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Abstract
Bioinformatic studies on a revised hierarchy of hematopoietic progenitors have provided a
genome-wide view of lineage-affiliated transcriptional programs directing early hematopoiesis.
Unexpectedly, lymphoid, myeloid and erythroid gene expression programs were primed with
similar frequency at the multi-potent progenitor stage indicating a stochastic nature to this process.
Multi-lineage transcriptional priming is quickly resolved upon erythroid lineage restriction with
both lymphoid and myeloid transcriptional programs rapidly extinguished. However, expression
of lymphoid and myeloid factors remains active past nominal lymphoid and myeloid lineage
restrictions, revealing a common genetic network utilized by both pathways. Priming and
resolution of multi-lineage potential is dependent on the activity of the DNA binding factor Ikaros.
Ikaros primes the lymphoid transcriptional program in the HSC and represses the stem cell and
other disparate transcriptional programs downstream of the HSC. Loss of Ikaros removes the
lymphoid leg of the immune system and may confer aberrant self-renewing properties to myeloid
progenitors.

Introduction
Differentiation into the three major hematopoietic lineages (erythroid, myeloid and
lymphoid) has been extensively studied using both cellular and molecular approaches. These
have delineated major steps in differentiation that demarcate lineage commitment and
maturation. Nonetheless, the regulatory mechanisms that modulate the lineage
differentiation properties of early progenitors have been elusive. One confounding issue is
that the early hematopoietic progenitor hierarchy and their lineage affiliations are far more
complex than initially perceived. Incomplete characterization of cellular intermediates in the
multi-potent state and of early lineage restrictions, in addition to technical limitations of
performing biochemical analysis on small number of progenitor cells have made it hard to
delineate the mechanisms by which previously described early lineage-determining factors
exert their function. It has been increasingly appreciated through genetic studies that widely-
expressed epigenetic regulators play a key role in providing differentiation potential by
altering the accessibility of gene expression programs in a lineage-specific manner, possibly
by working in concert with lineage-specific transcription factors [1] [2,3{Yoshida, 2008
#715]] [4,5].
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Here, we review new cellular and molecular advances that clarify the early transitions into
the hemo-lymphoid pathways and that establish a molecular framework upon which this
complex developmental process is executed. The role of Ikaros, an “early-acting” epigenetic
regulator, the transcriptional networks through which it operates, and the molecular
mechanisms that it uses to prime and ultimately establish lymphoid potential at the onset of
hematopoiesis are discussed.

Lineage-affiliated transcriptional cascades identify both a lympho-myeloid and an
erythroid pathway in differentiation

Lineage-affiliated transcriptional programs, referred to as signatures, were deduced from a
hematopoietic stem cell (HSC) population (long- to short-term) and early lineage restricted
progenitors by comparative computational analyses of their genome-wide expression
profiles [6]. The multi-potent HSC, the lympho-myeloid bi-potent progenitor, LMPP
(originally defined as lymphoid-primed multipotent progenitor) [7] [8] [9], the granulocyte-
macrophage progenitor (GMP) and the megakaryocyte-erythrocyte progenitor (MEP) [10]
(Fig.1) were isolated using an Ikaros-EGFP reporter that is differentially expressed within
these progenitor populations [8]. Importantly, this reporter in combination with other stem
cell markers provides a clear separation of HSC from LMPP not only in the wild type, but
also in Ikaros null bone marrow where the absence of Flt3 expression, one of LMPP’s
defining markers confounds analysis of Ikaros deficient progenitors [8].

Lineage-affiliated signatures fall within two transcriptional cascades that are primed in the
HSC (denoted by the s(tem) prefix) and differentially propagated in the erythroid or in the
lympho-myeloid pathways (denoted by the r(restricted) or the d(ifferentiated) prefix) (Fig.
1). The first signature in the erythroid transcriptional cascade is representative of the
potential for erythroid differentiation. This is primed in the HSC, established in erythroid
progenitors (MEP) and extinguished in lympho-myeloid progenitors (LMPP, GMP and
proB). The second signature in this cascade is d-ery and represents restriction into the
erythroid lineage. Erythroid differentiation factors are present in both signatures indicating
their early priming at the multi-potent state and rapid establishment in early lineage
restricted progenitors [6].

The second transcriptional cascade demarcates differentiation into the lymphoid and
myeloid pathways (Fig.1) [6]. The s-myly (s-myeloid-lymphoid) signature is the first in this
cascade primed in the HSC and augmented in the LMPP, GMP and proB, but extinguished
in the MEP. The s-myly is the largest of the stem cell primed lineage-affiliated signatures
and provides a transcriptional backbone utilized during development of both the adaptive
and innate immune systems. Many of the s-myly genes are involved in molecular pathways
that support a variety of immune cell functions. Subsequent lineage-affiliated signatures
present in this cascade are activated downstream of the HSC and represent progressive
lineage restriction into the lymphoid and myeloid pathways. The r-myly signature is
representative of the transition from HSC to LMPP and contains a second layer of lympho-
myeloid genes first primed in the LMPP. Subsets of this signature are differentially
maintained in the GMP and proB (Fig.1). Finally, the d-my and d-ly are representative of
further lineage restrictions into the myeloid and lymphoid lineages, respectively. The
relatively small size of the d-ly signature deduced by comparison of the LMPP, HSC, GMP
and MEP reflects the fact that LMPP is only partially restricted to lymphoid development. It
retains bi-potency for both lymphoid and myeloid differentiation. Further comparison
between the LMPP and early proB transcriptomes have revealed a more extensive lymphoid
signature that is primed downstream of the LMPP [11,12].

Atop of both lineage-affiliated transcriptional cascades lies an HSC-specific (stem)
transcriptional signature (Fig. 1). This is highly expressed within a multi-potent HSC
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population that ranges in self-renewing potential and is extinguished in the non-self
renewing progenitors, the LMPP, GMP and MEP. Several of the genes in this signature are
implicated in mediating the HSC's functional properties such as interactions with a
specialized niche, quiescence and self-renewing divisions [6].

Taken together these global gene expression studies have revealed two lineage-affiliated
transcriptional cascades primed in the multi-potent HSC and propagated in a differential
manner in lineage-restricted progenitors. Restriction into the erythroid differentiation
pathway involves the rapid elimination of lymphoid and myeloid and a rapid amplification
of erythroid transcriptional programs. In contrast, early lymphoid and myeloid programs are
primed concomitantly in the HSC and remain associated through lymphoid and myeloid
lineage restrictions. Priming of additional layers of lymphoid and myeloid gene expression
during lineage restrictions coincide with the slow emergence of discrete immune cell fates
built upon an early-primed common transcriptional program.

Co-priming of lymphoid, myeloid and erythoid transcription
Transcriptional studies performed in progenitor populations were further validated at the
single progenitor level by multiplex RT-PCR analysis with candidates deduced from the s-
series of lineage affiliated signatures (i.e. s-ery and s-myly) [6]. These studies showed
lymphoid, myeloid, and erythroid lineage gene expression and co-expression at comparable
frequency in the HSC population, consistent with a stochastic lineage differentiation
potential. In the MEP, solely erythroid genes were expressed, consistent with erythroid
lineage commitment, while in the bi-potent LMPP, myeloid and lymphoid gene expression
was augmented, and the majority of these progenitors co-expressed genes affiliated with
both lineages. Taken together, these studies have demonstrated that lymphoid-, myeloid- and
erythoid-affiliated transcriptional programs are all accessible at the earliest point of
hematopoiesis. This was unexpected based on previous studies that concluded that lymphoid
transcriptional priming was initiated in lineage-restricted progenitors such as the CLP and
more recently in the LMPP [13][14]. The difference between these studies lies in the choice
of genes utilized for single progenitor transcriptional analyses. Whereas the genes employed
by Ng et. al. were selected from the s-class of lineage affiliated transcriptional signatures
such as the s-myly and s-ery, which were deduced based on expression in the HSC
compartment, earlier studies utilized genes that are expressed at later stages of lymphoid
lineage restriction, and which are representative of the d-ly or r-myly signatures.

The comparable frequency of expression and co-expression of lineage-affiliated transcripts
within the HSC population indicate that lineage transcriptional priming in multipotent
progenitors occurs in a stochastic manner. Stem cell-specific and lineage-affiliated
transcripts were found to be widely co-expressed in the HSC, indicating that the
transcriptional mechanisms supporting self-renewal and lineage differentiation are not
mutually exclusive. However, upon lineage restriction the stem cell transcriptional program
is rapidly extinguished whereas the s-class lineage transcriptional programs are augmented.
This likely prohibits lineage-restricted progenitors from acquiring aberrant self-renewing
properties.

Reconciliation of cellular differentiation with multi-lineage transcriptional programs
The lineage-affiliated transcriptional cascades faithfully predict the cellular properties of a
revised progenitor hierarchy. Identification of the LMPP, a major bi-potent lymphomyeloid
progenitor downstream of the HSC supports an early separation of the immune cell fates
from the megakaryo-erythroid fates in the adult hematopoietic system [7] [8] [9]. A similar
separation of lympho-myeloid from erythroid cell fates has also been revealed by studies on
the fetal hematopoietic system [14][15].
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The early thymic progenitor (ETP), a possible counterpart of the LMPP [16][17], was
recently shown to have in addition to T cell potential significant myeloid potential retained
through the DN2 stage of T cell differentiation (Fig. 2, ETP) [18][19][20] [21]. The CLP
[22], the LMPP's downstream progeny in the bone marrow have comparable B and T cell
developmental potential but reduced myeloid potential [11][12][23]. An unexpected T cell
potential was also recently revealed in the GMP when this progenitor was exposed to
Notch1 signaling in vitro [6], indicating that a latent lymphoid program detected in the GMP
is functional under the right differentiation conditions. With B cell differentiation potential
greatly reduced in this progenitor, this result suggests that a common mechanism guiding
restrictions into the myeloid and T cell pathways exists.

The clear bi-potency of the LMPP and the latent bi-potency of its early progeny support a
sharing of genetic resources through the GMP, ETP-DN1-2 and CLP-proB stages of
differentiation. The subsequent focus on one cell fate coincides with the activation of
lineage-affiliated transcriptional programs at later stages of development. These appear to
harness the common transcriptional backbone provided by the shared genetic resources and
empower one immune cell fate over another.

Ikaros priming of lymphoid potential
The zinc finger DNA binding protein Ikaros (encoded on Ikzf1) has emerged as a key
regulator in early lymphocyte development and homeostasis (Fig. 2A) [24] [25] [26] [8]
[27]. In Ikaros null mice, B cell development is arrested prior to the pro-B and CLP stage of
differentiation [28] [17,26]. Although T cell development is present, early T cell progenitors
(ETP/DN1) are greatly reduced in number [26]. More recent studies have shown that
although the first step in lympho-myeloid lineage differentiation is made in the absence of
Ikaros, its product is a disabled LMPP that is unable to differentiate into the lymphoid
pathways but can differentiate into the myeloid pathways [8]. In contrast, another key
transcription factor E2A may be required for LMPP generation from the HSC [29]. Further
evaluation of Ikaros’ transcriptional effects in early progenitors has revealed a dual role for
this factor in the activation and repression of cell fate-affiliated transcriptional programs.
Ikaros’ early control of lymphocyte development relies on its ability to activate a cascade of
lymphoid lineage transcriptional programs and to repress transcriptional programs that
interfere with lymphocyte differentiation (Fig. 2).

Reciprocal regulation of lympho-myeloid priming by Ikaros—Ikaros’ first role,
manifested in the multi-potent HSC, is to reciprocally regulate the expression of lymphoid
and myeloid promoting factors (Fig. 2B), thus providing an appropriate transcriptional
platform (the s-myly signature) upon which further restrictions into the lymphoid and
myeloid pathways can be made in a regulated fashion. The cytokine receptors Ltb, Flt3, Il7r,
the signaling molecules Notch1, Clnk, Btla and the nuclear regulators Mef2c, Sox4 and Satb1
are examples of s-myly genes that support the adaptive immune cell fate and that have
diminished expression upon loss of Ikaros in the LMPP. In contrast, the cytokine receptors
Csf1r and Csf2rb and the nuclear factors Cebpa, Cebpb, Sfpi1, Gfi1 are examples of myeloid
promoting factors whose expression is augmented upon loss of Ikaros (Fig. 2B).
Nonetheless, the s-myly signature in its majority remains unaffected and Ikaros’ specific
effects on a subset of its components provides clues by which to delineate the early
transcriptional networks required for lymphoid lineage restriction [6].

An Ikaros-based transcriptional network has been recently proposed to regulate early
lympho-myeloid lineage decisions [30]. In this model, Ikaros activates Gfi1, which then
down-regulates the myeloid promoting Sfpi1 (PU.1) to achieve B cell development.
However, our studies provide the opportunity to examine gene expression in discrete cell
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types in which these fate decisions are made. We find that expression of both Gfi1 and Sfpi1
is increased in HSC, LMPP and GMP in the absence of Ikaros, an observation that is
inconsistent with this model.

The loss of lymphoid potential observed in the Ikaros null LMPP could be a consequence of
Ikaros’ role as a direct positive and negative regulator of an extensive group of lymphoid- or
myeloid-affiliated genes within the s-myly signature. Additionally, discrete changes in the
activity of lineage-affiliated transcriptional regulators that lie downstream of Ikaros can
perturb the balanced expression of their affiliated transcriptional programs and generate an
LMPP with a pre-determined fate in myeloid differentiation.

Repression of stem cell transcriptional programs by Ikaros—Ikaros’ second task
is to extinguish the genetic programs that support stemness and multi-potency within the
LMPP (Fig. 2B). Loss of Ikaros in the LMPP results in an increase in the expression of a
subset of stem cell genes. These are normally extinguished in this lineage-restricted
progenitor that has limited self-renewing potential. The cytokine receptors Mpl and Tek,
both implicated in self-renewal are significantly up-regulated in the mutant LMPP [6].
Signaling molecules such as Thy1, Socs2 and Socs3 and the nuclear regulators Gata2, Dach1
and Sox6 are other examples of stem-cell-specific genes up-regulated upon loss of Ikaros
(Fig. 2B). Genetic components of the early erythroid signature (s-ery) were also aberrantly
increased in Ikaros deficient LMPP, albeit to a lesser degree. The nuclear regulators Gata1
and Klf9, the cytokine receptors, Il1rl1, Tgfbr3 and the adherens junction molecule Gja1 are
such examples (Fig. 2B). The functional consequences of the persisting expression of these
genes in Ikaros null LMPP beg further investigation.

Concluding remarks
Genome-wide transcriptional studies performed at the progenitor population level combined
with single cell progenitor analyses have provided the molecular framework upon which
early lineage transitions are conducted. Both differentiation and transcriptional studies
support an early separation of the erythroid from the lymphomyeloid lineages early in
development. In contrast, the lymphoid and myeloid cell fates and their supporting genetic
programs appear to be intertwined through nominal lineage restrictions. This close
relationship may reflect the evolutionary mechanism that gave rise to the immune system
with its adaptive leg arising late and relying on adaptation of available resources already
utilized for innate immunity [31][32]. The latent lymphoid or myeloid cell fates still retained
in myeloid or lymphoid progenitors may also serve as a backup mechanism for alternative
immune cell production when the main pathway is blocked by stress or genetic insult.

A key regulator in the development of the adaptive immune system is the zinc finger DNA
binding factor Ikaros whose stable association with chromatin regulators implies a role in
modulating lineage-specific transcriptional programs through chromatin-based mechanisms
[33][34][35]. Indeed Ikaros’ major role is to reciprocally regulate the priming of lymphoid
and myeloid transcriptional programs within the HSC and LMPP. Transcriptional priming
precedes the stable establishment of lineage-specific transcriptional programs and is
associated with the activity of chromatin remodeling complexes in many developmental
systems. A further understanding of the mechanisms that carefully balance lineage decisions
during development of the immune system can provide us with the means to manipulate
immune cell fates for both academic and therapeutic purposes.
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Figure 1. Cascades of lineage-affiliated signatures directing early hematopoiesis
S-myly is the first in a series of lymphoid-myeloid lineage specific signatures that is primed
in the HSC and propagated along the lymphoid and myeloid pathways. The rmyly is primed
in the LMPP and marks restriction into a bi-potent lympho-myeloid state. The d-ly and d-
my, are indicative of further restriction into the lymphoid or myeloid pathways. S-ery is the
first of the erythoid lineage specific signatures that is primed in the HSC. The d-ery is
primed after s-ery in committed megakaro-erythrocyte progenitors (MEPs) and demarcates
commitment to the erythroid lineage. The stem signature is only expressed in the HSC and
demarcates its properties such as self-renewal and multi-potency. Within the HSC, it is
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widely co-expressed with the s-myly and s-ery signatures. The stem signature is rapidly
repressed in lineage-restricted progenitors that lack self-renewing potential.
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Figure 2. Ikaros effects on priming of lymphoid lineage potential
A. Ikaros effects on the lymphoid and myeloid differentiation pathways. Ikaros is required
for the generation of the CLP and ETP by priming lymphoid lineage-specific signatures in
the HSC and LMPP. B. Ikaros activates an extensive lymphoid transcriptional program
while it represses smaller cohorts of myeloid-, stem cell-and erythroid-specific genes in the
HSC and LMPP. Key downstream targets of Ikaros that are positively (green arrow) or
negatively (red block) regulated are shown in the diagram. Signature affiliation, gene
function and sub-cellular localization of these genes also are indicated.
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