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Abstract
CryoEM data capture the dynamic character associated with biological macromolecular
assemblies by preserving the various conformations of the individual specimens at the moment of
flash freezing. Regions of high variation in the data set are apparent in the image reconstruction
due to the poor density that results from the lack of superposition of these regions. These
observations are qualitative and, to date, only preliminary efforts have been made to quantitate the
heterogeneity in the ensemble of particles that are individually imaged. We developed and tested a
quantitative method for simultaneously computing a reconstruction of the particle and a map of
the space-varying heterogeneity of the particle based on an entire data set. The method uses a
maximum likelihood algorithm that explicitly takes into account the continuous variability from
one instance to another instance of the particle. The result describes the heterogeneity of the
particle as a variance to be plotted at every voxel of the reconstructed density. The test, employing
time resolved data sets of virus maturation, not only recapitulated local variations obtained with
difference map analysis, but revealed a remarkable time dependent reduction in the overall particle
dynamics that was unobservable with classical methods of analysis.
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1. Introduction
Recent success with 3-dimensional (3-D) reconstructions of biological macro molecular
particles employing single-particle cryo electron microscopy (cryo EM) has been
remarkable. Sub nanometer icosahedral virus structures are virtually routine and protein and
nucleo-protein structures, without symmetry, are appearing more frequently at comparable
resolution. Structures of icosahedral viruses at near-atomic resolution have been achieved
with this technology in recent years (Liu et al., 2010; Baker et al., 2010; Zhang et al., 2008).

Cryo EM data captures biological macromolecular particles that are trapped in one of a
smooth continuum of conformations at the moment of vitrification in liquid ethane. The
amount of conformational change accessible to the particle is presumably space dependent,
but there are limited tools available for assessing the global amount of conformational
change available let alone creating a spatial map of the amount of conformational change
occurring.

Cryo EM has recently been reviewed in the three volumes edited by Jensen (2010a,b,c). The
idea of maximum likelihood as a method for deriving statistical estimators dates back to the
early 1900s (Lehmann and Casella, Section 10.1, p. 515, 1998) and it remains an important
method. Computation of a reconstruction by optimization of the fit between the images
predicted by a mathematical model and the experimental images, which can be interpreted
as a maximum likelihood estimator, was first done by Vogel et al. (1986) and Provencher
and Vogel (1988a,b) and has recently been reviewed (Scheres, 2010; Sigworth et al., 2010).
Maximum likelihood has also been used for other estimation tasks related to cryo electron
microscopy, such as estimating the orientation of an image (Sigworth, 1998). Heterogeneity
among a set of particles can be detected by methods such as cross-common lines residuals
(Fuller et al., 1996). In this paper, maximum likelihood estimation is used not to estimate a
single reconstruction or to find a homogeneous subset of particles but rather to estimate the
statistics of an entire ensemble of reconstructions where the statistics of the images predicted
by the statistics of the ensemble of reconstructions match the statistics of the experimental
images. The most closely related work is due to Penczek et al. (2006). In this work, a space-
varying variance map was constructed after the reconstruction is computed by a Monte-
Carlo resampling procedure. This contrasts with the approach proposed here where the mean
and covariance information are simultaneously estimated, generating not only the
reconstruction but also the variance associated with every voxel of the reconstruction.

The method was used to reanalyze the time-resolved single-particle cryo EM images of
Nudaurelia Capensis Omega Virus (NωV) from Matsui et al. (2010), a T = 4 icosahedral
RNA virus. NωV capsid is composed of 240 copies of the same gene product, protein alpha,
that in a maturation step, undergoes a autocatalytic reaction generating the major capsid
protein beta and the small gamma peptide, which remains non-covalently associated with the
capsid. NωV virus-like particles can be purified in the unc-leaved pro-capsid state and the
maturation process can be precisely triggered by lowering the pH to 5.0. Kinetics of the
cleavage is unusual with 50% of the subunits cleaved in 30 min while several hours are
required for all of the subunits to cleave. Taking advantage of the slow kinetics of
maturation of NωV, partially cleaved particles in intermediate stages of maturation (3 min,
30 min, and 4 h all at pH 5.0) were analyzed by cryo-EM. Because the size of the particles is
the same throughout the maturation process, it was possible to use difference cryo-EM
density maps. The density at each time point was subtracted from the fully mature particle.
With the X-ray model as a guide, the difference density at each of the cleavage sites was
evaluated. Subunits surrounding 5-fold and 3-fold icosahedral symmetry axes are quickly
formed and cleave in 30 min, while the subunits not adjacent to these axes cleave slowly.
Here, we show that the maximum-likelihood derived variance map can, in a single data set,
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reveal the same local variations that were observed with difference map analysis, and also
provide an overall view of particle dynamics that was unobservable with classical methods
of analysis.

2. Cryo-EM data sets and reconstructions
The data are the time-resolved single-particle cryo EM images of NωV from Matsui et al.
(2010). The pixels measure 2.768 Å and the boxed image of an individual particle is 200 ×
200 pixels in dimension. The reconstructions from Matsui et al. (2010) have been deposited
in the EM Data Bank (EMDataBank). The times, reference numbers, and accession codes
are 3 min, 25633, EMD-5426; 30 min, 25634, EMD-5427; 4 h, 25635, EMD-5428; and 3 d,
25622, EMD-5425, respectively. The original image stacks are available from J.E.J. The
assumption that there is only one class of particle at each time point was sufficient to
achieve resolutions of 9.3 Å, 8.6 Å, 8.3 Å, and 9.8 Å for the 3 min, 30 min, 4 h, and 3 days
data sets, respectively (Matsui et al., 2010), and so the calculations described in this paper,
which are at lower resolution, have continued with that assumption. The results from this
paper have been deposited in the EM Data Bank (EMDataBank). Each data set results in two
depositions: a mean map and a variance map. For the mean maps, the times, reference
numbers, and accession codes are 3 min, 25729, EMD-5449; 30 min, 25858, EMD-5474; 4
h, 25859, EMD-5472; and 3 d, 25860, EMD-5473, respectively. For the variance maps, the
times, reference numbers, and accession codes are 3 min, 25861, EMD-5468; 30 min,
25863, EMD-5469; 4 h, 25864, EMD-5471; and 3 d, 25865, EMD-5470, respectively.

3. Computational methodology
Using a weighted sum of basis functions to represent the electron scattering intensity
function has a long history in structural biology, e.g., Fourier series in X-ray
crystallography. If every instance of the object is identical, then the weights in the
description of each object are the same and the goal of structure determination is to
determine the numerical value of each weight. But if different instances of the object are
different, then there is no unique numerical value for each weight. Different instances might
differ by different stoichiometry or by different geometrical configuration, e.g., flash frozen
in different vibrational conditions for single-particle cryo EM problems. If the differences
can be described as statistical variation, then the goal of structure determination might be to
determine the numerical values of the means and variances of each weight. If the weights
are assumed to be Gaussian random variables and are grouped in a vector, then the mean
vector and covariance matrix for the weight vector is a complete description of the object.

The change from describing the weights as numbers and estimating the numbers for each
class of object, to describing the weights as Gaussian and estimating the statistics (the mean,
corresponding to a traditional reconstruction, and the covariance, describing fluctuations
around the reconstruction) for each class of object is the modeling innovation proposed in
this paper. Using this new model, a maximum likelihood estimator is used to determine the
means and covariances that are the solution of the reconstruction problem and the estimator
is computed by a generalized expectation maximization algorithm which is an iterative
algorithm which must be provided with an initial condition. The pixel noise variance and the
probability that an image belongs to a particular class are also estimated. Optionally, but not
used in the calculations described in this paper, the a priori probability density function on
the projection orientation of the images can also be estimated. In the expectation
maximization algorithm, simultaneous updates of all parameters to be estimated is a difficult
optimization problem so the mean vector, the covariance matrix, and the pixel noise
variance are updated sequentially (so that this is actually a generalized expectation
maximization algorithm). Each update is the solution of a maximization problem. For the
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mean vector, the maximization problem is quadratic in the unknown vector so the new mean
vector is the solution of a linear system quite similar to the situation in the homogeneous
particle case (Doerschuk and Johnson, 2000; Yin et al., 2003; Lee et al., 2007; Prust et al.,
2009; Lee et al., 2011). For the covariance matrix, the maximization problem is complicated
because the covariance of an image is a linear combination of the covariance of the weights
in the orthonormal expansion and the variance of the additive pixel noise. The linear
combination is unknown and is different for each different image. Intuitively, the observed
variability in the images is being partitioned into two sources which are the heterogeneity of
the particle and the additive pixel noise. Because the covariance, rather than the inverse
covariance, is a linear combination of the covariance of the weights in the orthonormal
expansion and the variance of the additive pixel noise, this maximization problem is not
convex. Formulas for first and second derivatives of the function to be maximized with
respect to the covariance of the weights can be determined and, using the function and the
derivatives, the maximization problem is solved numerically. Finally, for the additive pixel
noise covariance, a search based on just the function to be maximized is used since the
unknown is a scalar and an accurate initial condition is available by computing the sample
variance of the pixels in the images in an annulus outside of the image of the particle. A
flow chart of the algorithm is given in Fig. 1. Fig. 1(a) shows the entire algorithm with
preprocessing, repetition of reconstruction calculations on non-overlapping sets of boxed
images in order to provide the data necessary for computing sample variances, and
postprocessing. Fig. 1(b) shows the reconstruction algorithm for a single set of boxed
images.

In order to compute the performance of the algorithm, at each time point the algorithm is run
on each of four distinct data sets where the data sets are nonoverlapping subsets of the four
image stacks of Matsui et al. (2010). Then, based on the four results, sample standard
deviations can be computed which describe the performance of the algorithm. This overall
computation is shown in Fig. 1(a). The algorithm is iterative and therefore requires an initial
condition. At each time point, for the first of the four data sets, the algorithm is used twice:
(1) the algorithm is started with means that describe a spherically-symmetric reconstruction
and zero covariances and is run to the final resolution with the heterogeneity features turned
off. In this case the algorithm is equivalent to the authors’ previous work (Doerschuk and
Johnson, 2000; Yin et al., 2003). Alternatively, this calculation could be described as Block
2 of the flow chart in Fig. 1(b) or the third line of Algorithm 1 with the addition of the
standard idea of refinement where the resolution of the reconstruction is progressively
increased. (2) The algorithm is restarted with the means equal to the solution from Step (1)
and the variances equal to 10% of the corresponding means and is run with the heterogeneity
features turned on to determine the heterogeneous reconstruction. At each time point, for the
second through fourth data sets, only Step (2) is used starting from the homogeneous
reconstruction resulting from Step (1) applied to the first data set since there is no need to
find a new initial condition.

Once the mean vector and covariance matrix for the weights in the orthonormal expansion
have been estimated, the nominal structure can be computed from the mean vector and the
variance map can be computed from the covariance matrix.

The following subsections describe the computational methods in detail.

3.1. Preprocessing
Subsequent to the steps used to create the image stacks in Matsui et al. (2010), the following
procedure was carried out.
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1. Reconstruction algorithms can include provisions for rejecting images from the
image stack because the images appear not to belong to the particle as it appears in
the 3-D reconstruction being computed. Such provisions are not included in the
current version of the reconstruction algorithm described in this paper. Therefore,
some possibly junk images are removed from the stack before the reconstruction
algorithm begins by the following mechanism: first, select the first 6000 images
from the stack. Second, compute the sample mean of all the selected images. (The
mean image is nearly circularly symmetric). Third, compute the difference between
each particular image and the sample mean image. Fourth, compute the square of
the Euclidean norms of the difference images. Fifth, from a histogram of the
squared norms, decide on a threshold and remove images from the stack if their
squared norm is greater than the threshold. About 16% of the images are removed.
For the stack recorded at 3 min, 20 of the removed images are shown in Fig. 8
(Supplemental material).

2. In order to compute the performance of the algorithm, e.g., the error bars of Fig. 4,
the algorithm is applied to multiple sets of images. Specifically, from those images
that are not removed from the stack, we form four substacks each with 1200 images
by first randomly permuting the 6000 images and then selecting subsets of 1200
images where the subsets are those images numbered 4n − 3, 4n − 2, 4n − 1, and 4n
where n ∈ {1, … ,1200}.

3. Individually for each image in a stack, normalize the image. Specifically, ynew = a
yold + b where a and b are chosen so that the sample mean and the sample variance
of ynew, both evaluated outside of the image of the virus particle, have values 0 and
1, respectively.

3.2. Reconstruction
The electron scattering intensity of the particle is described as a weighted sum of basis
functions. A standard approach is to treat the set of weights as numbers and seek to estimate
the values of the numbers by a maximum likelihood estimator (Doerschuk and Johnson,
2000; Yin et al., 2003; Scheres et al., 2007; Lee et al., 2007; Prust et al., 2009; Lee et al.,
2011). In contrast, in this paper we treat the set of weights as random variables where every
particle is described by an independent realization of the random variables. We then seek to
estimate the joint probability density function of the set of random variables. In order to
simplify the task from estimating functions to estimating numbers, we assume that the joint
probability density function is Gaussian so that all we must estimate is the mean vector and
covariance matrix. These quantities can be estimated by a maximum likelihood estimator
which is computed by an expectation–maximization algorithm where the nuisance
parameters in the expectation–maximization algorithm include the unknown projection
direction of the image of each particle.

3.2.1. Reconstruction: notation—If x is a random variable then x ~ p means that x is
distributed with probability density function (pdf) p.  is the Gaussian pdf with
mean vector m and covariance matrix S evaluated at argument x. If v is a vector (which
might already have multiple superscripts and subscripts) then (v)j is the jth component of the
vector. Likewise, if M is a matrix then (M)j,j’ is the (j,j’) th element of the matrix.

3.2.2. Reconstruction: model—The electron scattering intensity ρ as a function of 3-D
real-space coordinates x is described by a truncated orthonormal expansion with weights c
and basis functions ϕ:
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(1)

where η is the class label and there are Nη classes. In first-order image formation theory
(Erickson, 1973; Lepault and Pitt, 1984; and Toyoshima and Unwin, 1988), the reciprocal-
space image, denoted by Υ, parameterized by the 2-D reciprocal-space vector, denoted by κ,
is the product of three factors. (1) The 2-D Fourier transform of the projection image which,
by the projection slice theorem, can be computed from the 3-D Fourier transform P of the
object ρ and the 3 × 3 rotation matrix R that describes the projection direction which is
parameterized by the Euler angles (α, β, γ). (2) The contrast transfer function G. (3) A
complex exponential of the translation χ0 of the projected location of the center of the object
from the center of the reciprocal space image. The resulting equation is

(2)

In order to make Eqs. (1) and (2) into numerical linear algebra, the spatial frequency vector
κ is discretized and Eq. (2) for each sample is one row of the resulting vector equation. In
addition, the notation is augmented with an index i which indicates which of the boxed
images is being described and Φ is the 3-D Fourier transform of the basis function ϕ. The
resulting equation is

(3)

where

1. yi is a vector whose jth component is the reciprocal space image evaluated at the jth
sampled reciprocal space vector κj, i.e.,

(4)

2. zi is the Euler angles (αi, βi, γi) that describe the projection orientation of the ith
image, the 2-component vector χ0,i that describes the projected location of the
center of the particle in the ith image, and the class label ηi, i.e.,

(5)

all of which are unknown.

3. c(ηi) is the vector of weights for the ith particle, i.e.,

(6)

4. L(zi) is the matrix that describes the transformation from weights to sampled
reciprocal-space image as is given in Eq. (2), i.e., weights to 3-D cube, projection
from 3-D to 2-D, the effect of the contrast transfer function, and the translation of
the projected location of the center of the particle in the ith image so the (j,j’) th
element of this matrix is
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(7)

The statistical model used previously (Doerschuk and Johnson, 2000; Scheres et al., 2007) is
that every object in the ηth class is identical and the projection image is corrupted by
additive zero-mean Gaussian noise that is independent from image to image. The a priori
probability that an object is from the ηth class is qη. The resulting equations are

(8)

(9)

where the goal is to estimate the vectors c(η) for η ∈ {1, … ,Nη}. This problem can be
generalized to include estimating the a priori probability density function on the orientation
of the projections and estimating the a priori probabilities of each class (Scheres et al.,
2007).

In this paper it is proposed to allow each instance of an object in the ηth class to have a
different structure where the variability is described statistically by assuming that the
weights for the orthonormal expansion (Eq. (1)) collected into a vector (Eq. (6)) are

Gaussian random vectors with mean vector  and covariance matrix Vη. The resulting
equations are

(10)

(11)

(12)

where the ci random vectors are nuisance parameters, that is, they are not known but instead
of estimating them, a pdf for them is provided. Since linear transformations of Gaussian
random vectors are Gaussian random vectors, rewrite Eqs. (10)–(12) with a single Gaussian
random vector v’ rather than two Gaussian random vectors c and v. The resulting equations
are

(13)

(14)

Eqs. (10)–(14) differ in two important ways. First, the ci random vectors are gone leading to
simpler estimator equations. Second, v’ has a structured covariance matrix, specifically,

L(zi)VηiLT (zi)+Q. The goal is to estimate Q, qη, , Vη for η ∈ {1, … ,Nη}. In addition,
though it is not done in this paper, it is possible to estimate the a priori pdf on the
orientation of the projections.
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3.2.3. Reconstruction: estimator—Using the notation of Section 3.2.2, it follows from

Eqs. (13) and (14) that the conditional mean, denoted by , and the conditional
covariance, denoted by Ξi(θi, ηi, Vηi, Qi, of the ith image, denoted by yi, are

(15)

(16)

(17)

(18)

where the operators E and Cov are expectation and covariance, respectively, and that the
conditional probability density function (pdf) on yi is

(19)

The absence of a subscript or superscript implies that the variable is the collection of

variables with the subscript or superscript, e.g., . In this
abbreviated notation, the log likelihood function for the maximum likelihood estimator is

(20)

where Nv is the number of particles that are imaged, p(yi∣θi, ηi, , Vηi, Qi) is given in Eq.
(19), and p(θi) is the a priori pdf on θi and the definition of the estimator is

(21)

where the ^ indicates that the variable is an estimate.

The method used for computing the maximization is a generalized expectation–
maximization algorithm. The idea in expectation–maximization algorithms is that there is a
set of so-called nuisance parameters which, if their values were measured, would greatly
simplify the computation of the maximum. However, the values are not measurable. The
iterative nature of the algorithm results from repeating a pair of steps: average over the
possible values of the nuisance parameters (the so-called expectation step) and compute new
values for the parameters being estimated by maximizing the result of the averaging with
respect to the parameters. For this problem, the natural nuisance parameters are the variables
θi,ηi (i ∈ {1, … ,Nv}).

The conditional pdf on the nuisance parameters is
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(22)

which uses Eq. (19). Using Eq. (22) repeatedly and following the calculation of Doerschuk
and Johnson (2000), the update equations for the generalized expectation maximization
algorithm are described in the following paragraphs. In all the following equations, variables
with a leading subscript of 0, e.g., 0V, are the result of the previous iteration and variables
without a leading subscript of 0, e.g., V, are the variables being computed in the current
iteration.

1. For each class (equivalently, each value of η’ in the set {1, … ,Nη}), the new value
of the a priori class probability, denoted by qη’ as a function of , 0V, 0q, and 0Q
is

(23)

where the computation of p(θi, η’∣yi, , 0Vη’, 0q, 0Qi) is from Eq. (22). The
primary computational expense is to compute the integrals in Eqs. (23), (25), (26),
and (28). (Fig. 1, Blocks 2, 3, and 4).

2. The new value of  as a function of V, Q, , 0V, 0Q is determined by solving the

following linear system for each η’ ∈ {1, … ,Nη} to compute the corresponding 
vectors:

(24)

where

(25)

(26)

(Fig. 1, Block 2).

3. The new value of V as a function of , Q, ,0V, 0Q is computed by nonlinear
programming. First define
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(27)

and

(28)

Then the new value of Vη is the value that maximizes Eq. (28). (Fig. 1, Block 4).

4. The new value of Q as a function of V, , , 0V, 0Q is only considered for the case
where the pixel noise is independent and identically distributed at all pixels of all
images. Then Q is just a scalar covariance which is denoted by λ and which must
be determined by nonlinear programming to maximize the value of Eq. (28). (Fig.
1, Block 3).

3.2.4. Reconstruction: algorithm—These four steps of Section 3.2.3 can be combined
in many ways to yield valid expectation maximization algorithms. Focusing on the
importance of the mean vector, which is the traditional reconstruction, the calculations
described in this paper use the algorithm described in Algorithm 1.

Several aspects of Algorithm 1 need additional explanation. The algorithm is an ab initio
algorithm but it has not often been used in that mode. Instead, it has typically been used
based on a traditional homogeneous reconstruction which provides a high-quality estimate

of mean  for each value of η ∈ {1, … ,Nη} and this estimate is used as the  initial
condition. Because the optimization problem is for the covariance Vη and not, for instance,
the Cholesky factor of Vη, it is necessary to impose the constraint that Vη be semi positive
definite. Therefore, the biologically-natural initial condition of Vη = 0 is on the boundary of
the feasible set and the nonlinear programming algorithms that have been used do not
behave well in this situation. Therefore, the initial condition that has been used is a diagonal

initial condition where the jth element is 10% of the jth element of the  initial condition.
The initial condition for Q, the pixel noise, is the sample variance in an annulus of the image
surrounding the portion of the image that displays the virus particle, averaged over all the
images in the calculation. The initial condition for qη, the class probability, is uniform, i.e.,
qη = 1/Nη for each value of η ∈ {1, … ,Nη}.

3.2.5. Reconstruction: software—The theory of earlier subsections applies for any
choice of basis functions. However, the software uses the specific basis functions described
in Yin et al. (2003) where each basis function is the product of an icosahedral harmonic and
a spherical Bessel function. A software implementation of the method was written that is
suitable for execution in either the proprietary Matlab (Mathworks) or open source Octave
(Octave) engine on a shared-memory computer. The update of Q is done by fminbnd in both
Matlab and Octave. The update of V is implemented only for the case where V is a diagonal
matrix and is done by fmincon in Matlab and SQP in Octave. The limits of the software are
partly memory requirements and partly use of simple numerical linear algebra algorithms.
As an example of algorithmic limitations, Eq. (24) is solved by LU decomposition where the
F matrix (Eq. (25)) and g vector (Eq. (26)) are each computed without taking advantage of
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the fact that orientations that are close to each other lead to similar contributions to the
integrals in Eqs. (25) and (26). Relative to memory requirements, in order to make efficient
Matlab code, the data is treated as matrix with dimensions that are the number of pixels per
image by the number of images. This is the largest data structure in the runs described in this
paper. For the results described in this paper, the software was run using the Matlab engine
on a dual-cpu quad-core Xeon (E5430 at 2.66 GHz) with 16 GB memory. In order to fit a
computation into this hardware–software system, using more images implies using fewer
basis functions or visa versa. For the results described in this paper, all calculations used
1200 images and 720 basis functions (the so-called Step 7 of Yin et al. (2003)) and each
reconstruction takes approximately 2 days. Please contact the corresponding author for a
copy of the software.

3.2.6. Reconstruction: comments—In the work of Penczek et al. (2006), a space-
varying variance map is constructed by a Monte-Carlo resampling procedure after the
reconstruction is computed while in the approach proposed in this paper, the mean and
covariance are simultaneously estimated. Potentially, though not demonstrated in the
example of Section 4, the simultaneous estimation will allow for a better reconstruction
since the reconstruction algorithm is allowed the additional degrees of freedom of assigning
high variance to a part of the structure rather than allowing the somewhat disordered state of
a part of the structure to contaminate better ordered parts of the structure. A second contrast
is that the information estimated in this paper is sufficient to construct the complete second-
order statistics of the reconstruction, i.e., a space-varying mean (the reconstruction) and a
space-varying autocorrelation function. The autocorrelation function is the covariance
between the electron scattering intensity at two different locations and therefore is a function
of 6 independent variables (two 3-D spatial positions). It would be very challenging to
estimate such a large amount of information by resampling. An advantage of resampling is
that very little must be assumed about the probability density functions. However, the
assumptions that are made in this paper have a long history (dating back to at least 1984
(Redner and Walker, 1984)) in the pattern recognition and machine learning communities as
assumptions that are still useful even if there is no underlying physical model to motivate
them.

The Gaussian assumption used in the homogeneous case (Doerschuk and Johnson, 2000;
Yin et al., 2003; Scheres et al., 2007; Lee et al., 2007; Prust et al., 2009; Lee et al., 2011)
(Eq. (9)) greatly simplifies the maximization step of the expectation–maximization
algorithms but may not have a more fundamental motivation. Here, however, the joint
Gaussian assumption on the pixel noise and weights (Eqs. (11) and (12)) is important
because it allows the combination of these two sources of variability into a single equivalent
source (Eq. (14)).

For the reconstruction of homogeneous particles (Eqs. (8) and (9)), a fast algorithm exists
(Lee et al., 2007) that takes advantage of the fact that one of the Euler angles corresponds to
a rotation of the image in the plane of the image. However, no corresponding algorithm
appears to be possible for reconstruction of heterogeneous particles (Eqs. (13) and (14)).

3.3. Postprocessing
In order to interpret the results, estimates of the statistics of the weights in the orthonormal
expansion are not as intuitive as estimates of the statistics of the electron scattering intensity
function. Conditional on a particular class, the spatial mean function (which depends on
position in 3-D space) and the spatial variance function (which depends on position in 3-D
space) of the electron scattering intensity are
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(29)

(30)

and

(31)

(32)

respectively. Let  and  be Eqs. (30) and (32) evaluated at the estimated values
of  and V rather than the true values. For biological purposes, the natural quantities to

visualize are  and , especially the standard deviation

.

The unit of the electron scattering intensity in the reconstruction at 3 days is set by the
scaling described in Section 3.1 Item 3. The standard deviation has the same unit. The

reconstructions at different time points, denoted by , are scaled to the reconstruction at

3 days, denoted by , by the following algorithm. First, compute the optimal gain

g* by  where ∥f∥ = ∫∣f(x)∣dx.

Second, the scaled reconstruction is .

Fig. 4 concerns variability versus time. Variability is described by averaged standard
deviation and is computed as follows. Let νη’,δ(x) be the variance for the δth repetition of the
calculation. Define

(33)

Then the plotted value is

(34)

and the sample standard deviation marks are at ±μη’ where
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(35)

For the capsid calculation, the volume Υ is the annulus with inner radius 120 Å and outer
radius 216 Å. For the four subunit calculations, the volume Υ is described implicitly by the
following algorithm: (1) compute a cube of the space-varying variance map with sampling
interval 2.768 Å. (2) Rotate the cube from the coordinate system of Zheng and Doerschuk
(2000) to the coordinate system of VIPERdb. (3) In the refined crystal structure for NωV
(1OHF) (Munshi et al., 1996; Helgstrand et al., 2004), locate all amino acids for which the α
carbon is within 10 Å of the α carbon of the asparagine at the cleavage site (Asn570). (4)
Locate a 3 × 3 × 3 cube of voxels around each voxel containing a α carbon in Step (3). This
collection of voxels is the volume denoted by Υ.

Spherical averages of the variance map are used in Fig. 4(D–E). Each spherical average is
computed using a formula analogous to Eqs. (22–25) of Yin et al. (2003), specifically,

(36)

(37)

where  is the radial basis function (Yin et al., 2003), ∮ dΩ
is integration over the sphere, and

(38)

where Il,n(·,·) is the (l,n) th icosahedral harmonic (Zheng and Doerschuk, 2000) and Yl,m(·,·)
is the (l,m) th spherical harmonic. Applying Eq. (37) to the results of multiple calculations

on different data sets indexed by δ ∈ {1, … ,Δ} gives . Then, . Finally, the sample
mean and sample standard deviations of the spherical averages are computed by Eqs. (34)
and (35).

4. Results
Fig. 2 shows the four time-resolved reconstructions as surface and cross section plots. These
plots are colored by the square root of the variance map (i.e., the standard deviation map).
The overall impression from the capsid surfaces shown in Fig. 2(A) is that the variability
decreases in amplitude as time passes and the particle matures. The gradual stabilization of
the capsid can be easily appreciated by comparing the variance at 3 min, 30 min and 4 h
time points. However, if individual scales are used to plot the variance map, it became
apparent that the stabilization process is still incomplete 4 h after the initiation of maturation
(Fig. 2(B)). Because the variance is computed for each voxel of the reconstruction, we can
analyze the stabilization process for the entire structure, as demonstrated by the cross-
section view in Fig. 2(B). It can be seen that even 3 days after maturation the internal
density continues to have high variance, which is expected if the RNA core of the particle is
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not highly ordered and does not obey icosahedral symmetry. However, the protein shell of
the completely cleaved particle, i.e., the infectious particle, still retains a region of relative
high variance in the center of the five fold axes.

Fig. 3 provides information about resolution as Fourier Shell Correlation (FSC) plots for the
reconstructions. In the first column of Fig. 3, the FSC plots show that the achieved
resolutions for the reconstructions are 22, 21, 21, and 20 Å for 3 min, 30 min, 4 h, and 3
days, respectively. In the second column of Fig. 3, the FSC plots show that the
reconstructions at times 3 min, 30 min, and 4 h agree with the reconstruction at time 3 days
within resolutions of 27, 24, and 33 Å, respectively. In all cases, resolution is defined to be
the inverse spatial frequency when the curve first interSections 0.5. Resolution is also
described in Figs. 6 and 7 (Supplemental material). Fig. 7 (Supplemental material) shows
the 3 min reconstruction at reduced resolution, specifically, using only 180 coefficients (the
so-called Step 5 of Yin et al. (2003)) and Fig. 7 (Supplemental material) shows cross
sections of the four reconstructions colored by the mean map or colored by the square root
of the variance map (i.e., the standard deviation map).

Next, we used the reconstructions generated in this work to analyze the variance around the
cleavage site in each of the four quasi-equivalent subunits. Fig. 4(A) shows the position of
subunits A, B, C, and D in the T = 4 surface lattice with the location of the autocatalytic site
indicated by a red cross. The voxels covering the region occupied by amino acid residues
within 10 Å of the active site were used to quantify the variance around the autocatalytic site
of each subunit (Fig. 4(B)). This is the same region analyzed by Matsui et al. (2010) with
difference maps. Fig. 4(C) shows that the variance in volumes encompassing the B and C
active sites is clearly higher than the variance in A and D active sites at early time points and
they all converge to the same variance at later time points when all the subunits have
cleaved. We assume that positions of higher variance are still changing and that these
cleavage sites have not yet formed. This is consistent with the position-specific active site
formation observed by Matsui et al. (2010), validating the maximum-likelihood derived
variance maps as a quantitative tool to address protein dynamics. An unexpected feature
observed in this new analysis is that not only the active sites but also the average of the
annulus containing the majority of the capsid protein densities reduce in variance by at least
a factor of 3 as all of the subunits undergo cleavage. This important result could not be
determined from the analysis of difference maps, but emerges naturally from the time
resolved data sets when analyzed with the maximum likelihood algorithm that explicitly
takes into account the continuous variability from one instance to another instance of the
particle. Fig. 4(D–E) shows the radial dependence of the average of the variance map for
each of the four time points, which decreases by a factor of 4 from time 3 min to time 3 days
independent of the radial position from the center of the particle. All standard deviations
plotted in Fig. 4 are computed by Eq. (35) with Δ = 4 repeats of the reconstruction based on
nonover-lapping subsets of the image stack at a particular time point.

Fig. 5 shows ribbon diagrams of each of the subunits at each of the time points colored by
the standard deviation map. The standard deviation tends to be largest in the helical region
of the capsid protein near the autocatalytic site (Asn 570). These diagrams emulate diagrams
used to display the Debye–Waller temperature factor in crystallography, where similar plots
are made with the temperature factor displayed using color for each alpha carbon position of
the peptide. The coordinates shown in the ribbon diagrams are from the refined X-ray
crystallographic structure of NωV (1OHF) (Munshi et al., 1996; Helgstrand et al., 2004).
The standard deviation of the pixel position closest to a given Cα coordinate was used to
color code the ribbons.
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5. Discussion
We showed that the maximum likelihood derived variance maps calculated for NωV in
different stages of maturation successfully captured the same subunit-specific dynamics
features previously observed with difference maps by Matsui et al. (2010). However, while
the difference map analysis was technically limited to a small portion of the structure, this
new approach allowed us to observe an overall reduction in structural variability as the
particle matures. This data correlates with the increase in particle stabilization as a function
of cleavage, as previously demonstrated biochemically (Taylor et al., 2002). Moreover, this
new analysis afforded the identification of highly dynamic regions in the fully mature capsid
that were not obvious in the crystal structure. At the 5-fold symmetry axes, the high variance
region (Fig. 2) encompasses a central channel formed by the C-terminal gamma peptide of
Subunit A and the N-terminal helix of Subunit B (Fig. 5). Recently, it was demonstrated that
NωV membrane disruption activity is promoted by gamma peptides specifically derived
from Subunit A cleavage (Domitrovic et al., 2012). In the crystal structure the fivefold
central channel is protected from the solvent, however, the increased mobility observed in
this analysis agrees with the high dynamics required to expose gamma peptide to the
external environment, where it would be accessible to protease activity, as already
demonstrated by Bothner et al. (2005), and could interact with cellular membranes.
Therefore, the maximum likelihood derived variance maps can possibly provide information
about putative biding sites and regulatory regions in cryo-EM structures. Another important
advantage of the approach proposed here is that no difference maps are involved so the
method would still be applicable if the overall structure underwent large changes.

The new method is based on simultaneously computing a nominal reconstruction and a map
of the space-varying heterogeneity of a biological particle from single-particle cryo EM
data. The method depends on describing the heterogeneity probabilistically and estimating
the statistics of the heterogeneity from the image data. This is a generalization of previous
work (Doerschuk and Johnson, 2000; Yin et al., 2003; Scheres et al., 2007; Lee et al., 2007;
Prust et al., 2009; Lee et al., 2011) to the case where the particle is described
probabilistically rather than deterministically. The method can be extended from maximum
likelihood estimation to maximum a posteriori estimation (a form of Bayesian estimation
(Scheres, 2012)) as is described for the homogeneous case in Section VII of Doerschuk and
Johnson (2000). In this paper, resolution is measured by the standard FSC method of
comparing two reconstructions computed from non-overlapping sets of images. This can be
done rapidly using previously published formulas (Yin et al., 2003, Eqs. (22)–(25)). A more
statistical approach that is natural for maximum likelihood estimators has been described
(Prust et al., 2009, Section 4). In the approach proposed here for heterogeneous particles,
both of these methods measure resolution in terms of the nominal structure not the variance
map.

The resolutions of the maps presented here are moderate compared to the sub nanometer
reconstructions in Matsui et al. (2010) due to the computationally intensive nature of the
algorithm and current limited computing capability. In the NωV example of Section 4, the
new method produced variance maps that agreed closely with the difference maps computed
at the higher resolution emphasizing the power of the method and motivating the use of high
performance computers that will allow calculations to be performed at the resolutions
dictated by the data. Potentially, though not demonstrated in the example of this paper, the
simultaneous estimation will lead to a better reconstruction since the reconstruction
algorithm is allowed the additional degrees of freedom of assigning high variance to a part
of the structure rather than allowing the somewhat disordered state of a segment of the
structure to contaminate better ordered parts of the structure. The method presented in the
present paper should have broad application to existing EM data sets that can be reanalyzed
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with explicit spatial variance maps that may well provide added value for relating these
structures to the function of the macromolecules.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Algorithm flowcharts. The four parallel computations in Panel (a) are used to determine the
performance of the algorithm, e.g., the error bars in Fig. 4. The calculations contained in the
red dotted-line box of Panel (a) are expanded in Panel (b) which describes the maximum
likelihood estimator.

Wang et al. Page 19

J Struct Biol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The four time-resolved reconstructions. Panel A: surface of each of the four reconstructions
colored by the square root of the variance map (i.e., the standard deviation map) and
displayed using the VIPERdb convention. The same color map is used in all images. Panel
B: the surface and a cross section perpendicular to a 2-fold axis of each of the four
reconstructions colored by the standard deviation map. The surface and cross section
visualizations at a particular time point share the same color map. Different color maps are
used at different time points. Visualization by UCSF Chimera (Pettersen et al., 2004).
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Fig. 3.
Resolution of the four time-resolved reconstructions as a function of k, which is the
magnitude of the reciprocal-space frequency vector measured in Å−1. First column: Fourier
Shell Correlation (FSC) curves for comparing reconstructions from non-overlapping subsets
containing 1200 images from the same data set. Based on these curves, the resolution of the
four structures are approximately 21 Å. Second column: Fourier Shell Correlation (FSC)
curves between the 3 days reconstruction and each of the 3 min, 30 min, and 4 h
reconstructions for the nominal structures. Based on these difference curves, all the early
structures agree with the capsid structure to approximately 24–33 Å. All FSC curves were
computed using command procʒd in EMAN.
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Fig. 4.
Region-specific variability analysis of the NwV protein capsid in different stages of
maturation. Panels A–C: variance analysis around the cleavage sites of Subunits A, B, C and
D that form the asymmetric unit of the NwV protein capsid. Panels A and B show the T = 4
surface lattice with the subunits’ locations. The total volume occupied by each subunit is
rendered as a mesh in Panel B. The variance was calculated over a smaller region, enclosing
the cleavage site, which is shown as a solid volume within the subunit density. As is
described in Section 3.3, the smaller region is essentially the region occupied by Cα atoms
within 10 Å of the active site. This is the same region analyzed by Matsui et al. (2010) using
difference maps. In Panel C the standard deviation for this region is plotted log–log as a
function of time for each subunit. The plot demonstrates an overall reduction of variance as
a function of time after maturation is initiated, with distinct kinetics between the variances
of the B and C sites (high) and the A and D sites (low). Computational methods are
described by Eqs. (33)–(35). The capsid shell is defined to be the annulus with radius from
120 to 216 Å. Panels D–E: Time variation of spherical averages. A cross section
perpendicular to the 2-fold axis (Panel D) shows the location of the capsid shell relative to
the center of the particle. The square root of the spherically-averaged variance map versus
distance from the center of the particle was computed by Eqs. (37), (34) and (35) and is
plotted in Panel E. The shaded region covers plus/minus one standard deviation. The inset
plot shows a zoomed version of the plot including only the capsid shell region.
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Fig. 5.
Ribbon diagrams of the four subunits at the four times colored by the square root of the
variance map (i.e., the standard deviation map) with the asparagine at the self-catalytic site
(Asn 570) shown as a ball-and-stick model. Each time point has its own color map
analogous to the second row of Fig. 2. For instance, red at the 3 min time point is 14 ×
10−4/5.9 × 10−4 = 2.4 times higher than red at the 30 min time point.
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Algorithm 1

The generalized EM algorithm

set the initial conditions on c
‒

, V, q, and Q.

while true do

 while c
‒

 not converged do

  update q (Eq. (23)) and c
‒

 (Eq. (24)) (Fig. 1, Block 2)

  end while

 while q and Q not converged do

  update q (Eq. (23)) and Q. (Fig. 1, Block 3)

  end while

 while q and V not converged do

  update q (Eq. (23)) and V. (Fig. 1, Block 4)

  end while

 update q (Eq. (23)) and c
‒

 (Eq. (24)) (Fig. 1, Block 2)

 if c
‒

 converged then

  break

  end if

end while
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