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Abstract
Abnormal signaling through the platelet-derived growth factor receptor (PDGFR) has been
proposed as a possible mechanism of spinal cord glioma initiation and progression. However, the
extent of PDGFR expression in human spinal cord gliomas remains unknown. In this study we
perform immunohistochemical analysis of PDGFRα expression in a series of 33 primary
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intramedullary spinal cord gliomas of different types and grades. PDGFRα was seen to be
expressed in a significant subset of these tumors across all major glioma types including
ependymoma, oligodendroglioma, pilocytic astrocytoma, astrocytoma, and glioblastoma. These
results support the hypothesis that growth factor signaling through the PDGFR may be important
for the development of at least a subset of human spinal cord gliomas. Further studies
investigating the prognostic significance of PDGFR expression as well as the role of PDGF
signaling on the development of intramedullary spinal cord gliomas are warranted.
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Introduction
Primary intramedullary spinal cord gliomas are rare but potentially devastating lesions. The
mechanisms of tumorigenesis and the molecular-genetic profile of these tumors remain
poorly defined. However, platelet-derived growth factor (PDGF) signaling has been
proposed to play an important role in their development. In animal models, induction of
PDGF-B expression in the spinal cord has been shown to initiate the formation of
intramedullary gliomas [1–3]. These experimental spinal cord gliomas also express the
cognate receptor PDGFRα suggesting that signaling downstream of this receptor tyrosine
kinase may drive tumor formation. Additionally, evidence of PDGF receptor expression in
human spinal cord ependymoma as well as responsiveness to receptor inhibition further
implicates a mechanistic role for PDGF signaling in the pathogenesis of intramedullary
glioma [4, 5].

Although, a number of reports have demonstrated expression of PDGF receptors in cerebral
gliomas [6–10], the extent of PDGF receptor expression in spinal cord gliomas remains
unknown. Recognition that PDGF and its receptors are often expressed in cerebral gliomas
has provided the framework for the initiation of several clinical trials testing inhibition of
this pathway in brain tumors [11–17]. The development and implementation of therapies
targeted at PDGF receptor and/or downstream target inhibition in spinal cord gliomas will
depend both on the feasibility of receptor profiling and on the frequency with which positive
expression is observed. In this study we assess the expression status of platelet-derived
growth factor receptor alpha (PDGFRα) by immunohistochemistry in a series of 33 primary
spinal cord gliomas. Using this technique we characterize expression within various spinal
cord gliomas of different histological types and grades.

Methods
Case selection and pathological samples

The cases for this study were identified within the neuropathology databases maintained by
the Columbia University Medical Center, Department of Pathology and within the
Department of Neurological Surgery Bartoli Brain Tumor Bank. Cases of primary
intramedullary spinal cord glioma with sufficient paraffinized tissue for analysis obtained
between 1995 and 2009 were eligible for inclusion. Patients with a diagnosis of
myxopapillary ependymoma were excluded. Original surgery and pathology reports were
reviewed for each case. After diagnostic confirmation was obtained by review of the original
pathological slides, formalin-fixed paraffin-embedded tumor blocks were obtained. Five
micron thick sections were cut and mounted on glass slides in preparation for
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immunohistochemical staining. All study data were processed, reviewed, and catalogued in
accordance with policies of the Institutional Review Board.

Immunohistochemistry and microscopy
Glass-mounted 5 micron thick sections were de-paraffinized in xylene and rehydrated with
100% ethanol and distilled water. Antigen retrieval was performed by boiling the samples in
10 mM citrate buffer at a pH of 6. Samples were then blocked in 0.3% peroxide, washed,
and blocked in 20% normal goat serum (Vector Laboratories). After washing, the samples
were incubated with rabbit anti- PDGFRα (1:500; Cell Signaling). Vectastain ABC kit
(Vector laboratories) and DAB chromogen were used for visualization. Sections were then
counterstained with hematoxylin, washed, and dehydrated prior to cover slip mounting.
Cerebral glioblastomas with known PDGFRα expression status were
immunohistochemically processed in parallel with the study samples to serve as positive and
negative staining controls.

All photomicrographs were obtained using a Nikon Labphot-2 microscope. Digital images
were processed using NIS-Elements imaging software (Nikon). PDGFRα expression was
classified as either positive or negative based on whether immunoperoxidase reactivity
(brown staining) was observed during microscopic analysis. Due to the small sample sizes
and the presence of focal variations in staining intensity, qualitative rather than quantitative
immunohistochemical expression profiling was deemed most appropriate.

Results
Study cohort

A total of 33 histologically confirmed cases of primary intramedullary spinal cord glioma
were included in this study (Table 1). The patients include 15 women and 18 men with a
median age of 40 (range 2–81) years at the time of diagnosis. The pathological diagnoses
include 26 WHO grade II ependymomas, 1 WHO grade II oligodendroglioma, 1 pilocytic
astrocytoma, 1 anaplastic pilocytic astrocytoma, 3 WHO grade II astrocytomas, and 1
glioblastoma multiforme. The tumors had no segmental level predilection and were seen
throughout the cervical, thoracic, and lumbar spinal cord.

Histological and immunohistochemical analysis
PDGFRα localization and expression—A total of 10 out of 33 (30.3%) spinal cord
gliomas analyzed were seen to express PDGFRα (Table 1). PDGFRα immunoreactivity
localized to both the cytoplasm and cell membranes of tumor cells within positive samples.
Staining of variable intensity was often seen in a discrete subset of cells. The density and
distribution of PDGFRα-expressing cells varied from tumor to tumor and from region to
region within tumors.

Ependymoma—Ependymoma was the most commonly identified intra-medullary spinal
cord tumor within the queried tumor banks and 26 were included in this study. On
histological examination all 26 tumors were classified World Health Organization (WHO)
grade II ependymoma with three being subtyped tanycytic. In addition to histological
phenotyping, the diagnosis of ependymoma was supported by the presence of characteristic
dot-like epithelial membrane antigen (EMA) immunoreactivity in 8 of 9 tested samples (not
shown). PDGFRα immunoreactivity was detected in 19% (5/26) of the spinal cord
ependymoma cases studied. Representative examples are shown in Fig. 1.

Oligodendroglioma—WHO grade II intramedullary oligodendroglioma is rarely
diagnosed and one case was identified within the cohort. A characteristic “Indian file”
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pattern of cellular infiltration was observed in the pathological sample (Fig. 2a). Areas of
calcification were also seen. PDGFRα immunoreactivity was seen to highlight the linear
bands of tumor cells within an a cellular background (Fig. 2b).

Pilocytic astrocytoma—Both a WHO grade I (Fig. 3a–b) and an anaplastic WHO grade
III (Fig. 3c–d) pilocytic astrocytoma were among the cohort of tumors samples in this series.
The anaplastic pilocytic astrocytoma exhibited areas with distinct features of malignant
progression (Fig. 3c, inset) with other areas showing lower grade histology. The grade I
pilocytic astrocytoma was PDGFRα negative (Fig. 3b) while the anaplastic pilocytic
astrocytoma was immunopositive for PDGFRα (Fig. 3d).

Astrocytoma and glioblastoma—PDGFRα was expressed in 2 of 3 WHO grade II
spinal cord astrocytomas and in the 1 spinal cord glioblastoma case analyzed (Fig. 4). The
low cell density of the astrocytoma shown in (Fig. 4b) illustrates cytoplasmic and cell
membrane PDGFRα immunoreactivity that highlights the boundaries between individual
cells. Conversely, cellular borders are obscured within the glioblastoma due to the high
density of neoplastic cells and dysplastic vasculature (Fig. 4f).

Discussion
Abnormal PDGF signaling is well recognized to be an important mechanism of
gliomagenesis in the brain [18, 19]. However, relatively little is known about the role of
PDGF and its receptors in spinal gliomagenesis. In this study we present the largest and
most comprehensive series of human spinal cord gliomas surveyed for PDGFRα expression
to date. Using immnohistochemical analysis we demonstrate that a significant subset of
spinal cord gliomas express receptors for the growth factor PDGF and show that these
receptors localize to tumor cell membranes and cytoplasm. Approximately 30% of all
tumors and 20% of ependymomas—the largest subset of gliomas included in this study—
were immunopositive for PDGFRα. This is in contrast to the relatively high rate of
PDGFRα immunopositivity (5 of 7 tumors) seen in a small series of spinal ependymomas by
Barton et al. [5]. Within each diagnostic category the cohort sizes were too small to make
statistical inferences, however, it is important to note that PDGFRα expression was seen in
all major categories of glioma found in the spinal cord. These results have implications
regarding the identification of the cell types that give rise to spinal cord gliomas,
determining the mechanism of spinal cord glioma development, and delineating the potential
therapeutic options for patients with these tumors.

A number of animal and human studies suggest that autocrine and paracrine signaling
through the PDGF cell surface receptor is responsible for the initiation and progression of
brain gliomas [7, 9, 10, 20–25]. Expression profiling of human cerebral gliomas indicates
that PDGF and its receptors (PDGFR) are often co-expressed [7, 20]. In vitro studies have
shown that PDGF is a powerful mitogen for glioma cells and that small molecule inhibitors
of PDGF will block glioma cell proliferation and survival [26, 27]. Animal studies have
shown that infecting glial progenitors in the subventricular zone (SVZ), subcortical white
matter, or brainstem with PDGF-expressing retroviruses will induce the formation of
gliomas [22, 28, 29]. Furthermore, viruses that express higher levels of PDGF drive cerebral
gliomas to form faster, more consistently, and with more malignant features, suggesting that
PDGF-driven gliomagenesis is a dose dependent phenomena [30].

Thus far, evidence primarily from studies in animal models implicates PDGF receptor
signaling in spinal cord gliomas as well [1–3]. This study provides the first evidence from
human spinal cord glioma tissue that PDGF receptor expression may play an important role
in the development of at least a subset of spinal cord gliomas. Interestingly, the human brain
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contains a population of cycling PDGFRα-expressing progenitor cells thought capable of
initiating glioma formation in the presence of PDGF [31–33]. These glial progenitors are
thought to possess an inherent capacity to proliferate massively in response to PDGF
stimulation enabling even genetically normal progenitors to become tumorigenic if exposed
to sufficient levels of PDGF [31]. Confirmation that this is also true in the human spinal
cord awaits the results of future studies.

While maximal, safe resection is the initial treatment strategy utilized for most low grade
gliomas of the spinal cord, adjuvant therapy may be useful in the management of residual,
recurrent, or high-grade tumors. However, there is little evidence that current adjuvant
therapies for spinal cord gliomas are effective [34–36]. A better strategy in treating these
patients may be the rational use of targeted chemotherapies that block specific signal
transduction pathways in tumor cells such as those downstream of the PDGF receptor.
Though the promising pre-clinical results from studies evaluating PDGF receptor blockade
with agents such as imatinib, sunitinib, and sorafenib in cerebral gliomas have yet to
convincingly show clinical benefit, this represents an active area of research [11–17]. This
strategy has not been explored in the treatment of spinal cord gliomas save for a single case
report of partial remission of a PDGFR-expressing spinal ependymoma with use of imatinib
[4]. As nearly a third of spinal cord gliomas in this series were shown to express PDGFRα,
initiating therapies that target this receptor may be helpful in a significant subset of patients.

Limitations of this study stem from the small cohort sizes, especially for the non-ependymal
tumors, from the qualitative immunohistochemical approach used for expression analysis,
and from the inherent heterogeneity within gliomas. As primary spinal cord tumors are rare
being 10–15 times less common than intracranial tumors [37] the accumulation of larger
cohorts in future studies may require grouping of samples from multiple institutions. Our
use of immunohistochemical analysis was low-cost, technically straightforward, and proved
very reliable for screening the small pieces of tissue typical of spinal cord tumor biopsies.
The primacy of neurological function preservation during spinal cord tumor biopsies means
that extensive analysis of intratumoral expression variability may only be possible on
autopsy samples.

Conclusion
PDGFRα is expressed in a subset of intramedullary spinal cord gliomas including
ependymoma, oligodendroglioma, pilocytic astrocytoma, astrocytoma, and glioblastoma.
This finding supports previous studies which suggest that PDGF signaling can play an
important role in spinal cord gliomagenesis. Validation of these results in larger cohorts
using quantitative expression analysis will be important in future studies. The prognostic
significance of PDGFRα expression in spinal cord gliomas as well as its implications for the
effectiveness of targeted therapies remains to be determined.
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Fig. 1.
Spinal cord ependymomas. Representative H&E (a, c) and corresponding PDGFRα
immunoperoxidase (b, d) stained sections from cases 1 and 16, respectively are shown.
Positive (b) and negative (d) PDGFRα immunoreactivity (brown) is demonstrated.
Magnification in all panels 200×
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Fig. 2.
Spinal cord oligodendroglioma (case 27). H&E staining shows a moderately cellular
neoplasm within a mucinous background. The tumor cells exhibit a palisading growth
pattern and are aligned in linear bands (a). The majority of tumor cells show PDGFRα
immunoreactivity (brown) (b). Magnification in all panels 200×
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Fig. 3.
WHO grade I pilocytic astrocytoma (case 28) and anaplastic pilocytic astrocytoma of the
spinal cord (case 29). H&E stained section from a WHO grade I pilocytic astrocytoma
shows a low cellularity glial neoplasm within an eosinophilic background (a). No PDGFRα
immunoreactivity is demonstrated within this tumor (b). In contrast, H&E section from a
WHO grade III anaplastic pilocytic astrocytoma demonstrates a more cellular and
pleomorphic tumor with areas of incipient necrosis (inset) (c). Immunoperoxidase staining
demonstrates PDGFRα immunoreactivity (brown) within this tumor (d). Magnification in
all panels 200X
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Fig. 4.
WHO grade II astrocytoma and glioblastoma (WHO grade IV) of the spinal cord. H&E
section from a WHO grade II astrocytoma (case 30) demonstrates a low density of
infiltrative glial cells within the spinal cord white matter (a). A subset of tumor cells
distributed throughout the specimen show PDGFRα immunoreactivity (brown) (b). H&E
section from another sample (case 32) of WHO grade II astrocytoma (c) with negative
PDGFRα staining (d) is shown for comparison. A high-grade lesion with prominent
glomeruloid vascular proliferation, hemorrhage, and necrosis consistent with a diagnosis of
glioblastoma is demonstrated on H&E staining from case 33 of this series (e). The majority
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of cells in this tumor stain strongly positive for PDGFRα (brown) (f). Magnification in all
panels 200X
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