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Abstract

Humans possess a remarkable ability to attend to a single speaker’s voice in a multi-talker
backgroundl-3. How the auditory system manages to extract intelligible speech under such
acoustically complex and adverse listening conditions is not known, and, indeed, it is not clear
how attended speech is internally represented®®. Here, using multi-electrode surface recordings
from the cortex of subjects engaged in a listening task with two simultaneous speakers, we
demonstrate that population responses in non-primary human auditory cortex encode critical
features of attended speech: speech spectrograms reconstructed based on cortical responses to the
mixture of speakers reveal the salient spectral and temporal features of the attended speaker, as if
subjects were listening to that speaker alone. A simple classifier trained solely on examples of
single speakers can decode both attended words and speaker identity. We find that task
performance is well predicted by a rapid increase in attention-modulated neural selectivity across

both single-electrode and population-level cortical responses. These findings demonstrate that the

cortical representation of speech does not merely reflect the external acoustic environment, but
instead gives rise to the perceptual aspects relevant for the listener’s intended goal.

Separating out a speaker of interest from other speakers in a noisy, crowded environment is
a perceptual feat that we perform routinely. The ease with which we hear under these
conditions belies the intrinsic complexity of this process, known as the cocktail party
problem-3: concurrent complex sounds, which are completely mixed upon entering the
ear, are re-segregated and selected from within the auditory system. The resulting percept is
that we selectively attend to the desired speaker while tuning out the others.

Although previous studies have described neural correlates of masking and selective
attention to speech®57-9, fundamental questions remain unanswered regarding the precise
nature of speech representation at the juncture where competing signals are resolved. In
particular, when attending to a speaker within a mixture, it is unclear what key aspects (for
example, spectrotemporal profile, spoken words and speaker identity) are represented in the
auditory system and how they compare to representations of that speaker alone; how rapidly
a selective neural representation builds up when one attends to a specific speaker; and
whether breakdowns in these processes can explain distinct perceptual failures, such as the
inability to hear the correct words, or follow the intended speaker.
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To answer these questions, we recorded cortical activity from human subjects implanted
with customized high-density multi-electrode arrays as part of their clinical work-up for
epilepsy surgery0. Although limited to this clinical setting, these recordings provide
simultaneous high spatial and temporal resolution while sampling the population neural
activity from the non-primary auditory speech cortex in the posterior superior temporal lobe.
We focused our analysis on high gamma (75-150 Hz) local field potentials'!, which have
been found to correlate well with the tuning of multi-unit spike recordings!2. In humans, the
posterior superior temporal gyrus has been heavily implicated in speech perceptionl3, and is
anatomically defined as the lateral parabelt auditory cortex (including Brodmann areas 41,
42 and 22)14.

Subjects listened to speech samples from a corpus commonly used in multi-talker
communication research1516, A typical sentence was “ready tiger go to red two now” where
“tiger” is the call sign, and “red two” is the colour—-number combination. One male and one
female speaker were selected, each speaking the same 12 unique combinations of two call
signs (ringo or tiger), three colours (red, blue or green) and three numbers (two, five or
seven). Example acoustic spectrograms from two individual speakers are shown in Fig. 1a,
b. The two voices differ along several dimensions including pitch (male versus female),
spectral profile (different vocal track shapes) and temporal characteristics (speaking rate).
Subjects first listened to each of the speakers alone and were able to report the colour and
number with 100% accuracy. Subjects then listened to a monaural, simultaneous mixture of
the two speakers’ phrases with different call signs, colours and numbers. The subjects were
instructed to respond by indicating the colour and number spoken by the talker who uttered
the target call sign. The target call sign (ringo or tiger) was fixed and shown visually on a
monitor during each trial block, which contained 28 different mixture sounds. As the target
speaker was changed randomly from trial to trial, the subjects were required to monitor both
voices initially (divided attention) to identify the target speaker. The target call sign was
switched after each block, turning the previous target speaker in each mixture into a masker.
This resulted in two sets of behavioural and neural responses for each identical mixture
sound, which differed only in the focus of attention. Subjects reported correct responses in
74.8% of trials.

Figure 1c illustrates the mixture spectrogram and how difficult it is to tell which sound parts
belong to one speaker versus the other. The energy for both speakers is distributed broadly
across the spectral and temporal domains, with overlap in some areas and isolated sound
parts in others, as shown in their difference spectrogram (Fig. 1d; average spectrograms in
Supplementary Fig. 1a).

To determine the spectrotemporal encoding of the attended speaker, the method of stimulus
reconstruction was used17-19 to estimate the speech spectrogram represented by the
population neural responses. Reconstructed spectrograms provide an intuitive way to
examine how the population neural responses encode the spectrotemporal features of
speech, and more importantly, can be compared with the original acoustic spectrograms as
well as across attentional conditions. We first calculated the reconstruction filters from a
passive listening task using a separate continuous speech corpus (TIMIT20) that consisted of
499 unique short sentences spoken by 402 different speakers. The filters were then fixed and
applied to a novel set of population neural responses to the single and attended mixture
speech for spectrogram reconstruction.

When listening to a single speaker alone, the reconstructed spectrograms from population
neural activity corresponded well to the spectrotemporal features of the original acoustic
spectrograms (Fig. 1e, f compared to Fig. 1a, b, respectively), exhibiting fairly precise
temporal features and spectral selectivity (for example, correspondence between the high
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frequency bursts of energy in “tiger” and “two”, in Fig. 1a, b, e, f). The average and standard
deviation of the correlation between reconstructed and original spectrograms over 24
sentences were 0.60 + 0.034 (0.60 and 0.62 for the examples in Fig. 1e, f). When attending
to each of the two speakers, the reconstructed spectrograms from the same speech mixture
showed a marked difference depending upon which speaker was attended (Fig. 1g, h). For
each pair, the key temporal and spectral features of the target speaker are enhanced relative
to the masker speaker (Fig. 1g, h compared to Fig. 1e, f, respectively). To compare directly,
the energy contours from these reconstructed spectrograms are overlaid in Fig. 1i. Important
spectrotemporal details of the attended speaker were extracted, while the masker speech was
effectively suppressed.

Attentional modulation of the neural representation was quantified, separately for correct
and error trials, by measuring the correlation of the reconstructed spectrograms from the
mixture in two attended conditions with original acoustic spectrograms of the speakers alone
(Fig. 2a—d). During correct trials (Fig. 2a, c), we observed a significant shift of average
correlation values towards the target speaker representation. During error trials, in contrast,
no significant shift was observed (Fig. 2b, d). Furthermore, the correlations between the
reconstructed mixture and the masker speaker were higher than the average intrinsic
correlation between randomly chosen original acoustic speech phrases (Fig. 2c, d, dashed
lines), revealing a weak presence of the masker speaker in mixture reconstructions, even in
correct trials.

The difference in speaking rate of the two speakers, coupled with the stereotyped structure
of the carrier phrases, results in specific average temporal modulation profiles for each
speaker (average spectrogram for each speaker is shown in Supplementary Fig. 1a, b). To
investigate encoding of the distinct spectral profile and characteristic temporal rhythm of the
target compared to the masker speaker, we estimated the average difference between
reconstructed spectrograms of the two speakers, when presented alone and in the attended
mixture (Fig. 2e, f). The comparison between the two average difference reconstructed
spectrograms reveals enhanced encoding of both temporal and spectral aspects of the
attended speaker (Supplementary Fig. 1c, d). To study the time course of attention-induced
modulation of reconstructed mixture spectrograms towards the attended speaker, we
calculated an attentional modulation index (AMlgpec), Using a sliding window of 250 ms
throughout the trial duration:

AMIpec=Corr(SP1spec, SPlagtend ) —Corr(SP Lepec, SP2attend ) +Corr(SP2spec, SP2attend ) —Corr(SP2upec, SP1lattend)

where SP1gpec and SP2gpec are the original acoustic spectrograms of speakers one and two,
respectively, and SP1,tend and SP24tteng are the spectrograms reconstructed from neural
responses to the mixture with attended targets, speaker one and two, respectively. Positive
values of this index reflect shifts towards the target, negative values reflect shifts to the
masker representation, and values around zero reflect no shift (AMIgpec = 0.58 for the
example in Fig. 1). An upper bound for the AMIgpec Was calculated by assuming that
attention, at best, restores the single speaker reconstructions of the target speaker (replacing
SP1,ttend @nd SP2q¢teng in equation (1) with SP14j0ne and SP24i0ne: Fig. 20, grey line). The
AM lgpec from the mixture was first estimated from correct trials (Fig. 2g, black line), and
could resolve the time point at which the reconstructed spectrograms were modulated by
attention. After the end of the call sign, which cues the speaker that should be attended, a
rapid positive shift in the AMIgyec Was observed, implying the enhanced representation of
the target speaker. In error trials, this effect shows a bias towards the masker speaker, which,
in contrast, occurred far earlier in the time course. The neural response shift towards the
masker, which occurs as early as the call sign, suggests that listeners had prematurely
attended to the wrong speaker during those error trials.
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Although the reconstruction analyses showed clear attention-based spectrotemporal
modulation, we wanted to determine explicitly whether the attended speech in a mixture
could be decoded from a model of a single speaker. A regularized linear classifier?! was
trained on neural responses to the single speakers and then used to decode both the spoken
words and speaker identity of the attended speech mixture. To keep the chance performance
at 50% across all comparisons, classification results were limited only to the choices that
were present in each mixture. For correct trials, the colour and number of the attended
speech were decoded with high accuracy (77.2% and 80.2%, P < 10 x 1074, t-test; Fig. 3a).
However, the decoding performance during error trials was significantly below chance
(30.0%, 30.1%, P < 10 x 1074, t-test; Fig. 3b), indicating a systematic bias towards decoding
the words of the masker speaker. In addition, for correct trials, the call sign was classified at
chance performance (Fig. 3a). However, for incorrect trials the classifier detected the masker
call sign significantly more often than the target call sign (34.1%, P < 10 x 1074, t-test; Fig.
3b), which again shows errors due to an early selection of the masker (incorrect) speaker.

For the speaker identification analyses, we divided the behavioural error types into two
subsets. The first type occurred when the reported colour-number combination was
incorrect for either speaker (“incorrect’; 16.5% of trials). The second type occurred when
subjects reported the correct colour-number for the masker instead of the target speaker
(‘correct for masker’; 8.6% of trials).

In correct trials, the classifier identified the target speaker 93.0% of the time (P < 10 x 1074,
t-test; Fig. 3c). During incorrect trials, the classifier performance was at chance. However,
during correct for masker trials, the classifier identified the masker rather than the target
speaker (27.3%; P < 10 x 1074, t-test; Fig. 3c). These classification results confirm the
observed restoration seen in spectrotemporal reconstruction, without necessarily assuming a
linear relationship between the neural responses and the stimulus. Furthermore, they extend
recent findings using similar methods to decode speech sounds presented in isolation?2 to
full words and sentences under complex listening conditions.

We next asked whether the observed robust encoding of attended speech results as an
emergent property of the distributed population activity or is driven by a few spatially
discrete sites. The cortical regions with reliable evoked responses to speech stimuli were
found using a t-test between neural responses during speech and silence (P < 0.01), and were
confined to the posterior superior and middle temporal gyri (Fig. 4a). An example of the
attentional response modulation at a single electrode is shown in Fig. 4b—d. The
spectrotemporal receptive field (STRF, estimated using the http://www.strflab.berkeley.edu
package) of this electrode in passive listening to speech (TIMIT20) showed a strong
preference for high frequency sounds (Fig. 4b) (STRFs for all electrodes of one subject are
provided in Supplementary Fig. 2b). This tuning was also evident in the increased neural
response at this electrode (Fig. 4d, dashed lines) to each of the single speakers’ high
frequency sound components (circled in Fig. 4c, responses are delayed about 120 ms from
the stimulus). However, the responses to the same speech mixture sound (Fig. 4d, solid
lines) were significantly modulated by attention. The responses to high frequency
components were enhanced for the attended speaker, but suppressed for similar sounds in
the masker speaker (Fig. 4d, solid lines compared to dashed lines). This highly modulated
yet fixed feature selectivity probably contributes to the constancy of the single speaker
representation observed in our previous analyses. To quantify this effect for each individual
electrode, we measured the correlation between the neural responses to the attended mixture
and to those of the speakers in isolation (AMlgjec, €quation (2) in Methods). We found a
varying degree of bias towards the attended speaker distributed across the population
(Supplementary Fig. 3d; AMIgec = 0.28 for the example in Fig. 4), which gradually builds
up after the end of the call sign (Supplementary Fig. 3e). We did not observe any particular
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anatomical pattern for the attentional modulation across sites (Supplementary Fig. 3f).
Rather, it appeared to be distributed over responsive sites, consistent with previous findings
of higher-order sound processing23.

In summary, we demonstrate that the human auditory system restores the representation of
the attended speaker while suppressing irrelevant competing speech. Speech restoration
occurs at a level where neural responses still show precise phase-locking to spectrotemporal
features of speech. Population responses revealed the emergent representation of speech
extracted from a mixture, including the moment-by-moment allocation of attentional focus.

These results have implications for models of auditory scene analysis. In agreement with
recent studies, the cortical representation of speech in the posterior temporal lobe does not
merely reflect the acoustical properties of the stimulus, but instead relates strongly to the
perceived aspects of speech0. Although the exact mechanisms are not fully known, multiple
processes in addition to attention are likely to enable this high-order auditory processing,
including grouping of predictable regularities in speech acoustics?4, feature binding3-2> and
phonemic restoration26. Conversely, behavioural errors seem to result from degradation of
the neural representation, a direct result of inherent sensory interference such as energetic
masking1® (Supplementary Fig. 3g, h) and/or the allocation of attention?’.

In speech, the end result represented in the posterior temporal lobe appears to be unaffected
by perceptually irrelevant sounds, which is ideal for subsequent linguistic and cognitive
processing. Following one speaker in the presence of another can be trivial for a normal
human listener, but remains a major challenge for state-of-the-art automatic speech
recognition algorithms28. Understanding how the brain solves this problem may inspire
more efficient and generalizable solutions than current engineering approaches®. It will also
shed light on how these processes become impaired during ageing and in disorders of speech
perception in real-world hearing conditions’.

The experimental protocol was approved by the Committee for Human Research at the
University of California, San Francisco.

Three human subjects underwent the placement of a high-density subdural electrode array (4
mm pitch) over the language-dominant hemisphere as part of routine clinical treatment for
epilepsy. Subjects gave their written informed consent before surgery. All subjects had self-
reported normal hearing and underwent neuropsychological language testing (including the
Boston naming and verbal fluency tests) and were found to be normal. The intracarotid
sodium amobarbital (Wada) test was used for language dominance assessment. The
electrodes in the study were located over the posterior dorsolateral temporal lobe. The
location and corresponding spectrotemporal receptive fields of all the included electrodes for
a subject are shown in Supplementary Fig. 2.

Data acquisition and pre-processing

The electrocorticography signal was recorded with a multichannel amplifier optically
connected to a digital signal processor (TuckerDavis Technologies). Each channel time
series was visually and quantitatively inspected for artefacts or excessive noise. The data
were then segmented with a 100 ms pre-stimulus baseline and a 400 ms post-stimulus
interval. The common mode signal was estimated using principal component analysis with
channels as repetitions and was removed from each channel time series using vector
projection.
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Task design and behavioural testing

We used speech samples from a publicly available database called Coordinate Response
Measure (CRM1®) containing sentences in the form “ready (call sign) go to (colour)
(number) now”. One male and one female speaker (speakers one and five in CRM corpus)
were selected with two call signs (ringo and tiger), three colours (blue (B), red (R) or green
(G)) and three numbers (two, five or seven). For each of the two call signs, we generated six
colour— number combinations (B2, B5, R2, R7, G5, G7), resulting in 12 different phrases.
We chose the same phrases for each of the two speakers, resulting in 24 single speaker
sentences. We then produced 28 unique mixture speech samples by selecting from
combinations of the 24 single speaker sentences at 0 dB target-to-masker ratio. Each mixture
sample was chosen such that there was no overlap between call signs, colours or the
numbers of the two phrases. In addition, each speaker had the same number of call signs
(ringo or tiger) in each trial block. The sounds were presented monaurally from a
loudspeaker connected to a laptop, which was also used to collect subjects’ responses
through a customized graphical user interface. Each trial block consisted of 28 trials and the
target call sign was fixed for each block. The target call sign was displayed visually before
and during the trial block. Subjects first listened to each of the speakers alone and were able
to report the colour and number with 100% accuracy. Subjects then listened to a monaural,
simultaneous mixture of the two speakers’ phrases with different call signs, colours and
numbers. The subjects were instructed to respond by indicating the colour and number
spoken by the talker who uttered the target call sign. The target speaker changed from trial
to trial pseudorandomly, requiring the subjects to initially monitor both speakers until they
detect the target call sign. After each trial block, the target call sign was changed, switching
the role of target and masker speakers in each mixture sound.

Electrode selection

The cortical sites on the superior and middle temporal gyri with reliable evoked responses to
speech stimuli were selected for all the subsequent analysis. Our inclusion criteria consisted
of a t-test between responses to randomly selected time frames during passive speech
presentation (TIMIT) and in silence (P < 0.01, resulting in 83, 92 and 102 electrodes for
subjects one to three. One example subject is shown in Supplementary Fig. 2a). Solely for
visualization, we also estimated the STRFs of these selected sites from passive listening to
TIMIT using normalized reverse correlation algorithm (STRFLab software package, http://
www.strflab.berkeley.edu; Supplementary Fig. 2b). Correlation histogram of STRF
predictions for all 275 electrode sites is shown in Supplementary Fig. 1c.

Stimulus reconstruction

We used stimulus reconstruction to map the population neural responses to the spectrogram
of the speech stimulus1’~19. Reconstruction filters were estimated from neural responses to a
separate speech corpus (TIMIT29) containing a total of 499 unique short sentences from 402
different speakers. Filters were obtained using normalized reverse correlation to minimize
the mean squared error of the reconstructed spectrograms!’ with filter time lags from —420
to 0 ms (causal filters). The filters were then fixed in all subsequent conditions and were
applied to the neural responses to CRM samples. Neither of the speakers or phrases in the
CRM data set was used in estimation of the filters. The output of the reconstruction
algorithm was further processed with a band-pass filter applied to each frequency channel of
reconstructed spectrograms to remove the baseline. All the processing steps for stimulus
reconstruction were identical in all conditions (single and mixture speakers).
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To quantify the change in similarity between the representation of single and attended
speaker in mixture speech, we defined the AMIgpec in equation (1). The stereotypical format
of the CRM phrases results in an intrinsic correlation between the neural responses to
different sentences, particularly at the beginning (“ready”) and middle of the carrier phrase
(“go to”), which results in reduced possible AMIgpec values for these segments. To estimate
an upper bound for unbiased comparison, AMIgyec Was calculated where the representation
of an attended speaker in a mixture is ideally assumed to be identical to the representation of
that speaker when presented alone; therefore, replacing SPgtteng in equation (1) with the
reconstructed spectrogram of single speaker SP;jone. The upper bound peaks at the call sign,
colour and number where different phrases are most dissimilar. The overall increase in the
upper bound is due to the progressive asynchrony between the two speakers.

The same statistics can be used to estimate the AMI of an individual electrode site by
calculating the correlation values between the neural response of that site to attended
mixture and single speaker presentations:

AMIjee=Corr(R—SP1,jone; R

—SP1lattend)

— Corr(R

—SPlalone, R

—SP2attena ) +Corr(R )

—SP2a10ne, R
—SP2attend)

— Corr(R
—SP2410ne, R—=SP1attena)

where R-SP1,j0ne and R-SP2,i0ne are the responses of an electrode to speakers one and two
alone, respectively, and R-SP14tteng and R-SP24ttenq are the responses of the same electrode
to the mixture of the two when the attended target is speaker one and two, respectively.

Classification of spoken words and speaker identity

A linear-frame-based regularized-least-square classifier?! was used to investigate the
discriminability of the spoken words and speaker identity from electrocorticographic
responses. Two binary classifiers were trained to classify the call sign and speaker identity,
and two separate three-way classifiers were used for colour and for number classification.
Classifiers were trained only on the neural responses of single speakers (24 sentences) and
tested on the mixtures. The classifiers produced a linear weighted sum of the neural
responses at each time instance and the classifier that produced the maximum average output
over the duration of words was chosen as classification result. The classifier decision was
limited to only the colours and numbers that occurred in each mixture, therefore resulting in
same 50% chance performance in all cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Acoustic and neural reconstructed spectrogramsfor speech from a single speaker or a
mixture of speakers

a, b, Example acoustic waveform and auditory spectrograms of speaker one (male; a) and
speaker two (female; b). ¢, Waveform and spectrogram of the mixture of the two shows
highly overlapping energy distributions. d, Difference spectrogram highlights the mixture
regions where speaker one (blue) or two (red) has more acoustic energy. e, f, Neural-
population-based stimulus reconstruction of speaker one (€) and speaker two (f) alone shows
similar spectrotemporal features as the original spectrograms in aand b. g, h, The
reconstructed spectrograms from the same mixture sound when attending to either speaker
one (g) or two (h) highly resemble the single speaker reconstructions, shown in eand f,
respectively. i, Overlay of the spectrogram contours at 50% of maximum energy from the
reconstructed spectrograms in e, f, g and h.
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Figure 2. Quantifying the attentional modulation of neural responses

a, b, Correlation coefficients of reconstructed mixture spectrograms under attentional
control and the corresponding single speaker original spectrograms in correct and error trials
(examples in Fig. 1g, h shown with black outline). ¢, d, Mean and standard error of
correlation values for correct and error trials (28 mixtures). The dashed line corresponds to

the average intrinsic correlation between randomly chosen original speech phrases. Brackets

indicate pairwise statistical comparisons. NS, not significant. e, f, Average difference
reconstructed spectrograms of speakers one and two from responses to single speaker (€)
and attended mixture (f). g, Time course of average and standard error of AMIgpec of 28
mixtures for correct (black) and error (red) trials. Grey curve shows the upper bound of

AMIspec.
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Figure 3. Decoding spoken wor ds and the identity of the attended speaker
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a, Classification rate and standard deviation for spoken words (call sign, colour and number)
of the attended speaker from the neural responses to the 28 mixtures. Classifiers were
trained on single speaker examples only. Colour and number of the attended speech are
decoded with high accuracy (77.2% and 80.2%, P < 10 x 1074, t-test) in correct trials, but
not the call sign (48.0%, not significant (NS), t-test). b, In error trials, the classifier showed
a systematic bias towards the words of the masker speaker (34.1%, 30.0%, 30.1%, P < 10 x
1074, t-test). ¢, Attended speaker identification rate and standard deviation in correct for
target, incorrect (for both target and masker), and correct for masker trials.
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Figure 4. Attentional modulation of individual electrode sites

a, Electrodes picking up a significant difference between responses to silence and speech
sounds (P < 0.01, t-test). b, STRF of this representative electrode site shows a preference for
high frequency sounds. c, Mixture difference spectrogram for a selected duration containing
a high frequency component for each speaker (circled). d, The electrode shows an increased
response to high frequency sounds of single speakers (dashed lines, peak neural response is
delayed by about 120 ms). However, the neural response to the same mixture sound in two
attention conditions (solid lines) showed an enhanced response to high frequency sounds
only for the target, but with responses for similar sounds in the masker speaker suppressed.
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