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alter DNA sequence [3, 4]. There are currently three well-
characterized epigenetic mechanisms, cytosine modifica-
tions, histone modifications, and ATP-dependent chroma-
tin remodeling, of which modification of cytosines is the 
only mechanism that directly imposes on DNA [5–8]. DNA 
methylation was first proposed to play an important role in 
long-term memory formation [9] and remained the major 
DNA covalent modification to influence transcriptional 
states, and ultimately cellular identity. Methylation on the 
fifth position of cytosine (5mC) typically occurs in the con-
text of regions that contain a high frequency of CG dinu-
cleotides in the mammalian genome and plays pivotal roles 
in the regulation of gene expression, chromatin structure, 
gene imprinting, X-chromosome inactivation, and genomic 
stability [10–12]. The exceptions are CpG islands, which 
are frequently located alongside gene promoters and usu-
ally remain unmethylated. DNA methylation is often asso-
ciated with a gene repressive environment, and maintain-
ing proper DNA methylation status is essential for normal 
development, with aberrant DNA methylation patterns 
frequently being linked to the pathogenesis of numerous 
diseases, including neurological disease and cancer [6, 13–
15]. Three well-defined DNA methyltransferases (DNMTs) 
are responsible for preserving or generating this marker. 
DNMT1 maintains DNA methylation during the cell cycle 
by copying the existing pattern of hemi-methylated DNA to 
their daughter strands during DNA replication. DNMT3A 
and 3B, in contrast, create new methylation loci by coordi-
nating with different interacting partners, including histone 
modifiers or transcription repressors, to achieve their speci-
ficity, thereby acting as de novo methyltransferases [16, 
17]. Aside from the known DNMT characters, DNA meth-
ylation can also be influenced by non-canonical DNMT 
functions or their co-factors [18, 19]. DNA methylation 
can be recognized by a spectrum of protein “readers,” such 
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Introduction

In the early 1900s, genetics and developmental biology 
were considered to be two separate entities [1]. Conrad 
Waddington first coined the term “epigenetics” in the mid-
dle of the twentieth century, derived from the Greek words 
for “over” or “above” genetics, to describe the molecular 
events involved in early undifferentiated embryonic devel-
opment, linking the two important fields together [2]. 
The current definition of epigenetics is the study of herit-
able changes in gene expression and function that do not 
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as methyl-CpG binding protein 2 (MeCP2) and methyl-
CpG-binding domain proteins 1–4 (MBD1–4) [20, 21]. 
The aberrant expression of these proteins often has severe 
consequences, such as neurological disorders and cancer, 
emphasizing the importance of the correct interpretation of 
DNA methylation markers [22–24] (Fig. 1). The respective 
roles of DNMTs and MBDs in neurodevelopment and dis-
ease have been extensively characterized and will be dis-
cussed in the following sections.

Another DNA modification, 5-hydroxymethylcytosine 
(5hmC), was initially identified in bacteriophage in 1953, 
the same year Watson and Crick proposed the DNA struc-
ture [25]. 5hmC was found in mammalian genomes in 
1972 [26]; however, the mechanisms and proteins respon-
sible for generating this marker remained unknown. In 
2009, Rao and colleagues demonstrated that ten-eleven 
translocation 1 (TET1), a 2-oxoglutarate (2OG)- and 
Fe(II)-dependent enzyme, catalyzes conversion of 5mC 

Fig. 1   Molecular mechanisms 
for cytosine modification-
related pathogenesis. a Muta-
tions of DNMT1 or DNMT3 
reduce 5mC levels and influence 
gene transcription or genomic 
stability. b Mutations of MBPs 
reduce their  affinity to 5mC 
and trigger severe neurological 
diseases. c The expanded CGG 
repeats on mutated FMR1 genes 
could  be hypermethylated and 
result in the silencing of FMR1 
transcripts. d Mutations of TET 
proteins or their co-factors, such 
as IDH, could reduce the global 
5hmC level, as found in cancer 
or HD
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to 5hmC [27]. Subsequent studies revealed that TET1 
could further oxidize 5hmC to 5-formylcytosine (5fC) 
and 5-carboxylcytosine (5caC), giving us a completely 
new perspective on the plasticity of 5mC-dependent pro-
cesses [28–30]. It is of particular interest that the overall 
5hmC level varies between tissues, with approximately ten 
times more in brain tissues like Purkinje neurons [31–35], 
as well as embryonic stem cells (ESCs) [28, 36–38]. This 
differential distribution points to the possible functional 
importance of this DNA modification in development and 
neuronal activity.

In this review, we summarize the current knowledge 
of and advances in the molecular mechanisms of cytosine 
modifications, with a particular focus on their impact  to 
neurodevelopment and human diseases (Table 1 ). 

DNA methylation in neurodevelopment and 
neurological disorders

Roles of DNA methyltransferases: the writers

The adult mammalian central nervous system (CNS) was 
once believed to never generate new neurons, but recent 
research has proved that thousands of new neurons are 

actually generated every day, primarily derived from the 
adult neural stem cells (NSCs) located in the subgranu-
lar zone (SGZ) of the dentate gyrus in the hippocampus 
and the subventricular zone (SVZ) of the lateral ventricle 
[14]. In this case, adult neurodevelopment can be viewed 
as classic stem cell differentiation, and thus involves pre-
cise epigenetic control. On the other hand, DNA methyla-
tion is known to be critical in synaptic plasticity related to 
long-term learning and memory in mature neurons, likely 
owing to regulation of specific gene expression [39, 40]. 
It is intriguing that the expressions of three DNMTs show 
differential patterns in various brain tissues and in the 
developmental stage, pointing to their distinctive roles in 
neuronal development and function [41, 42]. For example, 
Dnmt1 mRNA is ubiquitously expressed in both dividing 
neural precursor cells and postmitotic neurons in mouse 
brain, consistent with their important role in maintaining 
DNA methylation patterns throughout cell replication [42]. 
In contrast, Dnmt3a and 3b show temporally and spatially 
different expression during neurodevelopment. Dnmt3b is 
robustly expressed in SVZ between embryonic days (E) 
10.5 and 13.5, but becomes virtually undetectable in the 
CNS after E15.5, whereas Dnmt3a starts to be expressed 
in SVZ neural stem cells from E10.5 to E17.5 and can be 
detected predominantly in postnatal neurons from almost 

Table 1   Summary of key proteins discussed in this review and their related diseases or neurological phenotypes

Categories Molecular mechanisms Related diseases or phenotypes References

DNMTs DNMT1 mutations Hereditary sensory and autonomic  
neuropathy type 1 (HSAN1); autosomal  
dominant cerebellar ataxia, deafness,  
and narcolepsy (ADCA-DN)

[54–56]

DNMTs DNMT3a functional mutations  
or deletions

Acquisition of developmental mental  
defects; impaired postnatal  
neurogenesis

[46]

DNMTs DNMT3b mutations The immunodeficiency, centromere  
instability, facial anomalies  
(ICF) syndrome

[51, 57, 58]

MBPs MBD1 deletions Reduced neuronal differentiation  
and increased genomic instability.

[64, 65]

MBPs MeCP2 mutations or  
overexpression

Rett syndrome (RTT); mental  
retardation, autism, and psychiatric  
symptoms

[66–78]

Methylatable CGG repeats  CGG methylation  
on FMR1 genes

Fragile X mental retardation syndrome  
(FXS); fragile X tremor ataxia syndrome 
(FXTAS)

[51, 88–91]

TETs TET2 mutations Leukemia; loss of 5hmC [114, 135–137]

5mC excision Gadd45b deletion Induced proliferation of NPCs and  
dendritic growth of newborn neurons;  
loss of 5hmC

[113]

TET co-factors IDH deletions or mutations Various cancer types; loss of 5hmC [115–118]

TET co-factors Ogt overexpression Elevation of neurons exhibiting axon  
branching and the numbers of axonal  
filopodia

[122]
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all brain regions [41]. These interesting observations sug-
gest distinct, non-overlapping roles for the different Dnmts 
in brain function and highlight the importance of DNA 
methylation in prenatal and postnatal neurodevelopment.

Mutations in any of the three major Dnmts in mice lead 
to embryonic lethality [16, 43], thus conditional knock-
out of Dnmts in mice has been applied to study their role 
in the CNS [44–46]. For example, conditional ablation 
of Dnmt1 in the dorsal forebrain results in the failure to 
develop somatosensory barrel cortex, and thalamocortical 
long-term potentiation is also impaired [44]. In a separate 
report, Dnmt1 deletion in neural progenitor cells induced 
derepression of astroglial marker genes, as well as genes 
involved in JAK-STAT signaling, indicating the importance 
of DNA methylation in controlling astroglial differentiation 
[47]. Unlike the deletion of Dnmt1 and Dnmt3b, mice that 
lack functional Dnmt3a in the CNS appear to be grossly 
normal at birth, but die prematurely with the acquisition of 
developmental mental defects [45]. In a separate study, Wu 
et al. demonstrated that Dnmt3a deletion leads to impaired 
postnatal neurogenesis at both neurogenic zones. This is 
confirmed by tenfold fewer neurons being differentiated 
in vitro from Dnmt3a-null neural stem cells compared to 
wild-type. Genome-wide Dnmt1-binding and DNA meth-
ylation analysis using wildtype or Dnmt3a-null postnatal 
neural stem cells revealed that Dnmt3a methylates inter-
genic regions and gene bodies flanking proximal promot-
ers. Surprisingly, Dnmt3a knockout induces the silencing 
of genes related to neurogenic activity, and Dnmt3a occu-
pancy prevents Polycomb repressive complex recruitment 
[46]. However, the possibility remains that the Dnmt3a-
dependent nonproximal promoter methylation can func-
tionally antagonize Polycomb deposition of trimethylation 
of histone H3 lysine 27 (H3K27me3). Nonetheless, this 
interesting observation implies that Dnmts might have dual 
functions in neurodevelopment. With regard to long-term 
plasticity maintenance, neither Dnmt1 nor Dnmt3a knock-
out alone leads to profound deficits in learning and memory 
in mouse forebrain, but their double knockout (DKO) does 
so [39]. All this evidence points to a mechanism whereby 
individual Dnmts play distinctive roles in early neurode-
velopment, and they orchestrate together to maintain long-
term proper neuronal functions.

Both genetic and epigenetic alterations have been stud-
ied extensively in cancer and are found to be critical in car-
cinogenesis and tumor progression [48, 49]. This powerful 
evidence serves as an excellent reference for dissecting epi-
genetic mechanisms in neuronal disease. In normal cells, 
DNA methylation occurs largely on repetitive sequences to 
maintain genomic stability, and promoter CpG islands are 
usually unmethylated. These features are often reversed 
in cancer cells, with promoter CpG islands becom-
ing hypermethylated, thereby repressing a large set of 

tumor-suppressing genes, and repetitive sequences show-
ing hypomethylation, resulting in chromosome instability 
and activation of transposable elements [50–52]. Recent 
genome-wide DNA methylome analysis in cancer cells 
indicates that most affected CpG island genes are already 
silenced prior to aberrant DNA hypermethylation, which 
is reminiscent of normal development, where gene silenc-
ing precedes promoter CpG methylation [53]. Mechanisms 
other than DNA methylation appear to be involved in tran-
scription control on these genes. In fact, DNA methylation 
orchestrates with other epigenetic mechanisms, such as 
histone modifications, to influence cellular activity and dis-
ease onset [13, 51, 52].

Given the critical functions of DNMTs mentioned in the 
previous section, it is not surprising that several neurologi-
cal disorders are caused by mutations within DNMTs. For 
example, hereditary sensory and autonomic neuropathy 
type 1 (HSAN1) is an autosomal dominant neurodegen-
erative disorder involving loss of sensation and various 
neuropathies in the third or fourth decade of life [13]. A 
recent study identified mutations on the DNMT1 sequence, 
and these mutations lead to premature degradation of 
mutant proteins and impair DNMT1 cellular activity. Since 
DNMT1 primarily maintains methylation patterns dur-
ing the cell cycle, these mutations likely affect gene tran-
scription due to the loss of specific promoter methylation 
through cell replication and may progressively impair neu-
ronal differentiation, migration, and central neural connec-
tions [54]. Notably, the fact that DNMT1 mutation also 
affects postmitotic neurons in HSAN1 patients led to the 
interesting notion that DNMT1 might also be involved in 
modulating DNA methylation in a cell cycle-independent 
manner [55]. Mutations in DNMT1 have also been reported 
in autosomal dominant cerebellar ataxia, deafness, and 
narcolepsy (ADCA-DN), with their locations in close 
proximity to the mutations in HSAN1 [56]. These find-
ings highlight the functional importance of DNMT1 in the 
maintenance of normal neuronal activity.

The immunodeficiency, centromere instability, and facial 
anomalies (ICF) syndrome is characterized mainly by 
polymorphic mutations on the de novo methyltransferase, 
DNMT3B [57, 58]. These patients suffer from impaired 
cellular immunity and unusual facial features [51]. 
DNMT3B-mutated cells show hypomethylation and imbal-
ances in histone markers on pericentromeric repeats [16]. 
Subsequent global gene profiling revealed that a large set of 
genes related to immune function, development, and neuro-
genesis are de-repressed. These genes are associated with 
loss of DNA methylation, repressive H3K27me3 marker, 
and Polycomb repressive complex [59]. Another syndrome 
closely related to ICF, ICF2, was recently linked to muta-
tions of the zinc-finger- and BTB (bric-a-brac, tramtrack, 
broad complex)-domain-containing 24 (ZBTB24) gene [60, 
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61]. Mechanistically, ZBTB24 is a putative DNA-binding 
protein and may be involved in juxtacentromeric DNA 
methylation [60]. DNMT3A has not so far been linked to 
neuronal diseases, although its deletion does impair post-
natal neurogenesis [46], but it is strongly associated with 
acute myeloid leukemia [62, 63].

Roles of methyl‑CpG binding proteins (MBPs): the readers

Since DNA methylation plays a critical role in neurodevel-
opment, it is feasible that the methylation “reader,” methyl-
binding proteins, may also be indispensable to correctly 
interpreting existing modifications [21]. Indeed, methyl-
CpG binding protein 1 (MBD1) appears to be an impor-
tant regulator of neural stem cells. MBD1-null mice show 
reduced neuronal differentiation and increased genomic 
instability. In addition, MBD1 knockout also affects post-
natal neurogenesis in the SGZ, indicating its dual roles in 
both neurogenesis and the maintenance of long-term brain 
function [64]. Nevertheless, in this particular study, the 
adult NSCs from wild-type mice already exhibited 21.3 % 
aneuploidy, and NSCs from MBD1 null mice enhanced this 
trend by an additional 20  %. Hence, further experiments 
could be performed  to rule out indirect effects caused by 
the specific cell type used here. One proposed mechanism 
for MBD1 is that it directly binds to the hypermethyl-
ated promoter of basic fibroblast growth factor 2 (Fgf2), 
an essential growth factor for neural development. MBD1 
deletion results in Fgf2 promoter hypomethylation and dif-
ferentiation arrest [65]. Since this study was performed in 
cultured adult NSCs, further studies should be conducted to 
confirm this observation in vivo.

Methyl-CpG binding protein 2 (MeCP2) was first iden-
tified about two decades ago for its ability to recognize 
and bind to methylated DNA [66]. Quantitative analysis 
of MeCP2 revealed its broad expression in various tissues, 
with the highest levels in brain, lung, and spleen. Expres-
sion of MeCP2 in brain shows temporal and spatial order 
and is correlated with the maturation and function of the 
central nervous system [67]. MeCP2 is one of the best-
characterized MBPs [24, 68] and has been implicated in the 
regulation of global histone modification [69], target gene 
repression [70, 71] or activation [23, 72], long-range inter-
action between distant regions of the genome [73], and the 
regulation of alternative splicing [74]. The MeCP2 gene is 
X-linked, with one copy inactivated during dosage com-
pensation [75]. Therefore, mutations induce the premature 
death of males in their first 2  years of life [76]. Females 
with the same mutations survive longer, but develop a 
severe progressive neurodevelopmental disorder called Rett 
syndrome (RTT) [77]. It appears that precise control of the 
MeCP2 level is important, as increasing copy numbers of 
MeCP2 are found to cause mental retardation, autism, and 

psychiatric symptoms [78]. A number of mouse models 
with MeCP2 mutations or conditional knockout have been 
created [24, 68]. These mice recapitulate the RTT pheno-
types, confirming the key role of MeCP2 in RTT. Post-
translational modifications are suspected of playing a key 
part in the regulation of MeCP2 behavior. For instance, 
brain-specific MeCP2 phosphorylation has been linked 
to activity-dependent brain-derived neurotrophic factor 
(Bdnf) transcription, a growth factor that supports neu-
ron growth and differentiation [79]. Recent genome-wide 
profiling of MeCP2 revealed that MeCP2 S421 phospho-
rylation occurs globally in response to neuronal stimulation 
and participates in dendritic development and key neuro-
logical responses [80].

There have also been efforts to rescue the RTT pheno-
types in a mouse model by re-expressing functional MeCP2 
proteins. Indeed, tamoxifen-induced MeCP2 expression in 
MeCP2 null mice could reverse neurological phenotypes, 
although some mice experienced rapid death, possibly due 
to overinduction of MeCP2 [81]. This observation suggests 
that the neuronal damage of RTT is reversible. The authors 
of this study proposed a model wherein DNA methylation 
patterns are preserved, even in the absence of MeCP2, and 
replenishment of MeCP2 can thus restore neuronal activity. 
These observations, along with others [82], shed new light 
on potential therapeutic treatments for RTT patients.

Numerous efforts have also been put into identifying 
the 5hmC or even 5fC and 5caC readers. It turns out that 
many MBPs also possess the capacity to recognize 5hmC. 
For example, a recent study purified distinct types of neu-
ronal cells and found that both 5mC and 5hmC show a 
strong cell type-related bias. These investigators also identi-
fied MeCP2 as a 5hmC-binding protein, establishing a dual 
role for MeCP2 in the orchestration of neuronal plasticity 
by coordinating different cytosine modifications [31]. In 
addition, Yildirim et al. [83] demonstrated the Methyl-CpG 
binding protein 3 (MBD3) co-localizes with Tet1 and 5hmC 
in ESCs, and MBD3 showed a preference to bind to 5hmC 
over 5mC. Furthermore, Vermeulen and colleagues sys-
tematically characterized the protein readers to a variety of 
different cytosine modifications in ESCs, neuronal progeni-
tor cells (NPCs), and adult mouse brain tissue. Their study 
revealed a protein list that overlaps between various modi-
fications, including MeCP2 and some methyl-CpG binding 
proteins. Remarkably, some readers displayed strong tissue 
or modification specificity, suggesting that correct and spe-
cific interpretation of the cytosine modifications is critical 
for normal development and homeostasis [84].

DNA methylation in repetitive elements

As discussed above, the deletion or mutation of either 
DNMTs or MBPs leads to aberrant DNA methylation 
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patterns in brain, and eventually neurodevelopmental defi-
ciency. Among many mechanisms proposed, the activation 
of retrotransposons is one attractive model [85]. An engi-
neered human long interspersed element 1 (LINE-1 or L1) 
has been found to retrotranspose in neuronal precursors 
derived from rat hippocampus neural stem cells [86]. Sub-
sequent research confirmed this by detecting an increased 
copy number of endogenous L1 in several regions of 
human brain. Bisulfite sequencing revealed 5′ UTR hypo-
methylation in human brain tissues compared to matched 
skin samples, highlighting the importance of DNA meth-
ylation in this process, which is consistent with the notion 
that DNA hypermethylation occurs in the repetitive ele-
ments to maintain genomic stability [87]. The transposable 
elements may help fine-tune gene expression in the brain in 
a single cell-based manner to achieve specific and compli-
cated neuronal responses [14].

Other DNA methylation‑related neurodevelopmental  
and neurodegenerative diseases

A common feature of repeat expansion diseases, includ-
ing many common neurological disorders like fragile X 
mental retardation syndrome (FXS) and Huntington’s dis-
ease (HD), is trinucleotide repeats on the coding region, 
untranslated region, or even introns of certain genes [88, 
89]. Among different mechanisms of disease formation, 
RNA gain-of-function toxicity has been reported exten-
sively from the repeat elements either interfering with 
alternative splicing (e.g., in myotonic dystrophy, DM) or 
disrupting the balance and availability of RNA-binding 
proteins (e.g., fragile X tremor ataxia syndrome, FXTAS) 
[88–91]. Nonetheless, a recent study suggests that polyglu-
tamine-expanded HTT can alter DNA methylation at both 
promoter-proximal regions bearing low CpG content, as 
well as distal regulatory regions [92]. Notably, trinucleotide 
repeat instability on the genome has also been proposed 
[93]. Since DNA methylation occurs primarily in CG dinu-
cleotides, some of the diseases containing non-methylatable 
repeats, such as CAG in HD, spinal and bulbar muscular 
atrophy (SBMA), several forms of spinocerebellar ataxia 
(SCA1, 2, 3, 6, 7, 8, 12, and 17), and CTG in myotonic 
dystrophy type 1 (DM1), may not be affected [51, 89]. 
However, methylatable CGG repeats do occur in several 
diseases, including FXS and FXTAS, and may contribute 
to the onset and progression of those diseases. The molec-
ular basis of FXS has been attributed to the CGG repeats 
within the 5′ untranslated region of the FMR1 gene [94], 
with extensive repeats causing silencing of the transcripts 
[95]. DNA methylation has been clearly taken into account 
for the mechanism of FMR1 gene silencing [96]. There are 
also other repeat-related diseases, such as syndromic/non-
syndromic X-linked mental retardation, oculopharyngeal 

muscular dystrophy with GCG repeats, and myoclonic 
epilepsy of Unverricht and Lundborg with CCCCGCCC 
CGCG repeats, which could also be subject to DNA meth-
ylation, although whether DNA methylation plays a part in 
those diseases remains to be determined [89].

In recent decades, DNA methylation has emerged une-
quivocally as a key player in normal neurodevelopment and 
numerous neurological disorders. DNA methylation inhibi-
tors, such as 5-aza-2′-deoxycytidine, are already undergo-
ing clinical trials for some of these diseases, which could 
give us insight into reversing disease phenotypes [52]. 
Taken together, there is mounting and compelling evidence 
that the DNA methylation machinery, including DNA 
methyltransferases and MBPs, is critical in prenatal and 
postnatal neurodevelopment. Deletion or mutation of these 
players can cause skewed neuronal activity and lead to neu-
rological phenotypes.

DNA 5‑hydroxymethylation in neurodevelopment  
and disease: a new perspective

Is 5‑hydroxymethylcytosine an intermediate or stable 
cytosine modification?

DNA methylation has been studied exhaustively for dec-
ades, with relatively well-established protein players to 
generate or interpret this marker. In contrast, how DNA 
methylation is dynamically regulated, especially the 
machinery of passive or active DNA demethylation and 
the identity of demethylases, had not been described until 
very recently [33, 97–100]. The discovery that the DNA 
methylation eraser ten-eleven translocation 1 (TET1, one of 
the three TET proteins in mammals) can oxidize 5mC to 
5-hydroxymethylcytosine (5hmC) [27] has attracted broad 
attention and led to a flurry of studies within the last sev-
eral years. The development of next-generation sequencing 
allows scientists to characterize this new cytosine modifi-
cation genome-wide and postulate its function in the tran-
scription state by analyzing its genomic distribution and 
associated protein factors. In the meantime, two further 
5hmC oxidation products by TET proteins, 5-formylcy-
tosine and 5-carboxylcytosine, were also found to exist in 
mouse embryonic stem cells (mESC), mouse tissue, and 
human cells shortly after 5hmC was shown to be converted 
from 5mC [29, 30, 101]. The establishment of various 
cytosine modifications raises an intriguing question: are 
either of the oxidized 5mC derivatives an intermediate in 
the active DNA demethylation process, or are they actually 
novel stable cytosine modifications that participate in epi-
genetic regulation?

Several lines of evidence indicate that different cyto-
sine modifications are actually unified in a cycle to ensure 
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their dynamic regulation in response to developmental 
cues. By investigating DNA demethylation in the dentate 
gyrus of adult mouse brain, Guo et  al. demonstrated that 
5hmC converted by TET1 from 5mC is more prone to 
undergo deamination than 5mC by the AID (activation-
induced deaminase)/APOBEC (apolipoprotein B mRNA-
editing enzyme complex) family of cytidine deaminases 
[102]. The deamination product, 5-hydroxymethyluracil 
(5hmU), triggers the base-excision repair (BER) pathway 
to be turned back to 5mC to complete the demethylation 
cycle. This relatively short pathway, which is not involved 
in 5fC and 5caC formation, is important for neuronal 
activity-induced, region-specific, active DNA demethyla-
tion [102]. An alternative pathway has also been proposed 
recently, based on the fact that TET proteins can further 
oxidize 5hmC to 5fC and 5caC. 5caC can be successively 
excised by thymine DNA glycosylase (TDG) to generate an 
abasic site, which can then be repaired to a cytosine by the 
BER pathway [29, 30, 101, 103]. These findings elucidate 
plausible models for active DNA demethylation, although 
their precise dynamics, cellular specificity, and associated 
functions remain to be determined. Furthermore, simulta-
neous passive DNA demethylation may also be important 
in basic biological activities like development. It has been 
suggested that DNMT1, the only DNA methyltransferase 
that copies the existing DNA methylation to the daugh-
ter strand during DNA replication, has dramatically more 
affinity for hemi-methylated DNA than hemi-hydroxym-
ethylated DNA [104]. This could easily result in the loss 
of inheritable DNA methylation if corresponding sites 
have been converted to 5hmC/5fC/5caC before cell repli-
cation [105]. It has long been known that the paternal but 
not the maternal genome in a zygote endures global DNA 
demethylation before the first mitosis, but the mechanisms 
behind this have remained elusive [106, 107]. A recent 
report revealed the 5mC of the paternal genome can be con-
verted to 5hmC by TET3, the only one of the TET proteins 
expressed in zygote. Tet3-deficient zygotes fail to convert 
5mC to 5hmC, impairing key epigenetic reprogramming 
genes, such as Oct4 or Nanog expression, thereby affect-
ing normal embryonic development [108]. These findings 
taken together argue that 5hmC and its subsequent oxida-
tion products may serve as an intermediate for the DNA 
demethylation process.

5hmC, on the other hand, is also implicated as a stable 
cytosine modification that has a long half-life in the mam-
malian genome, especially in neuronal cells, as demon-
strated by us and others [31–33]. For example, Song et al. 
used selective chemical labeling combined with high-
throughput sequencing to map  5hmC genome-wide in 
several cell lines and mouse brain and showed that intra-
genic 5hmC enrichment correlated with the expression of 
genes linked to age-related neurodegenerative diseases; in 

addition, the age-dependent acquisition of 5hmC is also 
seen [33]. Szulwach et  al. [32] have specifically mapped 
the genome-wide distribution of 5hmC in mouse hip-
pocampus and cerebellum at three different ages, allowing 
accurate comparison of 5hmC levels and distribution at dif-
ferent stages of postnatal neurodevelopment. 5hmC levels 
were found to be significantly higher in both the cerebel-
lum and hippocampus of adult mice at 6 weeks and 1 year 
of age than postnatal day 7 mice. Two findings are impor-
tant to note here. First, the gain of 5hmC level in a number 
of neurodevelopmentally activated genes did not result in a 
concomitant loss of 5mC, arguing that 5hmC is not solely 
the oxidation product of 5mC, and newly formed 5hmC can 
also occur on non-CpG cytosines. Second, tissue-specific 
differentially hydroxymethylated regions (DhMRs), for 
instance, cerebellum—but not hippocampus-specific 5hmC 
territories associated with different ages—were identified. 
Interestingly, more than 6,000 DhMRs found in 6-week-
old but not P7 mouse cerebellum persists until 1  year of 
age, arguing that 5hmC is a stable cytosine modification in 
brain tissues. Moreover, a RTT mouse model with MeCP2 
knockout displayed increased 5hmC levels. This is con-
sistent with the notion that MeCP2 serves as a protective 
mechanism by binding to 5mC, and its depletion leads to 
the conversion of 5mC to 5hmC [32]. A recent study fur-
ther purified distinct types of neuronal cells and found that 
both 5mC and 5hmC show a strong cell type-related bias. 
These investigators also identified MeCP2 as a 5hmC-
binding protein, establishing a dual role for MeCP2 in the 
orchestration of neuronal plasticity by coordinating differ-
ent cytosine modifications [31].

Based on the evidence presented here, one feasible 
proposal is that 5hmC has dual roles, being either a DNA 
demethylation intermediate or a stable epigenetic marker. 
In some developmental stages that require rapid DNA 
demethylation to reset the epigenome, such as in zygote 
or primordial germ cells (PGCs), the available TET pro-
teins (TET3 in zygote and TET1 or TET2 in PGCs) rapidly 
convert 5mC to 5hmC and all the way back to unmethyl-
ated cytosine, possibly coordinating with a number of their 
cofactors to ensure proper gene expression and facilitate 
normal development [108–110]. The rationale behind this 
epigenetic reshuffling during embryonic development 
likely accounts for the re-establishment of a proper epige-
netic state adapted from paternal and maternal genome to 
ensure normal development, and the expression of Tet pro-
teins appears to be the decisive factor for 5hmC abundance 
and distribution. In postnatal development, however, some 
5hmC derived from 5mC can be quickly turned back into 
unmethylated cytosine, whereas a significant and increas-
ing portion of 5hmC during aging persists for a long time, 
even throughout the entire life span, to control long-term 
gene expression. Thus, the rationale for stable 5hmC is 
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possibly related to transcriptional control of specific genes 
that are important for tissue-specific events. This model is 
particularly apt for neuronal cells, given the extraordinar-
ily high level of 5hmC in those cells, likely reflecting its 
unique function in neuronal activity. However, there were 
no expression differences in Tet proteins seen during post-
natal neurodevelopment, suggesting additional co-factors 
or mechanisms may be involved in regulating 5hmC level 
[32].

Requirements of 5hmC and the TET proteins  
in neurodevelopment and implications  
in neurological diseases

Our understanding of the correlation between TET pro-
teins, 5hmC, and neurodevelopment is still in its infancy. 
Although the mechanisms of active DNA demethylation 
have been speculated about for years, there are many fac-
tors involved in this process [111]. One of these is growth 
arrest and DNA damage-inducible protein 45 (Gadd45) 
[112, 113]. Knockdown of Gadd45a promotes global DNA 
demethylation, with a requirement for the DNA repair 
endonuclease XPG [112]. Gadd45b was found in mouse 
hippocampus as an early responder to various stimuli that 
promotes adult neurogenesis. Gadd45b induces promoter 
DNA demethylation of several genes involved in neuro-
genesis, including brain-derived neurotrophic factor (Bdnf) 
and fibroblast growth factor (Fgf) [113]. Although a direct 
interaction between Gadd45 and TET protein has not been 
reported, it is possible that TET proteins could be involved 
in Gadd45-mediated DNA demethylation, thereby affecting 
neuronal development. Another enzyme family, isocitrate 
dehydrogenases (IDHs), catalyzes oxidative decarboxyla-
tion of isocitrate to produce α-KG, which is required for 
TET oxygenase activity [114]. IDH deletions or mutations 
cause global 5hmC loss and are associated with numer-
ous cancer types, including lower-grade diffuse astrocytic 
glioma [115–118]. Three recent reports simultaneously 
demonstrated the direct interaction between TET proteins 
and O-linked N-acetylglucosamine (O-GlcNAc) transferase 
(Ogt). TET proteins are required for the recruitment of Ogt 
to chromatin, and Ogt can then GlcNAcylate host cell fac-
tor 1 (HCF1), a component of the H3K4 methyltransferase 
SET1/COMPASS complex, as well as trigger histone 2B 
Serine 112 GlcNAcylation [119–121]. Interestingly, a pre-
vious study showed that overexpression of Ogt increases 
the percentage of neurons exhibiting axon branching and 
the numbers of axonal filopodia [122]. In brain, Ogt is seen 
mostly in neuronal cell bodies and processes, arguing for 
its functional importance in neurodevelopment and neu-
ronal activity [123]. The detailed molecular mechanisms of 
Ogt-TET proteins, as well as 5hmc, in neurodevelopment 
and possibly neuronal diseases remain to be determined.

One report looked at the dynamic change in TET pro-
teins and 5hmC in neurogenesis and found an increased 
5hmC level during neuronal differentiation from neural 
stem cells [124]. 5hmC is enriched in the gene bodies of 
activated neuronal function-related genes, and no profound 
cytosine demethylation was seen, confirming 5hmC is sta-
ble in neuronal cells. These investigators also show a nega-
tive correlation of 5hmC with H3K27me3 and its effector 
Polycomb protein complex [124]. These data confirmed the 
critical role of 5hmC and TET proteins in neurodevelop-
ment, as also shown in Xenopus [125].

Conclusions and perspectives

The field of cytosine modifications is progressing rapidly, 
thanks to the development of high-throughput sequencing 
methods that allow scientists to precisely investigate their 
detailed distribution genome-wide, and the build-up of 
cytosine modification variants in recent years has attracted 
vast attention. One of the most important future tasks is 
certainly to understand the dynamic regulation, distribu-
tion, and conversion of cytosine modifications. The evi-
dence described in this review offers strong support for the 
idea that cytosine modifications are one of the most deci-
sive epigenetic mechanisms influencing normal neurode-
velopment, and its aberrant regulation can lead to a vari-
ety of neurological disorders. Often, multiple epigenetic 
mechanisms, such as cytosine modification, histone modifi-
cation, or chromatin remodeling, cooperate and orchestrate 
the transcription state and ultimately govern cell identity, 
tissue development, and its normal function [36, 37]. Given 
the high enrichment of 5hmC in the CNS, it will be inter-
esting to explore the crosstalk among various epigenetic 
mechanisms, especially the newly defined 5hmC, in neu-
ronal activity, and ultimately to develop novel therapeutic 
approaches for neurological disorders. Therefore, we have 
our eye focused on 5hmC for the future.

Although there has been significant progress on 5hmC 
and TET proteins just since 2009, in comparison with the 
relatively more well-developed 5mC field, several impor-
tant questions remain unanswered. For example, the 
exact correlation of TET proteins and 5hmC with gene 
expression remains elusive and controversial. Proteomic 
analysis has revealed several TET-binding proteins. 
Among these, Ogt [119–121], Nanog [126], and PARP1 
[127] may be involved in TET-mediated gene activation. 
In comparison, SIN3A could be serving as a co-repressor 
for TET-mediated gene silencing [128]. The dual roles 
of TET proteins in transcription require further inves-
tigation. Tet1 or Tet2 knockdown in mESCs does not 
appear to affect their self-renewal, although the global 
5hmC level is reduced, and the differentiation ability of 
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the cells is skewed [126, 128–130]. In addition, TET1 
knockout mice appear grossly normal, but with skewed 
differentiation toward trophectoderm in vitro [131]. 
Recently, efforts have also been made to generate Tet1 
and Tet2 double knockouts (DKO). Surprisingly, viable 
and overtly normal DKO mice were obtained, although a 
fraction of DKO embryos displayed midgestation abnor-
malities [132]. These observations point to the possibil-
ity of a partially redundant role of different TET proteins. 
Future studies are needed to uncover the precise roles of 
TET proteins and 5hmC in stem cell pluripotency and 
differentiation.

Given the unusually high 5hmC level in brain tissues, it 
could be critical in maintaining normal neuronal homeo-
stasis and functions. Therefore, it is reasonable to specu-
late that there are aberrant 5hmC levels and distributions 
in neurological and neurodegenerative disorders. In fact, 
a recent publication demonstrated genome-wide loss of 
5hmC in HD, and their DhMR-annotated genes are associ-
ated with canonical pathways related to neuronal develop-
ment and differentiation [133]. It will be very interesting to 
investigate the roles and regulations of 5hmC, its writers, 
readers, and erasers in other neuronal disorders, as well as 
normal neuronal activities.

The roles of 5fC and 5caC, including whether they 
are also stable in the genome, have gone uninvestigated 
because they are not at all abundant in the genome, and 
we lack a specific method to enrich and map them. We and 
others recently solved this issue by using either a chemi-
cal labeling or an antibody enrichment method to globally 
map these two cytosine modifications. 5fC has been found 
at poised enhancers among other gene regulatory ele-
ments [134], as well as in repetitive elements [135]. Future 
work will be needed to address their precise role in gene 
expression.

Evidence accumulated in the past decade has revealed 
the critical role of DNA methylation in neurological dis-
eases; however, a direct correlation between TET proteins, 
5hmC, and neurological diseases has not been reported, 
although we now know they clearly play a role in leuke-
mia [114, 136–138] and melanoma [117]. In addition, 
unlike DNA methylation and many histone modifications, 
chemical compounds that can manipulate the 5hmC level 
in vivo have not been systematically explored, despite iso-
lated reports that ascorbate (vitamin C) may be one of them 
[139]. Establishing such a compound library would be a 
major benefit for future clinical trials on 5hmC-related neu-
rological diseases.
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