]. Recent studies have shown that all three
PON proteins exhibit lactonase activities [7]. All three PONs very efficiently metabolized 5-
hydroxy-eicosatetraenoic acid 1,5-lactone (5-HL) and 4-hydroxy-docosahexaenoic acid,
which are products of both enzymatic and nonenzymatic oxidation of arachidonic acid and
docosahexaenoic acid, respectively, and may represent the endogenous substrates of PONs.
Interestingly human as well as mouse PONs are capable of hydrolyzing and thereby
inactivating N-acyl-homoserine lactones, which are quorum-sensing signals of pathogenic
bacteria such as Pseudomonas aeruginosa [7-9]. These studies suggest possible roles of
PONs in innate immunity against bacterial infection.

Substantial epidemiological evidence points to an inverse correlation between HDL levels
and coronary artery disease (CAD). One plausible hypothesis explaining this phenomenon is
based on the idea that HDL can exert a direct anti-atherogenic effect at least in part by
inhibiting LDL oxidation [10]. PON1 has been shown to prevent LDL oxidation in vitro
[11-13], and decreased levels of PON1 are associated with increased risk for cardiovascular
disease [14, 15]. Polymorphisms of the PON1 gene are also associated with heart disease in
some but not all case-control studies [16]. In animal studies using PON1 knockout
(PON1KO) mice, PON1 has been shown to be both necessary and sufficient for the in vitro
protective effects of HDL against LDL oxidation and monocyte transmigration in response
to LDL oxidation [17]. Further, PON1KO mice exhibited about a two-fold increase in
atherosclerosis using both dietary and apoE-null models [17, 18], while transgenic mice
overexpressing human PON1 were more resistant to atherosclerosis [19]. These studies
indicate conclusively that PON1 protects against atherosclerosis.

Emerging evidence suggests the concept that PON2 is an intracellular anti-oxidative protein
that decreases intracellular oxidative stress when over-expressed in various cell types [5, 6].
Polymorphism of the human PON2 gene at codon 311 (cysteine/serine) was associated with
coronary artery disease and ischemic stroke [20]. Also, PON2-deficient mice showed
increased diet induced-atherosclerosis as compared to the wild-type mice [21], suggesting
that PON2, like PON1, protects against atherosclerosis. Below we focus on recent findings
of PON1 and PON2 in the areas of oxidative stress, atherosclerosis, and innate immunity.

PON1 and cardiovascular diease
A recent prospective study of 1339 patients undergoing diagnostic coronary angiography
determined PON1 activities and systemic oxidative stress at baseline and followed the
participants for an average of 44 months for incidence of myocardial infarction, stroke,
cardiovascular disease-related and non-related deaths. The study showed that low circulating
paraoxonase activity and the PON1 QQ192 genotype are associated with increased systemic
oxidative stress as measured by plasma levels of multiple, structurally specific oxidized fatty
acids [22**]. The study found that compared to participants with the RR192 and QR192
genotypes, subjects with QQ192 genotype exhibited an increased risk of all-cause mortality,
with an adjusted hazard ratio of 2.05, and of major adverse cardiac events, with an adjusted
hazard ratio of 1.48. The incidence of major adverse cardiac events was significantly lower
in participants in the highest PON1 activity quartile (7.3% and 7.7% for paraoxonase and
arylesterase, respectively) compared with those in the lowest activity quartile (25.1% and
23.5%; P<0.001 for paraoxonase and arylesterase, respectively). The adjusted hazard ratios
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for major adverse cardiac events between the highest and lowest PON1 activity quartiles
were, 3.4 for paraoxonase, and 2.9 for arylesterase, and remained independent in
multivariate analysis. This study demonstrated that PON1 Q192R polymorphism and PON1
activity influence systemic oxidative stress and predict prospective cardiovascular risk.

Previous reports have shown that the PON1 192Q allele is associated with endothelial
dysfunction in patients with established coronary artery disease or peripheral vascular
disease [23, 24]. A recent study of 99 patients with minimal atherosclerosis found that 75%
of PON1 192QQ patients had endothelial dysfunction vs 43% of the PON1 192RR/QR
patients (P = 0.001) [25*]. In PON1 192QQ vs PON1 192 Q/R and RR patients, epicardial
arterial diameter decreased more and coronary blood flow increased less in response to
acetylcholine. Circulating oxidized LDL levels were higher in QQ homozygotes as well.
This study demonstrates that PON1 192 Q allele is associated with increased oxidative stress
and endothelial dysfunction in patients with early stage atherosclerosis, providing a
plausible mechanism by which this allelic variant may contribute to atherosclerosis in
humans.

A recent study demonstrated association between a PON1 haplotype and risk for abdominal
aortic aneurysm (AAA) [26]. This study included 423 AAA patients and 423 matched
controls. The study found that a PON1 haplotype consisting of Leu at position 55, Arg at
position 192 and Trp at position 194 differed in frequency between control subjects (0.374)
and AAA patients (0.288) (p < 0.042), suggesting a protective effect of this haplotype
against AAA. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have
been associated with AAA formation in animal models and in humans [27]. Therefore,
PON1 may protect against aneurysm through its anti-oxidative function.

Aspirin therapy is an effective treatment for those with established risk factors for CVD. A
recent study found that aspirin induced PON1 activity and gene expression in cultured
hepatocytes and in mice [28*]. In addition, expression of apolipoprotein (apo) A-I was also
increased by aspirin. The authors went on to show that this induction was mediated through
the arylhydrocarbon receptor (AhR), since AhR-/- mice did not exhibit PON1 induction
upon feeding of aspirin. This study suggests that part of the anti-atherosclerotic effect of
aspirin may be mediated by induction of apo A-I and PON1.

PON2 and cardiovascular disease
In a recent study, PON2 mRNA and protein levels were found to be significantly lower and
malondialdehyde (MDA) levels significantly higher in the atherosclerotic plaque areas of
human carotid arteries, as compared to adjacent regions, fetal carotids, or mammary gland
arteries [29*]. PON2 mRNA was shown to be down-regulated by oxidative stress in ex vivo
experiments using segments of carotids adjacent to plaque. This study suggests that
protective effect of PON2 may be reduced in atherosclerotic plaque regions due to decreased
expression of PON2 in response to increased oxidative stress.

PON2 was induced by the unfolded protein response (UPR) to ER stress [6]. Furthermore,
over-expression of PON2 reduced UPR-stimulated oxidative stress and apoptosis in
endothelial cells [6]. A subsequent study [30*] demonstrated that PON2 overexpression
protected against caspase 3 activation induced by tunicamycin or dithiothreitol, which
interfere with protein modification and folding. On the other hand, PON2 failed to protect
against other ER stress inducers such as thapsigargin or A23187, which disturb Ca++

homeostasis. Further analysis showed that ER stress caused by thapsigargin or A23187
induced Ca++-dependent active degradation of PON2 mRNA and PON2 protein degradation
by a Ca++-dependent calpain-mediated mechanism. Therefore, the underlying cause of ER
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stress determines whether PON2 expression will be induced and is likely to determine the
efficacy of the cellular defense mechanisms.

Uncontrolled lipid accumulation in macrophage leads to foam cell formation. In a recent
study, PON2 was shown to prevent triglyceride accumulation in macrophages [31*]. The
study demonstrated elevated triglyceride (increased by 4.6 fold) but not cholesterol content
in peritoneal macrophages isolated from PON2-deficient mice as compared to those isolated
from the wild-type mice. Further analysis showed that the rate of triglyceride synthesis was
increased in the PON2-deficient macrophages as compared to the wild-type macrophages,
whereas rates of triglyceride degradation were similar between the two groups. Microsomal
acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) activity was significantly higher in the
PON2-deficient macrophages (by 4.4 fold) as compared to the wild-type macrophages,
while DGAT-1 mRNA and protein levels were similar between the two groups. Finally, the
study found that incubation of PON2-deficient macrophages with a free radical generator
increased cellular oxidative stress and DGAT1 activity. On the other hand, incubation of
microsomes from PON2-deficient macrophages with superoxide dismutase (SOD) decreased
DGAT1 activity. Therefore, PON2 seems to modulate DGAT1 activity through its anti-
oxidative function.

PONs and innate immunity
All of the PON family members are capable of inactivating a bacterial quorum sensing
molecule, N-3-oxododecanoyl homoserine lactone (3OC12-HSL). The specific activities of
purified PON proteins toward 3OC12-HSL were in the following order: PON2≫ PON1
192R isoform > PON1 192Q isoform > PON3, with PON2 exhibiting 76 fold higher specific
activity than PON3 [32*]. The study also found that the specific activity of PON2 with
3OC12-HSL was more than 2 fold higher than with 5-HL, which was previously the best
substrate for PON2. By use of class-specific inhibitors, the study estimated that PON1 is
responsible for about 90% of 3OC12-HSL hydrolytic activity in mouse and human serum. In
mouse liver and lung homogenates, PONs appeared to be responsible for about 90% and
100%, respectively, of the 3OC12-HSL hydrolytic activities. In the human hepatoma cell
line HepG2 and the endothelial cell line EA.hy 926, the 3OC12-HSL hydrolytic activities
closely paralleled the PON2 protein levels after PON2 knockdown by small interfering RNA
treatment of the cells. The data suggest that PONs, especially PON2, could play important
role in inactivating 3OC12-HSL in mammals. In a previous study, PON2 was shown to play
a dominant role in hydrolyzing 3OC12-HSL in mouse tracheal epithelial cells [33]. The
study demonstrated that lysates of tracheal epithelial cells from PON2, but not PON1 or
PON3, knockout mice had impaired 3OC12-HSL inactivation compared with wild-type
mice. Using a quorum-sensing reporter strain of P. aeruginosa, the study found that quorum
sensing was enhanced in PON2-deficient airway epithelial cells as compared to those of
wild-type, suggesting loss of PON2 impairs 3OC12-HSL degradation by airway epithelial
cells.

A previous study demonstrated inhibition of Pseudomonas aeruginosa biofilm formation by
PON1 in an in vitro biofilm model [8]. A novel recent study [34**] demonstrated that
transgenic expression of PON1 in Drosophila dramatically decreased lethality caused by P.
aeruginosa infection. This protection was dependent on the lactonase activity of PON1 and
the specific gene regulatory effects of the quorum sensing molecule in P. aeruginosa
disrupted in the PON1 transgenic flies. This study supports the concept that PON1 plays a
role in the innate immune response to quorum-sensing-dependent pathogens. Chronic
inflammation caused by bacteria infection is a risk factor for CVD and it remains to be seen
whether part of the anti-atherosclerotic function of PONs is dependent on their role in
modulating the quorum sensing of bacteria.
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Conclusion
Recent advances in the paraoxonase research field have further elucidated the protective
functions of the PON family members in cardiovascular disease and innate immunity. A
large-scale prospective study has provided strong evidence that PON1192QQ genotype and
low PON1 activity predict future risk for CVD [22**]. Additional large-scale epidemiologic
studies are needed to further determine the relationship between PON2 and PON3
polymorphisms and CVD risk. Detailed biochemical, cell-based and animal studies are
needed to further identify the physiological substrates of PONs and molecular mechanisms
by which PONs render their protective effects in cardiovascular disease and innate
immunity.
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