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Abstract
Weak and ultra-weak protein-protein association play a role in molecular recognition, and can
drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect
experimentally, and are a challenge to the force field and sampling technique. A method is
proposed to identify low-population protein-protein binding modes in aqueous solution. The
method is designed to identify preferential first-encounter complexes from which the final
complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the
solvent, which accounts for short- and long-range effects of water exclusion and for liquid-
structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close
proximity and are optimized based on binding enthalpy data and simulations. An algorithm is
described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a
set of interacting proteins. The function allows mixing large and local changes in the spatial
distribution of proteins, thereby enhancing sampling of relevant microstates. The method is
applied to three binary systems. Generalization to multiprotein complexes is discussed.
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I. Introduction
Cellular signal transduction involves networks of protein-protein interactions that transmit
information.1,2 Many of these proteins interact with more than one partner and can form
stable multiprotein hetero-complexes.2,3 A number of pathologies have been linked to
disruptions of the delicate balance of forces between proteins, most commonly as a result of
mutations4 or partial misfolding.5 Understanding the physicochemical basis of
macromolecular association in solution is then a requisite to understand many biological
processes in the cell, from subcellular organization3 to physiological function and disease.6,7

To elucidate the origin of specificity and affinity structural information is often combined
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with microcalorimetric and kinetic data,8 but microscopic insight is often limited. Moreover,
recent advances in paramagnetic relaxation enhancement techniques have revealed the
existence of transient, ultra-weak protein self-associations that are difficult to detect with
conventional biophysical methods.9,10 Data suggest that proteins can interact at multiple
sites, forming an ensemble of binding modes with very low populations.11 These transient
complexes can play a role in protein recognition, and may drive spontaneous self-assembly
of higher-order architectures.11 These studies have shown that ultra-weak association is
controlled mainly by electrostatics, although hydrophobic interactions also play a role.11

Crowded environments12 could strengthen weak electrostatic interactions, which may
explain the relatively high aggregation state of soluble proteins in living cells.13

The study of macromolecular complexation requires not only prediction of highly-specific
binding modes, a common goal in computational biology,14,15 but also calculation of
association/dissociation rates, binding enthalpies and entropies, and detection and
characterization of weak and ultra-weak association. These are major challenges for the
force field, as it must describe the physics of a variety of aqueous environments and
thermodynamic conditions, and the unique properties of aqueous interfaces. The protein
environment is determined by several factors, including the amount of water excluded by
neighboring proteins, complexes, and assemblies. The incomplete and anisotropic hydration
created by these structures affect the magnitude and direction of forces induced by water.16

The protein environment is also characterized by the properties of water close to the protein
surface.17–22 Aqueous interfaces are involved in many effects elicited by ions and cosolutes,
including protein denaturation, stabilization, aggregation, and dissociation.23–25 Aqueous
interfaces display non-bulk behavior that can propagate a few hydration layers into the bulk.
For example, neutron scattering and X-ray diffraction data suggest that simple ions can
affect the water structure beyond their first hydration shells,26 whereas osmotic stress
experiments show that membranes and nucleic acid arrays affect the water behavior up to a
few nanometers from their surfaces.27,28 Deeper interfaces have been reported in colloidal
systems.29–31 Transferring these findings to the cytosol is problematic because experiments
are difficult to design and interpret, often leading to conflicting conclusions.13,32 For
example, NMR data suggest that the dynamics of cell water do not differ much from the
dynamics of bulk water,33 implying that only the first hydration shells are affected.
However, neutron scattering and X-ray data indicate a larger proportion of non-bulk
water,34,35 suggesting deeper interfacial regions.

A continuum solvent model that incorporates some of these effects has been described,16

and is reviewed in Section II. The model accounts for the effects of liquid-structure forces at
aqueous interfaces, and for short- and long-range electrostatic effects of water exclusion.
The latter partially determine binding free energies,16 and is optimized here based on
binding enthalpy data.

Thermodynamic calculations and prediction of binding modes also require an efficient
method for sampling the configuration space. Configurational bias Monte Carlo (MC) has
long been used in the condensed state,36 including polymers37,38 and crystals,39 and is used
here to enhance sampling of physically relevant microstates of a set of interacting proteins in
solution. The configuration space generally includes both the spatial distribution of proteins
and their internal conformations. The focus here is on the spatial distribution. Biased MC of
internal degrees of freedom have been reported previously40–42 and used in ab initio
prediction of polypeptides conformations in solution.16,40,43,44 Both methods can be
combined to address the problem posed by the presence of multiple conformers and by
induced fit during protein recognition and association, as discussed in Section V. A critical
step in a biased scheme is the selection of the biasing function, which could hinder rather
than improve sampling if not properly chosen. A function that approximates the canonical
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distribution (unknown a priori) can greatly improve statistics and convergence, especially
when large structural changes are needed to visit many configurations with statistical
significance. An efficient method to construct such a function is presented in Section III.
The method is applied in Section IV to three binary systems. Extension to multiprotein
complexes is discussed in Section V.

II. Solvent effects: Electrostatic and liquid-structure forces
Biomolecules interact through non-covalent forces, which are strongly modulated (e.g.,
electrostatics) or directly elicited (e.g., hydrophobicity) by the aqueous medium. In
molecular mechanics the electrostatic force Fi on an atom i of a system composed of N
atoms is given by Fi = −∇iEe, where Ee is the total electrostatic energy of the system in
solution. The magnitude and direction of hydration forces determine the binding process.
These forces are sensitive to the configuration of the system, which is determined by the N
atomic coordinates r ≡ {r1, r2, …, rN}. In the screened Coulomb potentials-based (SCP)
model45–47 Ee is given by16

(1)

where qi is the charge of atom i. In this phenomenological partition the first sum is the
interaction energy term, and the second sum is the self-energy term. The total energy in the
SCP model also contains a cavity-formation term and a correction to account for the effects
of liquid-structure forces (SIF) at aqueous interface (not discussed; see16,47). The mean-field
effects of SIF are recast in R and optimized to reproduce the hydrogen-bond energies of all
amino-acid pairs, as estimated from a systematic calculation of potentials of mean force in
explicit water.16 Both the screening functions D and the effective radii R depend on the
system configuration. Modeling this dependence in a computationally efficient manner is a
challenge, but essential to correctly represent both the magnitude and direction of hydration
forces. A summary of the model follows.

II.1. Electrostatic effects of water exclusion
The screening functions in Eq. (1) are given by16 Di(x;r) = (1 + ε0)/{1 + k exp[−αi (r)x]} −1
and Dij(x;r) = (1 + ε0)/{1 + k exp[−αij (r)x]} −1, where ε0 is the static permittivity of the
solvent, and k is a constant. The dependence of Di on the system configuration is through the
screening coefficients αi, given by16

(2)

where J runs over the M residues of the proteins, and rIJ is the distance between the Cα
atoms of residues I and J; A > 0 and α0,i determine the screening assigned to the atom i in
the fully-hydrated residue I. The screening coefficients αij depend on the configuration
through

(3)

where . The characteristic lengths σ and σ’ control the long-range decay of
electrostatic water-exclusion effects.16 Both α0,i and ε0 depend on the temperature, and α0,i
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depends on the charge distribution as well.47 The effective radii Ri depend on the local
structure through46

(4)

where Rw,i is a charge-dependent radius of the fully-hydrated atom i, and j runs over Nc(i)
atoms such that rij < rc, and ai > 0; rc is a convenient threshold beyond which electrostatic
interactions is said to be long ranged (according to previous theoretical estimates,47 rc ~ 10
Å; in the SCP model it is chosen as rc = 5.6 Å, i.e., two hydration shells). Unlike σ and σ’ in
Eqs. (2) and (3), the characteristic length τi determines the short-range decay of the
electrostatic effects of water exclusion.16

The summations in Eqs. (2)−(4) are suitable simplifications of general sums over the N
atoms of the system,16,45,46 and make the model highly efficient.48,49 Figure 1 shows α, R,
and the self-energy of a charge q crossing a planar interface. All the variables change
smoothly with the distance, from their values in bulk water (x → −∞) to those in the interior
of an infinitely large water-excluding cavity (x → +∞). The rates of changes with the
distance from the surface depend on the values of σ in Eq. (2); and of τ and a in Eq. (4). For
a molecule, the magnitude and direction of hydration forces depend on the values of a, τ, σ,
and σ’ assigned to each atom. Careful optimization is thus necessary to model the effects of
water on a protein close to another protein, a membrane, or a solid surface.50–52 The
exponential functions in Eqs. (2)–(4) have been chosen for computational convenience and
may need revision to better represent the decay of the electrostatic free energy with the
distance from a real surface.

II.2 Model refinement
Electrostatic effects in the SCP model have been optimized previously using experimental
hydration data45 and results from dynamics simulations in explicit water.16,53 Molecules
used in the parameterization were small (amino acid and side-chain analogs), so the model
better represents short-and medium-range water effects rather than long-range effects.
Applications have thus been limited to peptides and small proteins at infinite
dilution.16,46,49,54 For larger systems and for processes where large amount of water are
excluded from the environment (e.g., protein-protein association) consideration must be
given to long-range effects. Barnase and barstar associate mainly by electrostatic forces,55

so this complex (PDB code 1brs) is used here to optimize σ and σ’ in Eqs. (2) and (3). To
estimate the dissociation energy canonical MC simulations are carried out at T = 25 °C and
fixed (standard) protonation states, using the united-atom representation (param19) of the
CHARMM force field.48 The dissociation energy ΔEd is calculated as the energy difference
between the bound and unbound states, i.e., ΔEd = Eb − E∞, where Eb = Z−1Σi Ei exp(−Ei/
kT) ≈ Σi Ei/Nb, and Ei and Nb in the last sum are the electrostatic energy [cf. Eq. (1)] of an
accepted conformation i and the total number of accepted conformations in the bound state,
respectively; E∞ is the energy of the system with the proteins widely separated from each
other. Trial moves consist of rigid-body rotations, translations, and roto-translations chosen
with equal probabilities. Side-chain conformations have negligible effects on long-range
electrostatics, so dihedral angle movements are not included. If long-range electrostatic
effects are ignored (in practice, σ → ∞ and σ’ → ∞) the dissociation energy is estimated at
ΔEd ~ 22.8 kcal/mol (estimated sampling errors within ~kT). This value changes with σ and
σ’ since these parameters affect the interaction and the self-energy terms in Eq. (1)
independently.16 These parameters can be adjusted to more closely reproduce the
experimental binding enthalpy of the complex at the same pH and temperature, measured56

at ΔHb ~ 19.3 kcal/mol. The optimized parameters follow a continuous line in the σ-σ’ plane
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(not shown), and σ = 59 Å and σ’ = 37 Å are chosen here, which reproduce the experimental
value within thermal energy. Two assumptions have been made. First, ΔHb = ΔUb + pΔV ≈
ΔUb ≈ ΔEe, i.e., changes in volume upon dissociation are neglected, and the internal energy
U of the system is calculated with the continuum solvent model, and thus contains the free
energy of the solvent; the SCP model also includes a standard term for the energy of cavity
formation16 (not discussed). Second, the van der Waals (vdW) contribution to the
dissociation energy has been omitted. This is a common assumption57 based on the notion
that the degree of packing of atoms is similar in a protein and in water occupying the same
space. However, recent ITC experiments in a number of protein-ligand complexes have
shown that dispersion forces are actually quite strong and contribute significantly to the
binding enthalpy when the binding pocket is sub-optimally hydrated.58 The importance of
dispersion forces in binding has long been recognized59 and simple models have been
proposed to include them in a continuum representation.60,61 In small non-polar molecules
these corrections play a measurable but modest role, especially when compared to other
interfacial effects operating in heterogeneous polar molecules, such as SIF.47,62–64

Dispersion however can no longer be ignored in larger systems and/or extended interfaces,
or in cases where the interface is highly structured, and proper representation is ultimately
needed to study protein association quantitatively. A simple thermodynamic cycle shows
that the net vdW contribution to the binding energy between two proteins (1 and 2) can be
approximated by ΔVvdW ≈ −V12 + V1B + V2A − VA’B’. Here, Vij is the vdW interaction
energy between i and j, where A’ and B’ represent regions of bulk water with the same shape
and volumes as proteins 1 and 2, respectively; A and B are the same regions of water but in
contact with protein 2 and 1, respectively. Molecular dynamics simulations have been
carried out here to estimate the relative magnitude of these terms, using the all-atom
(param22) CHARMM force field and the TIP3P water model in a cubic cell of ~93 Å side
lengths, with periodic boundary conditions and particle-mesh Ewald summation. For
barnase (1) and barstar (2), V1B ≈ 71 kcal/mol, V2A ≈ 28 kcal/mol, and VA’B’ ≈ 11 kcal/mol.
The direct protein-protein vdW energy is V12 ≈ 118 kcal/mol, so ΔVvdW ≈ 30 kcal/mol.
Therefore, replacing a protein by water only partially offsets the direct interaction V12.
Although the values obtained here contain artifacts of the force field (e.g., the water model
and the LJ function/parameters), the magnitude of ΔVvdW should indicate that the
assumption does require a closer inspection. These effects may have implications in the
study of weak and ultra-weak association.

The energy of barnase and barstar along a path connecting the bound and unbound states can
be calculated by gradually heating the native complex.16 A set of relaxed structures (decoys)
that includes near native and fully dissociated conformations can be generated by a MC
simulation. Figure 2 shows the components of the non-bonded energy as a function of a
reaction coordinate. The electrostatic interaction energy and the self-energy are shown with
and without long-range water-exclusion effects included. The self-energy favors
dissociation, whereas the interaction energy favors association.16 The correct interaction
results from the critical balance between these strong opposite effects. The direct vdW
energy (V12; above) is also shown for comparison. Inclusion of dispersion effects of water
exclusion in the SCP model will be reported in a future study.

III. Prescreening of binary binding modes
Forces between macromolecules in solution operate at different length-scales and play
different roles in the binding process. The method described in this section relies on the
assumption that preferential first encounters are driven mainly by electrostatic interactions
and by hydrophobic forces. Electrostatic forces operate at short and long range, while
hydrophobicity acts only at short range (when the protein surfaces are a few hydration shells
apart). Hydrogen bonds operate at even shorter distances and may determine specificity but
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not first-contact modes. Surface potential complementarity can then be used to identify
tentative modes of association that are most likely involved in first encounters. The final
mode or modes of binding develop from these contacts and are determined by the complete
force field. Surface-topography complementarity is not enforced because proteins can
change conformation upon binding, a process not addressed here (see Section V).

III.1. Complementarity of surface electrostatic potential
Each protein of the complex is treated separately and at infinite dilution in pure water. For a
given NMR or X-ray structure the Poisson equation is solved numerically (the problem
posed by the presence of multiple conformers is discussed in Section V). The electrostatic
potential ϕ is then mapped onto a grid of points Rn on the molecular surface, defined by the
Lee-Richard method with a probe radius rp = 1.4 Å, yielding ϕn ≡ ϕ(Rn).

Electrostatic (polar) interactions—Local maxima ϕM,i ≡ ϕ(RM,i) (i = 1,…, NM) and
minima ϕm,i ≡ ϕ(Rm,i) (i = 1,…, Nm) of the surface potential are calculated numerically: a
local maximum exists at point Ri if ϕi > ϕj (or ϕi < ϕj for a minimum) for all surface points
Rj such that |Rj − Ri| < γ, where γ is a characteristic length scale of the potential variations
on the surface. This value is protein-dependent and somewhat arbitrary, but enough
resolution can generally be achieved with γ = Raa + 2Rw ~ 6.3 Å (Raa ~ 3.5 Å is the average
radius of an amino acid in a protein, and Rw ~ 1.4 Å is the radius of a water molecule). This
value is also computationally convenient as it leads to relatively small NM and Nm for most
proteins (see Section IV). Because of the discrete nature of the grid, ϕn shows large
variations between neighboring points. Moreover, a local extremum carries no information
on the spread of the potential on the local surface patch. To correct for these limitations RM,i
and ϕM,i are reweighted, as

(5)

(6)

(likewise for a minimum) where i is the number of surface grid points such that |Rn −
RM,i| < γ and ϕn > 0 (or ϕn < 0 for a minimum). Because RM,i given by Eq. (5) do not
generally lie on the molecular surface, they are projected onto the closest surface grid point.

With this procedure each protein p in a complex is represented by a reduced set of N(p)

points, consisting of  maxima and  minima of the surface potential. Modes of
electrostatic complementarity between proteins 1 and 2 are obtained upon minimization of
the two-way norm,

(7)

where the distances are given in Å and the potentials in kcal mol−1 C−1; a is set to 1 C Å
mol/kcal, so e is dimensionless. Index j in the first and second term determines the point

 on protein 2 closest to point  in protein 1, i.e.,

; a similar definition holds for j in the third and
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fourth terms, after switching indices 1 and 2. The potentials  and  are, respectively, a

maximum and a minimum on protein p, while  is either a minimum or a maximum on
protein p. The form of Eq. (7) is suggested by the electrostatic energy of two interacting
charges of radii d/2 separated by a distance R12 = r12 + d; here d ~3 Å, about twice the
average van der Waals radius that defines the molecular surface. The term S12 in Eq. (7)
prevents structural overlaps. This is usually accounted for by the r−12 term of a LJ potential,
but is represented here by an atom-centered hard-sphere model.

Hydrophobic (non-polar) interactions—Analogous procedure can be used to
determine non-polar complementarity. A subset of surface grid points {Rn’} ⊂ {Rn} with
potentials {ϕn} is first selected, such that | ϕn | < ϕ0, where ϕ0 is an appropriate threshold.
Calculation on the active form of Calmodulin (PDB 1cll) and a number of small alkanes
suggests that using ϕ0 ~ 0.1 V may be sufficient to identify all the functionally-important
non-polar regions in a protein. Local minima of the absolute value of the potential, ψm, i ≡ |
ϕm, i |, are then calculated numerically in the new domain {Rn’}, where ϕm, i ≡ ϕ(Rm’,i) and
i = 1,…, Nm’. The Nm’ positions and the absolute values of the potentials are adjusted
according to Eq. (5) and Eq. (6), but using ψ instead of ϕ. Low surface potential is a
necessary but insufficient condition to predict a hydrophobic region. Many points of low ϕ
result simply from being at the boundary between regions of positive and negative fields.
However, the average of | ϕ | over a patch [Eq. (4)] allows discrimination of bona fide
hydrophobic patches that could be involved in first encounters. With this procedure each

protein p in a complex is represented by a reduced set of  points consisting of all the
non-polar centers Rm’,i on the proteins surfaces, each characterized by a degree of polarity
defined by ψm, i. Local surface area accessibility65,66 is used to define an appropriate norm.
This is a simple but physically reasonable approximation commonly used in implicit
solvation. Modes of non-polar complementarity between proteins 1 and 2 are obtained
through a minimization of the two-way norm,

(8)

where θ is the Heaviside step function and Rw is the radius of a water molecule; the
dimensionless parameters b(p) < 0 are discussed below. Unlike the summations in Eq.(7),
which covers all the points (maxima and minima) throughout the proteins surfaces, the
summations in Eq. (8) are restricted to L(p) points r(p) (a subset of the grid point Rn’ such
that |r(p) − Rm’| < γ and | ϕ(r(p)) | < ϕ0) on the local surface patch surrounding each
hydrophobic center Rm’; in practice γ = 2Rw = 2.8 Å. Indexes i and j are defined as in Eq.
(7). The first term in Eq. (8) quantifies the degree of burial of a hydrophobic patch in protein
1 by a hydrophobic patch in protein 2; the second term yields the degree of burial of patch 2
by patch 1.

III.2. Norm optimization
Optimization of e—In this section a “point” refers to either a maximum or a minimum of
the surface electrostatic potential. Optimization of e is carried out by first selecting a point i
with coordinate Ri in protein 1 and a point j with coordinate Rj in protein 2 are first selected
such that their potentials ϕi and ϕj have opposite signs. There are a total of

 such (i, j) pairs. The two points are then superimposed and the
proteins oriented, as follows: a vector νi is defined on protein 1 as νi = Σn (Rn − Ri), where n
runs over all the grid points on the surface such that | Rn − Ri | < s, where s defines the size
of a local patch of surface centered at i; statistics of protein/protein interfaces in the PDB
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suggests s = 10 Å. A vector νj is defined similarly on protein 2. If νi,o = νi/|νi| and νj,o = νj/|
νj| are unit vectors pointing outwardly from the surfaces, the initial orientation is such that
νi,o = −νj,o. Although this is not strictly necessary since the optimization protocol can
rapidly find conformations with no structural overlaps regardless of the initial orientation, it
prevents unnecessary clashes at the outset of the simulation.

The setup described above leaves only one degree of freedom, namely, rotation by an angle
ω around the axis νi,o. This way Nω initial conformations with random ω are selected for
each pair (i, j). Any of these initial conformations should converge to the same optimized
structure, but this is not always the case in practice, especially for rugged interfaces, due to
imperfect sampling. Equation (7) is optimized by simulated annealing MC using a
Boltzmann-like distribution f = exp(−e/T), where T is a dimensionless cooling parameter.
Protein 1 (chosen as the larger protein of the pair) is fixed during the optimization, while
protein 2 is translated, rotated, or roto-translated randomly with equal probabilities.
Rotations are defined by an angle γ about a randomly-selected axis Ω that passes through
point j. Trial moves are selected randomly from Gaussian distributions with standard
deviations σt (translations) and σr (rotations) using the Box-Muller method. These are set
initially at σt = 2.8 Å, i.e., one hydration layer allowed at the interface, and σr = 180°. Both
distributions are adjusted on the fly during the simulation to keep the acceptance rate above
0.4 (see below). A constraint is imposed on translations such that | Ri − Rj | < Rc, which
forces i to remain close to j throughout the optimization process; Rc is initially set at Rc = 2.8
Å, and trial moves that violate this distance criterion are rejected. The simulation starts at a
(system-dependent) temperature TM = 10Ntot maxij(|ϕiϕj|)/d, which is decreased
logarithmically in NT steps up to the lowest temperature, here Tm ~ 10−3 (in practice NT =
20). A total of 104 trial moves are performed at each temperature; this limited sampling
justifies the choice of Nω initial structures. If the acceptance rate at a given temperature is
less than 0.4, both σt and σr are rescaled by a factor 2/3 at the next temperature. There is no
need to impose detailed balance at this stage.

Evaluation of S12 in Eq. (7) requires the calculation of distances dkl between a surface atom
k in protein 1 and a surface atom l in protein 2. A trial move is rejected if dkl < Rvdw,k +
Rvdw,l + c for any pair of atoms; here Rvdw,k and Rvdw,l are the van der Waals radii of the
atoms; c ≥ 0 is a soft-core parameter that can be used to improve sampling of structures that
are locally trapped due to the constrain | Ri − Rj | < Rc imposed in the initial alignment. This
problem can arise in the presence of very irregular interfaces, whereby either i or j are buried
in crevices. This is the case of residues that tend to confer binding-specificity, which are
often “locked” into a cavity in the host protein (see Section IV). In the protocol proposed
here c = 0, and the problem posed by locally-trapped structures is circumvented by rescaling
Rc by a factor 1.2 every 104 moves, up to a maximum of 2Rc (i.e., two hydration layers
allowed at the interface, at most). This relaxation criterion is physically more appealing, and
is applied only at the highest temperature TM. Once a structure is accepted, the simulation at
TM continues for another 104 moves, and the acceptance rate is calculated over this latter
period. If the rate at TM is still zero after 105 moves and once the constraint reached 2Rc, the
initial alignment is discarded (this situation has been observed in few of the several tests
performed).

Optimization of Eq. (7) requires finding closest neighbors to either points or atoms in each
trial move. These queries are of two kinds: (1) find point i on the surface of one protein that
is closest to a point j on the surface of the other protein to evaluate the electrostatic terms;
(2) find atom k in one protein that is closest to an atom l in the other protein to evaluate S12.
In both cases a search based on Delaunay triangulation is used, which speeds computation
one order of magnitude when compared to a direct search over pairs.
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For each pair (i, j), the Nω optimized structures can be grouped into conformational families.
The Cα-root mean square deviations (RMSD) between all the structures are first calculated
after superimposing protein 1. These values are stored in a Nω × Nω symmetrical
arrangement and clustered using a hierarchical technique67 according to the maximum intra-
cluster RMSD variance (δ) desired (in practice, δ = 5 Å). The process yields Nδ d Nω
clusters (conformational families). For each of the clusters, the structure with the lowest
RMSD with respect to all other members of the same cluster is selected as a representative

member of the family. The optimization thus generates  structures {s1, s2, …,
sΓ} as potentially relevant electrostatic-driven binding modes that warrant further scrutiny
with the complete force field. The index m in {sm} represents a convenient array unrelated to
the values of the optimized norm.

Optimization of h—The same algorithm is used. A “point” refers now to one of the non-
polar centers. In analogy with the setup described above, point i and j are selected on the

protein 1 and 2, respectively, yielding a total of  (i, j)-pairs. For each pair,
the proteins are aligned as described above. The parameters b(p) in Eq. (8) is chosen as to
reflect the degree of polarity of the patch, and is given by b(p) (ϕ) = A + B |ϕ|, where A =
−b(0) and B = b(0) / |ϕ0|. Thus, the more polar the patch is, the weaker the hydrophobic
effect expected; and vice versa. Any positive value can be chosen for b(0); here b(0) = 4.2
(if the summations in h had dimensions of Å2, solubility data of alkanes suggest45 ~4.2 kcal/
mol/Å2). The simulated annealing MC optimization is carried out with a distribution f =
exp(−h / T) and a maximum temperature TM = 10b(0)maxij (2L), where L depends on i and j
according to the surface area of the patch. For each (i, j)-pair clustering of the Nω initial
alignments generates N'δ conformational families. Optimization of h yields a total of

 structures {s'1, s'2, …, s'Γ'} as potentially-relevant hydrophobicity-driven
first-encounter modes.

III.3. Probability maps and biased sampling
The Λ = Γ + Γ’ conformations {sm} = {s1, s2,…,sΓ} ∪ {s'1, s'2, …, s'Γ'} identified from
optimization of e and h are treated on equal basis. Each mode is a potentially-relevant first
encounter mode, and its relative importance is determined by a screening protocol described
below. A probability distribution can be constructed from {sm} and used as the biasing
function in the full MC simulation. In each trial move a structure sm is first selected
randomly out of the Λ potential modes. Moves consist of translations, rotations, and roto-
translations of protein 2 selected with equal probabilities, while protein 1 remains fixed over
the course of the simulation. Random rotations of side-chain dihedral angles are a fourth
type of movement and can be applied to both proteins with equal probability.16 At the
beginning of the simulation the center of mass of protein 1 is positioned at the origin of the
laboratory coordinate system, and rotated such that its primary axis of inertia is oriented in
the z direction (I(1) = k̂). The secondary and tertiary axes of inertia are oriented in the x and
y directions, respectively (I(2) = î and I(3) = ĵ). All movements of protein 2 are thus relative
to the molecular frame of protein 1, so simple coordinates transformations can be applied to
the equations derived below if protein 1 is moved, e.g., when more than two proteins are
involved.

The six degrees of freedom necessary to position protein 2 relative to protein 1 are
determined by six random variables ui (i =1, …, 6) distributed uniformly in the interval [0,
1]. A translation is defined by the transformation r = rm + Δr, where rm are the coordinates
of protein 2 in the selected mode sm and Δr = (x, Δy, Δz) is a random displacement obtained
from normal distributions with zero mean and non-unit variance, according to the
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transformations

,
where σx, σy and σz are the standard deviations in each direction.

A rotation is defined by the transformation r = R ̅rm where the matrix R̅ represents a random
rotation of protein 2 by an angle Δγ around a random axis determined by the unit vector Ω =
(ωx, ωy, ωz) that passes through the center of mass of protein 2. In quaternion notation this
matrix is given by

(9)

where q = (q0, q1, q2, q3) = (cos α, ωx sin α, ωy sin α, ωz sin α) and α = (π/360) Δγ, with γ in
degrees. To keep track of coordinate changes the vector Ω is obtained from a random
rotation of the primary axis of inertia of protein 2 in the mode sm, as determined by the

ortho-normal components ,
where (m, θm) are the angles in spherical coordinates. The rotation matrix is then defined by
the transformations φ = φm + Δφ and θ = θm + Δθ, and by a rotation Δγ around this new axis,
where

are the corresponding Box-Muller transformations, and σφ, σθ and σγ the standard
deviations. Normal distributions of ϕ and θ are not necessary since the main restriction is on
Δγ, but imposed here for completeness.

In thermodynamic equilibrium strict detailed balance implies that the old (o) and the new (n)
states are related through68 Poπo→n = Pnπn→0, where P is the corresponding Boltzmann
occupancy probability, and π is the transition probability between the states, given by πo→n
= αo→n po→n and πn→o = αn→o pn→o. Here α is the underlying matrix of the Markov
process and p is the acceptance probability given by

(10)

where ΔE = En − Eo, and E is the energy of each state, now calculated with the complete
force field. The ratio of a priori probabilities in Eq. (10) can be estimated from a sum of
Gaussian distributions over the Λ binding modes. Defining the linear array η = (η1, η2, η3,
η4, η5, η6) = (x, y, z, φ θ γ), the probability of generating a trial move within an element δη
centered at η given that a mode m has been selected, is

(11)

where gi are the normal distributions

(12)

and ηi,m and σi,m are the value of ηi and its standard deviation in mode m. The total
probability is
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(13)

where hm is the probability of selecting mode m. Introducing Eq. (12) into Eq. (13) yields

(14)

where  and , with

(15)

so the ratio of probabilities in Eq. (10) is given by

(16)

where κm can be adjusted on-the-fly through σi,m to control the acceptance rate per mode, if
needed; the same approach applies to hm and Jm, although the latter also accommodate
changes in the coordinates ηi,m of the mode as new structures are accepted. If σi,m and ηi,m
are kept fixed over the course of a simulation (i.e., fixed a priori probabilities), the biasing
function is non-adaptive; if σi,m and/or ηi,m change, the function is adaptive.

Screening of binding modes—The probability hm in Eq. (16) is defined over the
discrete set {sm}, and is chosen here as a Boltzmann-like distribution

(17)

where  and λ is a scaling factor discussed below. Energies are
measured with respect to the fully dissociated state, ΔEm = Em − E∞, where Em is the energy
of the complex in mode m now calculated with the complete force field. These energies are
calculated as canonical averages over short MC simulations of the complex in mode m,

, where  and Nm are the energies and the number of accepted
structures. The simulation is biased and non-adaptive, determined by hm = 1 and hk ≠ m = 0,
thus Eq. (16) is simplified to

(18)

with J given by

(19)
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where x is either o or n. The parameter λ ≥ 1 in Eq. (17) is used to smooth the distribution
{hm} over the set {sm}. This is a safeguard measure against limitations of the prescreening
protocol (including the definition of the norm) and the force field to properly identify
physically relevant first-encounter modes of association. Small errors in the estimation of
energies in Eq. (17) may eliminate modes (in practice, hm << 1) that are worth sampling, or
over emphasize sampling of less important modes, thus compromising the efficiency of the
method. This problem is alleviated by using λ > 1 (see Section IV), in a process akin to
high-temperature annealing.

Self-adaptive biased Monte Carlo—strict detailed balance is imposed by using Eq. (16)
in the acceptance criterion established by Eq. (10). In the self-adaptive biased sampling used
here both σi,m and ηi,m in Eq. (16) and Eq. (19) are allowed to change over the course of the
simulation. The probability distribution {hm} could also change to improve efficiency by
increasing/decreasing sampling of certain modes as the simulation progresses, but this
adaptation is not used here. An acceptance rate bm is calculated for each mode every 103

times the mode is selected, and σi,m is then scaled up or down to keep the acceptance rate of
that mode within a predetermined value. The same scaling factor applies to all the degrees of
freedom, except σφ,m and σθ,m. Each time a mode m is selected the coordinates ηi,m are
updated to the last accepted structure for that mode. This is accomplished in practice by
translating the center of mass and rotating the primary axis of inertia of protein 2 to the
corresponding values of the accepted structure; translations and rotations Δηi are then
measured with respect to the new mode coordinates ηi,m. If Δηi in an accepted move is larger
than 2σi for a given mode m, then σi,m is reset to its original value since it is possible that a
new local minimum has been identified.

IV. Results
Three binary complexes are chosen to illustrate the application of the method: Barnase/
barstar (1brs) has long been used in experimental and computational studies of protein
binding.55,69,70 The complex has been used here as a guide for model refinement. The other
complexes considered are: trypsin bound to a protein inhibitor (2ptc) and histidine-
containing phosphocarrier protein HPr (1poh). These complexes were chosen here because
they challenge different aspects of the method: in the bound state, a specificity-conferring
Lys residue (K15) in the ligand of 2ptc is buried into a narrow cavity of the protein, so the
complex provides a stringent test for the sampling method; 1poh has been shown to form
ultra-weak self-association, with negligible dimerization in solution, so the complex
provides a stringent test for the continuum model.

Figure 3 shows the electrostatic potential on the molecular surface of barnase and barstar,
calculated as standard solutions of the Poisson equation. Barnase (protein 1) has 27 local
maxima and 29 minima, and 36 non-polar centers, whereas barstar (protein 2) has 25
maxima and 23 minima, and 29 non-polar centers, yielding Ntot = 1346 initial (i, j) pairs to
be considered for optimization of e and N’tot = 1044 for h. For the other two complexes, Ntot
= 1548 (2ptc) and 480 (1poh), and N’tot = 988 (2ptc) and 676 (1poh). Figure 4 shows the
values of the potential (in Volts) at the maxima and minima; the values of | ϕ | in 1poh is
also shown for comparison. It is not possible to decide from these values alone which (i, j)
pairs are more likely to be involved in first encounters, so all the pairs should in principle be
considered in the optimization of the norms. To reduce the computational cost only the ten
highest maxima and the ten lowest minima in each protein are used in the optimization of e.
This simplification yields 200 (i, j) pairs; and for each of these pairs Nω = 24 initial
alignments are generated. Experiments have shown that electrostatics is the main force that
controls binding in the three complexes; hydrophobicity plays a role only in HPr. This
knowledge a priori allows a convenient simplification by omitting the optimization of h in
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1brs and 2ptc. This simplification applies only to the prescreening stage. The SCP model
does contain45 a simplified “hydrophobic term” (not discussed here; see Section V) which is
used in both the screening stage and in the full MC simulation. Thus, bypassing the
optimization of h in a particular system (here brbs and 2ptc) does not mean that hydrophobic
interactions are ignored; it only means that hydrophobicity does not determine the first
encounters. In contrast, for 1poh only non-polar patches with | ϕ |< 0.03 V (suggested by the
surface potentials of calcium-loaded calmodulin) are considered [cf. Fig. 4].

After norm optimization and clustering, a total of 218 binding modes are obtained for 1brs,
474 for 2ptc, and 243 (polar) and 123 (non-polar) for 1poh. The inset of Fig. 5a shows the
superposition of all the modes in 1brs, with barnase at the center. Two major first-contact
regions are apparent, each containing multiple orientations of barstar; the most populated
region is located in the vicinity of the native binding site of barnase. For the other two
complexes there are multiple binding regions surrounding the central protein 1, with the
most scattered distribution observed in 1poh (see below). Optimization of e took ~30–50
min per mode, depending on the complex; 90% of the CPU time was used to compute the
electrostatic component of the norm [first four terms of Eq. (7)] and the remainder 10% for
the calculation of S12. Optimization of h took ~30 min per node, but this can be reduced
substantially by decreasing the number of points L used to define the area of the patch in Eq.
(8) (here L ~ 80–100). The optimization was performed in Matlab using standard functions
from the statistic toolbox, and on a single 2.8 GHz Intel X5660 processor with 24 GB
memory. The code was not parallelized.

Screening of the prescreened modes was performed with biased non-adaptive MC (103

steps) at 25 °C (for 1brs and 2ptc) and 35 °C (1poh), using σx = σy = σz = 0.5 Å; σφ = σθ =
90°, and σγ = 2.5°. The united-atom (param19) representation of the CHARMM force
field48 was used, with the SCP model16 implemented in the version c35 of the CHARMM
program. No cutoffs were applied to the non-bonded interactions in order to account for
long-range effects. Figure 5 (left panels) shows the probability distributions hm of
prescreened modes {m} using a smoothing parameter λ = 25; only one mode stands out in
1brs, with a weight hm’ ≈ 0.08. This mode is very close to the native complex and has a Cα-
rmsd of ~1.9 Å with respect to the crystal structure (Fig. 5b; blue). This shows that
electrostatic pre-screening followed by screening with the complete force field is sufficient
to identify a near-native conformation in the barnase/barstar complex. This is probably the
case for other systems driven to association by strong electrostatic interactions. The hm
distributions in the other complexes are qualitatively different (Figs. 5c and 5e): for 2ptc the
closest prescreened mode to the native complex has a Cα-rmsd of ~5 Å (Fig. 5d), and
corresponds to the fifth highest weight hm. As in 1brs, this mode is a good candidate for first
contact since K15 in the ligand is near the pocket in trypsin and oriented towards it (Fig. 5d,
right). For 1poh several electrostatic modes also have similar weights (Fig. 5e; black), and
the highest ten modes are shown in Fig. 5f (left). These modes are clustered close to residues
E5, E25, E32 and S46, which were used as labels in a recent NMR study11 of ultra-weak
self-association of HPr. The weights of the hydrophobic modes are also shown for
comparison (Fig. 5e; red); the ten modes with the highest weights are displayed in Fig. 5f
(right). Electrostatic and hydrophobic modes plotted in Fig. 5e are normalized independently
for clarity. The scattered distribution of both types of modes (Fig. 5f) and the similarity of
weights (Fig. 5e) are consistent with multiple first-encounters between the proteins and may
reflect the non-specific nature of the association. The inset to Fig. 5e shows the energies
ΔEm of the modes [in Eq. (17)]. Despite the substantial energy overlap between electrostatic
and hydrophobic modes it is apparent that first encounters in HPr are driven mainly by
electrostatics.
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The complete sets {hm} in Fig. 5 were used to create the initial spatial distributions for the
self-adaptive MC sampling. Simulations were performed at the same temperature used for
screening, and consisted of 106 steps with σx = σy = σz = 2.5 Å; σφ = σθ = 90° and σγ = 20°.
These values were chosen based on a number of combinations tested. Changing these values
has no major effect in the results discussed below, but important variations in efficiency
were observed due to convergence problems. In these simulations only ηi,m are adapted,
while σi,m remains fixed regardless of the acceptance rate per mode. Simulations were
performed in a single processor with a non-parallelized version of the SCP model, and took
~24−48 CPU hours, depending on the complex. The parallel version of the SCP model
scales well up to 24 processors, and can reduce the simulation time one order of magnitude.
For 1brs the native complex (Fig. 5b; green) was identified within a few thousands steps.
Because there are 234 prescreened modes, the overall acceptance rate is small since all the
modes are selected for trial moves, albeit with probabilities determined by hm. The
conformational distribution obtained upon convergence is very narrowly centered in a single
mode identified as native. For 2ptc convergence takes much longer but the native complex
was also identified correctly. The dissociation energy of the native complex is estimated at
~5.5 kcal/mol; and the association is thus strong and specific. For 1poh a single mode is also
obtained (Fig. 6), but the distribution of accepted structures is much broader than in the
other two complexes, which is consistent with a shallower energy surface. The predicted
native complex is quite symmetrical, with residues E32 and S46 at the protein/protein
interface. Dissociation from this structure requires a very small energy, only ~1.3 kcal/mol,
but this is still too large and the presence of stable homodimers cannot be ruled out at 35 °C.
Experiments carried out at this temperature indicate that HPr form multiple transient
associations, but no specific homo-dimerization.11 There are several possible explanations
for this discrepancy that warrant further scrutiny: i) backbone flexibility may need to be
included to obtain a more accurate canonical distribution. Given the transient nature of the
association it is unlikely that induced fit is involved, so conformational selection may be a
more important mechanism in this case (Section V); ii) current force fields are not yet
accurate enough to discriminate ultra-weak modes, although progress being made, especially
in the treatment of non-bonded terms (e.g., inclusion of polarizability), as these are most
relevant in protein-protein interactions. Improvements and careful optimization of the
solvent model, especially the treatment of the aqueous interface is an essential component
and must be pursued simultaneously; iii) specific water-mediated interactions at the protein
interfaces may also be important, and a continuum model cannot represent them properly
unless some degree of granularity is introduced. In addition, liquid-structure forces (SIF) are
non-pairwise additive and costly to compute. An algorithm has been reported to include SIF
in a continuum model for use in Langevin dynamics47; iv) changes in protonation states
upon pKa shifts have been ignored and could change the interaction energy landscape; a
primitive version of the SCP model has been used to predict pH-dependent properties in
proteins71 and is well suited for on-the-fly assignment of protonation states, at the expense
of CPU time. These limitations apply to all protein-protein interactions but are more
problematic when dealing with weak and ultra-weak associations. These interactions thus
provide a stringent benchmark for further development.

Overlooking potentially relevant modes during prescreening and/or screening (possibly due
to limitations in the norm optimization protocol, the norm itself, or the force field) is of
concern since success of the method hinges on having identified a mode with sufficiently
large probability to be selected during sampling. To test the robustness of the method to
changes in the hm distribution, the main mode m’ in 1rbs was removed from the set (in
practice, hm’ = 0). In this case the simulation takes much longer to converge, but the native
complex is also identified within a few hundred thousand steps. In this case a secondary
mode with a small weight slowly moves towards the native conformation during the self-
adaptive process and takes over the local distribution left unpopulated when m’ was
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removed. This drift of a distant mode towards the native mode is possible because several
prescreened modes m ≠ m’ have Cα-rmsd in the ~2 4 Å range with respect to the crystal
structure. Therefore, given the chance to be selected they make important contributions to
the acceptance rate once m’ is removed. This also highlights the importance of smoothing
hm through λ.

V. Discussion
Weak and ultra-weak interactions can play a role in protein recognition and drive
spontaneous self-assembly and aggregation of larger multimeric complexes, such as crystals,
amyloid fibrils, and virus capsids. These interactions are difficult to detect experimentally.
They also present a major challenge to the Hamiltonian because effects that can be ignored
or treated in simplified ways in small systems at infinite dilution now require adequate
treatment and optimization. These include the effects of interfaces, and long-range
electrostatic and non-electrostatic effects of water exclusion. The problem posed by
interfaces is complex and multifaceted, involving the dielectric19,20,47,72 and the
structural47,73 response of the liquid, and its dynamic19,20 and entropic17 contributions. In
particular, the entropy of an aqueous interface is difficult to capture in a mean field
approximation. The entropy can be divided into an orientational and a translational
contribution. The orientational component is related to the static dielectric response of the
interface, and an algorithm has been proposed to estimate it self-consistently in a continuum
approximation.72 The translational behavior is more complicated and is related to the
mobility of water in the hydration shells. Recent simulations have shown that water in the
second shell of a DNA molecule is more mobile than water in either the first shell or the
bulk phase.17 Because of the substantial changes in surface hydration upon protein
association or dissociation, different hydration shells may contribute differently to the free
energy of binding. These effects need additional studies, especially in large complexes, and
may eventually require proper implementation in a continuum model. The SCP model
partially contains both components of the entropy, which is reflected in the sigmoidal shape
of the screening functions D and in the mean field effects of SIF through R. In contrast to the
entropy of water, the entropy of the molecular system under consideration can be calculated
directly from the statistical distributions obtained from the biased sampling; backbone
flexibility may introduce practical but not conceptual complications. Methods also exist to
estimate the vibrational entropy contributions.

Although short-range electrostatic effects of water-exclusion [represented in the self-energy
term of Eq. (1) through the conformation-dependence of R given by Eq. (4)] make important
contributions to the binding energy, long-range corrections [represented in by both the
interaction and the self-energy terms through the conformation-dependence of D’s given by
Eqs. (2) and (3)] cannot be ignored. The problem posed by long-range bulk-water
electrostatics in modeling hydration forces has been discussed.74 These effects become
increasingly important as the size of the system increases, e.g., during aggregation or self-
assembly, or in crowded environments. Ignoring these corrections introduces an error of
~3.5 kcal/mol (~20%) in the binding enthalpy of the barnase/barstar complex as estimated
with the SCP model. Errors of this magnitude can be ignored when predicting specific
(usually strong) binding modes, but are clearly unacceptable in thermodynamic calculations
and for prediction of weak association for which chemical accuracy is ultimately needed. It
has been shown here that long-range electrostatics can be fine-tuned to provide a better
estimate of binding enthalpies. The balance between interaction and self-energy terms in Eq.
(1) is critical to reproduce the correct binding energy because they oppose each other. Long-
range electrostatic contributions in real systems may decay more rapidly or more slowly
than the exponential decays modeled by Eqs. (2) and (3), and systematic calculations in
systems of different sizes should be performed to refine the model.
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There is experimental evidence that dispersion forces make important contributions to
protein-ligand binding enthalpy.58 This has long been recognized59 and attempts have been
made to include a dispersion term in implicit solvent models. Except in the case of purely
non-polar solutes such corrections can be neglected since even in small polar or charged
molecules other effects at the aqueous interface (e.g., the dielectric response of the liquid
and liquid-structure forces) play a more important role.75 In larger systems/interfaces,
however, their contribution can be substantial and no longer be ignored. Thus, both long-
range electrostatics and dispersion contribute to the cohesive energy of a macromolecular
complex. The simulations discussed in Section II.2 support these findings. Non-electrostatic
effects of water exclusion may actually play an important role in weak and ultra-weak
association.

Developments of the SCP model have hitherto focused on electrostatics and liquid-structure
forces at protein/water interfaces. These are the most important effects in a large class of
biological systems, including proteins and nucleic acids, ions, osmolytes and cryoprotectants
(see review in32,75). In other bioactive macromolecules (e.g., Ca2+-loaded Calmodulin used
in Section III) hydrophobic interactions are known to be a key feature of their function. A
more advanced treatment of hydrophobicity in the SCP model may thus be desirable.
However, modeling hydrophobic forces in molecules of arbitrary shapes and morphologies
is difficult76–80 and has not yet been addressed in a practical manner. In small non-polar
molecules improvements have been reported with rather minor changes to the commonly
used solvent-accessible surface-area model.81–84 It is unclear whether more sophisticated
treatments are needed in real proteins (generally characterized by sparse distributions of
relatively small hydrophobic patches punctuated by regions of high polarity and local
charge).32 Recent dynamics simulations of small amphiphilic molecules have provided
insight into the role of the micro-complexity of water on the hydrophobic effect in systems
that more closely resemble the heterogeneity of real protein surfaces.85 Simulations have
also shown that such surfaces display a behavior in between that of an idealized
hydrophobic surface (a common theoretical construct) and one that is strongly hydrophilic.86

Unlike protein electrostatics there is a paucity of useful experimental information that can be
used to validate hydrophobic models, so carefully-designed simulations may ultimately be
needed to advance the field.

A method has been described to construct a biasing function for efficient configurational
bias simulations that allows detection of weak and ultra-weak binding modes and
populations. The method has been tested in three binary complexes, but can be extended to
multiprotein systems provided that complexation occurs through a succession of binary
reactions. This extension is required to simulate crowded environments or subcellular
processes where multimeric complexes (averaging four or more units per complex2,3) are
common. In a recent assessment87 of experimental methods aimed at predicting protein-
protein binding in a three-component systems only nine out of twelve participant groups
were able to conclude that barnase and BiNase2 compete for binding to barstar, so that the
formation of a ternary complex is not possible. Multi-component systems present a greater
challenge, especially if some of the proteins interact weakly or no-specifically. Therefore,
having the capability to explore efficiently (that is, rapidly and with statistical significance)
the spatial distribution of many proteins simultaneously is desirable. The biasing function
proposed here allows mixing large and local changes in the protein spatial distributions,
which enhances sampling of microstates that may be overlooked with non-biased sampling.
The method can also be used to identify regions at a protein surface that are most likely to
bind ions and cosolutes since they may be attracted to multiple sites. These molecules affect
almost all macromolecular properties (including protein denaturation, stabilization,
aggregation, and dissociation), and can interact specifically and non-specifically with the
proteins.

Cardone et al. Page 16

J Phys Chem B. Author manuscript; available in PMC 2014 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It has been assumed that preferential encounters in solution are driven by electrostatic and
hydrophobic forces, and the norms e and h defined in Eqs. (7) and (8) reflect this
assumption. The functional forms of the norms are adequate simplification of the physical
effects that each intends to describe, and designed specifically for computational efficiency.
Electrostatic complementarity has long been used as a strategy to predict specific binding
modes,55 but this approach alone is insufficient to predict weaker association,88 a problem
compounded in the case of non-specific and multiple binding modes. The approach has been
extended and used here only to identify first-encounter modes. The binding modes obtained
from norm optimization determine the spatial distribution from which the complexes evolve.
The final mode (or modes) of association are obtained from the canonical distribution upon
convergence of the self-adaptive biased sampling.

Proteins in aqueous solution display varying degrees of backbone flexibility. Statistics from
the PDB have revealed that many proteins undergo only small changes in their overall fold
upon binding (typically ~1 Å in Cα-rmsd) as their interfaces are largely pre-formed.88 The
rigid-backbone approximation is thus reasonable in many cases and has been used
successfully to predict the structure of unknown complexes.89 This approximation is usually
the first stage in almost all docking algorithms,90–92 and good estimates of binding modes in
this initial stage is critical. The rigid-backbone approximation might actually suffice in the
case of weak or ultra-weak binding because these interactions are short-lived, possibly
lasting less than the time-scale necessary to induce backbone conformational changes
(although this is a conjecture that needs experimental corroboration). Important exceptions
however exist since flexibility is at the core of protein function. For example, trypsin-TPI
undergoes rigid-backbone association, but the closely-related trypsinogen-TPI does not. In
general, oligomeric proteins and antigen-antibody complexes tend to challenge this
assumption. Moreover, some DNA- and RNA-protein complexes are known to undergo co-
folding during recognition and binding.93 Even proteins typically thought of as rigid in
solution undergo localized conformational changes, usually in unstructured regions such as
loops. A recent study of the dynamics of ubiquitin94 suggests that the forty-plus crystal
structures of this rather rigid protein in the PDB are likely conformers pre-selected by the
ligand. Upon association of a given conformer there appear to be only small rearrangements
of the backbone and the side chains. This example illustrates a general feature of
macromolecular association, namely, the coexistence of induced fit and conformational
selection. The method presented in this paper can be adapted to incorporate both. Because of
the transient nature of weak and ultra-weak binding conformational selection is probably
more important than induced fit. Induced fit is most robustly addressed molecular dynamic
simulations using explicit water or by Langevin dynamics with the SCP model for
consistency.95 In this brute-force approach each binding mode identified by the method is
used as a starting structure in the dynamics. An alternative is to allow backbone
conformational changes over the course of the MC simulation. This is most efficiently
carried out in the context of scaled collective variables,96,97 which allows concerted
movements of the backbone dihedral angles to improve the acceptance rate. This method has
been used previously to study unstructured segments in globular proteins98 and
transmembrane receptors.42 A priori knowledge of flexible segments, e.g., from
crystallographic temperature factors or principal component analysis of a dynamic
trajectory,94,99 can reduce the computational cost by restricting collective movements to
those regions only.98 On the other hand, conformational selection can be incorporated in a
straightforward manner with no additional modifications of the method presented in this
paper. However, this requires identifying structural families of each molecule in solution
prior to binding. Each conformation can then be treated independently. Induced fit can in
turn be introduced in each sub-system as described. Identifying structural families in
solution is not straightforward, and different methods should probably be used depending on
the system size. Configurational bias MC simulations (e.g., conformational memories41) can
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efficiently identify multiple conformers in peptides41,44 and is probably the preferred
method for small systems.
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Figure 1.
Behavior of (a) the effective radius R, (b) the screening parameter α, and (c, d) the self-
energy ΔG of a point charge q = +1 close to a planar aqueous interface, as described by the
SCP continuum solvent model [Eqs. (1–4)]. The interface is located at x = 0, with water
filling the space x < 0 and an idealized protein occupying the region x > 0. (a) From Eq. (4),
using a = Rw + 1.5 Å (thick lines) and a = Rw + 0.5 Å (thin), for τ = 3.125 Å (solid) and τ =
1.0 Å (dashed). The parameter a determines the total change in effective radius between
bulk water (x → −∞) and bulk protein (complete dehydration, x → ∞); τ determines the
rate of change as the particle crosses the interface. (b) From Eq. (2), using σ = 15 Å (thick);
σ = 75 Å (thin). (c) From Eq. (1) with σ = 75 Å and effective radii plotted in panel (a). (d)
Same as in (c), using σ = 15 Å. The protein, which determines the planar aqueous interface,
was modeled as two superimposed three-dimensional cubic lattices, one representing the
positions of Cα atoms in Eq. (2), with a side length of 7 Å; and the other one representing
the position of all atoms in Eq. (4), with a side length of 2 Å (assuming an average volume
of ~180 Å3 per amino acid,16 and ~20 atoms per amino acid).
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Figure 2.
Non-bonded energy decomposition of the barnase-barstar complex during dissociation by
heating, calculated with the SCP continuum solvent model as implemented in the
CHARMM program (version c35b4), with (a) and without (b) long-range water-exclusion
effects: protein-protein van der Waals energy (squares), electrostatic interaction energy
[black circles; first term in Eq. (1)], and self-energy [open circles; second term in Eq. (1)].
The total electrostatic energy Ee [Eq. (1)] of the system is also shown (triangles) and
determines the dissociation enthalpy. The reaction coordinate is the Cα-rmsd with respect to
the crystal structure of the complex (PDB 1brs). The limits σ → ∞ and σ’ → ∞ in Eqs. (2)
and (3) lead to over-stabilization of the complex by ~3.5 kcal/mol. Optimized values σ = 59
Å and σ’ = 37 Å lead to a dissociation energy equal to the measured ΔHb = 19.3 kcal/mol of
the complex.
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Figure 3.
Electrostatic potential (upper panel) on the molecular surface of barnase (left) and barstar
(right) calculated from conventional numerical solutions of the Poisson equation (εp = 2; εw
= 78). Positions of maxima (blue) and minima (red) and non-polar centers (green) are
calculated from Eq. (5) and (6) (lower panel).
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Figure 4.
Values (in Volt) of the maxima and minima of the surface potentials ϕ in the three systems
studied (chain A in 1brs is barnase and trypsin in 2ptc). The absolute values ψ = | ϕ | of the
surface potential at the non-polar centers in 1poh are also shown.
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Figure 5.
(a) Probability distribution of prescreened modes of the barnase/barstar complex calculated
from Eq. (17) with λ = 25. The mode m’ with the highest weight hm’ is near-native. Inset:
prescreened modes of barstar (atom representation; blue) and barnase (ribbon; red) obtained
upon optimization of the electrostatic norm e [Eq. (7)]. These putative electrostatic-driven
first-contact modes determine the biasing function for the self-adaptive conformational bias
MC sampling. (b): Mode m’ (blue) and crystal structure (green) of barnase bound to barstar.
(c) Same as in (a) for 2ptc. (d) Trypsin/inhibitor complex (2ptc): crystal structure (left) and
prescreened mode m’ with the smallest Cα-rmsd with respect to the crystal structure (right);
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m’ has the fifth highest weight in (c); K15 of the inhibitor protein is shown (purple). (e):
Same as in (a) 1poh (black); probability distribution obtained upon optimization of the
hydrophobic norm h [Eq. (8)] is also shown (red). Inset: energy of pre-screened modes
(polar: solid circles; non-polar: open circles); (f) Histidine-containing phosphocarrier protein
HPr (1poh): conformations of the ten highest hm modes obtained upon optimization of e
(electrostatic modes; left) and h (hydrophobic modes; right) superimposed to a central HPr
protein; amino acids used as labels in a recent NMR study of ultra-weak self-association are
shown.
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Figure 6.
Symmetrical homodimer (representative member of the ensemble) obtained upon
convergence of the self-adaptive biased MC simulation. The binding energy of this state is
estimated at ~1.3 kcal/mol.
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