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Abstract

We have developed a “postprocessing” method for modeling biochemical processes such as 

protein folding under crowded conditions. In contrast to the direct simulation approach, in which 

the protein undergoing folding is simulated along with crowders, the postprocessing method 

requires only the folding simulation without crowders. The influence of the crowders is then 

obtained by taking conformations from the crowder-free simulation and calculating the free 

energies of transferring to the crowders. This postprocessing yields the folding free energy surface 

of protein under crowding. Here the postprocessing results for the folding of three small proteins 

under “repulsive” crowding are validated by those obtained previously by the direct simulation 

approach. This validation confirms the accuracy of the postprocessing approach and highlights its 

distinct advantages in modeling biochemical processes under cell-like crowded conditions, such as 

enabling an atomistic representation of the test proteins.
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1. Introduction

It is now widely recognized that the crowded conditions found in cellular environments can 

significantly affect the thermodynamic and kinetic properties of biochemical processes such 

as protein folding [1]. Experimental [2-6] and computational studies [7-9] have begun to 

move beyond a qualitative understanding [10-12] of crowding effects and are aiming to 

probe quantitative questions regarding the magnitudes of such effects and the nature of the 

interactions between test proteins and crowders. We have developed a computational 

approach called postprocessing that opens the door to making quantitative predictions on 

crowding effects [8]. In contrast to the direct simulation approach [7, 9], in which one 

simulates the folding process in the presence of crowders and has to resort to a coarse-

grained representation of the test protein, the postprocessing approach requires only the 
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simulation in the absence of crowders and thereby enables an atomistic representation of the 

test protein. Here we validate the postprocessing approach by showing that the folding free 

energy surfaces of three small proteins under “repulsive” crowding, obtained previously by 

Mittal and Best (MB hereafter) [9] using direct simulation, are accurately predicted by 

postprocessing the crowder-free simulation.

In the postprocessing approach, one captures the effects of crowding by calculating how 

much the free energy surface of a biochemical process such as folding is changed by the 

crowders [1, 8, 13]. This change is simply the free energy of transferring the test protein in a 

given state (or microstate) from a dilute solution (modeled by a crowder-free simulation) to a 

crowded solution. The transfer free energy, Δμ, is given by

exp − Δμ kBT = exp − Uint X, R, Ω kBT 0; crowd (1)

where Uint(X, R, Ω) is the effective interaction energy between the test protein and the 

crowders when the former has conformation X, position R, and orientation Ω; kB is 

Boltzmann's constant; T is the absolute temperature; ⋯ 0; crowd means averaging over the 

conformation, position, and orientation of the test protein and over the configuration of the 

crowders; and the subscript “0” signifies that the protein conformations are those sampled in 

the absence of crowders. For each protein conformation, the averaging over protein position 

and orientation and crowder configuration can be carried out first, leading to

exp − Δμ kBT = exp − Gc X kBT 0 (2)

Gc(X) can be viewed as the transfer free energy for the protein in conformation X. The 

postprocessing calculation is exact if the conformational space of the protein is exhaustively 

sampled so as to cover the important conformational region in the presence of crowders.

In a previous study [14], we have shown that the effects of crowding on the flap open-to-

closed population ratio of the HIV-1 protease dimer predicted by the postprocessing 

approach from the crowder-free simulation agree well with those obtained from direct 

simulations in the presence of crowders [15]. Of course the conformational difference 

between the flap open and flap closed states is somewhat limited. Here we present a much 

more stringent validation of the postprocessing approach. We show that the entire folding 

free energy surfaces of three small proteins (figure 1), encompassing the fully unfolded state 

and the fully folded state, obtained by MB in direct simulations with crowders, are well 

predicted by postprocessing the crowder-free simulation. The validation also highlights the 

distinct advantages of the postprocessing approach, including superior statistics and the 

ability to more realistically model the test proteins, the crowders, and their interactions.
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2. Computational details

2.1 Calculation of F(Q) from replica-exchange umbrella sampling

MB obtained the folding free energy function, F(Q), along the fraction, Q, of native contacts 

from replica-exchange simulations with umbrella sampling. F(Q) was calculated by the 

weighted histogram analysis method (WHAM) [16]. Below we extend WHAM to account 

for the effects of crowding. In preparation, we briefly summarize the original WHAM 

algorithm for a set of simulations (referred to by index i) applying biasing potentials Vi(Q) 

that constrain the protein to different windows along Q. First consider the case where all the 

simulations are carried out at the same temperature T; for notational simplicity, we will now 

denote 1/kBT as β. Suppose that ni snapshots (referred to by index j) are sampled from 

simulation i, and from which a histogram pi(Ql) in different bins, denoted by Ql, are 

obtained:

pi Ql =
∑ j = 1

ni H Qi j ∣ Ql
ni

(3)

where Qij is the value of Q in snapshot j of simulation i, and H(Qij|Ql) is 1 of Qij is in bin Ql 

and 0 otherwise. By removing the biasing potential Vi(Q) and introducing an appropriate 

shift Ai, one obtains the equilibrium probability density:

P Ql = pi Ql exp β V i Ql − Ai (4)

Better statistics are achieved when the data from different simulations are combined. To that 

end one rearranges equation (4) and then sums over i, leading to

P Ql =
∑i ∑ j = 1

ni H Qi j ∣ Ql
∑ini exp − β V i Ql − Ai

(5)

The shift Ai can be obtained from equation (4) by using the condition that the sum of pi(Ql) 

over Ql is 1 (see equation (3)):

exp − βAi = ∑
Ql

P Ql exp − βV i Ql (6)

An implementation of the WHAM involves iterating equations (5) and (6) to convergence. 

Finally the free energy function is given by

exp − βF Q = P Q (7)
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Now consider the case where each simulation is at a different temperature Ti 

(correspondingly 1/kBTi = βi). The goal again is to calculate the equilibrium probability 

density P(Ql) at temperature T. The difference of the simulation temperature Ti from the 

desired temperature T amounts to a biasing factor exp[–(β – βi)Uij], where Uij is the energy 

of the protein in snapshot j of simulation i [17]. Defining

mi = ∑
j = 1

ni
exp − β − βi Ui j (8)

and accounting for the biasing factor, one finds the counterpart of pi(Ql) as

qi Ql =
∑ j = 1

ni H Qi j ∣ Ql exp − β − βi Ui j
mi

(9)

and now

P Ql = qi Ql exp βi V i Ql − Ai (10)

Equations (5) and (6) become

P Ql =
∑i ∑ j = 1

ni H Qi j ∣ Ql exp − β − βi Ui j
∑imiexp − βi V i Ql − Ai

(11)

exp − βiAi = ∑
Ql

P Ql exp − βiV i Ql (12)

Replica exchange simulations generate equilibrium distributions at multiple temperatures. 

The snapshots sampled from such simulations are equivalent to those in the case just 

considered. Iteration of equations (11) and (12) thus yields the equilibrium probability 

density and hence the free energy function at the desired temperature. MB carried out the 

simulations both in the absence and in the presence of crowders. The difference between the 

resulting free energy functions, F(Q) and Fc(Q), indicates the effects of crowding.

2.2 Calculation of F c (Q) by postprocessing 

The goal of postprocessing is to generate the equilibrium probability density Pc(Q) and 

hence the free energy function Fc(Q) under crowding from the crowder-free simulations. For 

each crowder-free simulation, introducing an additional biasing factor exo[–βGc(Xij)] for 

each sampled conformation Xij will result in the histogram under crowding. Defining
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vi = ∑
j = 1

ni
exp − β − βi Ui j exp − βGc Xi j (13)

we find the histogram under crowding as

ρi Ql =
∑ j = 1

ni H Qi j ∣ Ql exp − β − βi Ui j exp − βGc Xi j
vi

(14)

Correspondingly the equilibrium probability density under crowding is

Pc Ql = ρi Ql exp βi V i Ql − Ai (15)

In analogy to equations (11) and (12) we now have

Pc Ql
∑i ∑ j = 1

ni H Qi j ∣ Ql exp − β − βi Ui j exp − βGc Xi j
∑iviexp − βi V i Ql − Ai

(16)

exp − βiAi = ∑
Ql

Pc Ql exp − βiV i Ql (17)

2.3 Calculation of exp[–βGc(Xij)]

In MB's simulations, the test protein had purely repulsive interactions with spherical 

crowders. If we further approximate this interaction energy as infinite when the test protein 

clashes with a crowder and 0 when no clash occurs with any crowder, then the Boltzmann 

factor exp[–Uint(X, R, Ω)/kBT] is either 0 or 1. Correspondingly exp[–Gc(X)kB/kBT] is the 

fraction of clash-free, or allowed attempts to randomly insert the test protein with 

conformation X into the crowders. We designed an algorithm for calculating the allowed 

fraction of insertion by mimicking the fictitious insertion process [8]. Subsequently we 

developed a semi-analytical method, referred to as the generalized fundamental measure 

theory (GFMT) [18], to substantially speed up the calculation. The GFMT was crucial for 

the present study since postprocessing calculations on a large number of protein 

conformations were required.

For a test protein in conformation X, analogous to the original fundamental measure theory 

[19, 20], the GFMT predicts the transfer free energy Gc(X) as
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Gc X = Πcvp + γcsp + κclp − kBT ln 1 − ϕ (18)

where ϕ is the volume fraction of the crowders; Πc, γc, and κc are the osmotic pressure, 

surface tension, and bending rigidity, respectively, of the crowder suspension; and vp, sp, and 

lp are the volume, surface area, and linear size, respectively, of the test protein. Equation (19) 

equates the transfer free energy to the work required to create a cavity in the crowder 

suspension to accommodate a test particle. The first term on the right-hand side is the work 

for creating the cavity volume, the second term is work for creating the interface area 

between the cavity and the crowder suspension, and the third term accounts for the curvature 

of this interface. The original fundamental measure theory [19, 20] was restricted to hard 

convex test particles. Our generalization allows atomistic test proteins to be treated.

The generalization involved appropriately defining the geometric quantities vp, sp, and lp for 

an atomistic test protein. The calculation of vp and sp was based on the crowder-excluded 

surface, which depends on the crowder radius. This surface, when the probe radius is 1.4 Å 

(modeling a water molecule), is more commonly referred to as the molecular surface. The 

calculation of lp involved a surface that is slightly inflated from the crowder-excluded 

surface. This inflated surface is composed of all points where rays emanating from the 

center of the protein first hit the closest approaching crowders around the protein; lp was 

calculated as the radius of gyration for these hit points.

Πc, γc, and κc are crowder-only quantities. Suppose that the crowder suspension consists of 

multiple species, with number density cα, linear size lα, surface area sα, and volume vα for 

species α. Note that

ϕ = ∑
α

cαvα (19)

Let the total number density, the number-averaged linear size and surface area of the 

crowders, be c, l̄c and s̄c, respectively:

c = ∑
α

cα (20)

l‒c = ∑
α

cαlα c (21)

s‒c = ∑
α

cαsα c (22)
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Then

βΠc = Y + l‒cs
‒

cY
2 + s‒c

3Y3 12π (23)

βγc = l‒cY + s‒c
2Y2 8π (24)

βκc = s‒cY (25)

where Y = c/(1 – ϕ).

The GFMT implemented for proteins represented at the all-atom level closely reproduced 

results obtained by the insertion algorithm for the effects of crowding on folding and binding 

free energies [18]. Here (as done previously [14]), for the purpose of validating the 

postprocessing approach against direct simulations, we kept MB's coarse-grained 

representation of one bead per residue for the three test proteins. In this representation, 

proposed by Karanicolas and Brooks [21], the beads are centered at the Cα atoms and have 

radii of 4.0 ± 0.8 Å; the interactions between residues in contact in the native structure are 

modeled as attractive and any other residue-residue contacts formed during conformational 

sampling are repulsive. MB found that this representation resulted in two-state folding 

behavior.

The postprocessing predictions involved calculating vp, sp, and lp at a given crowder radius 

for each protein conformation sampled in a crowder-free simulation. Our computer code for 

generating the crowder-excluded surface (to calculate vp and sp) and inflated surface (to 

calculate lp) was applied previously to proteins represented as all atoms with van der Waals 

radii [18]. This code was used here for the three proteins represented as Cα beads with 

enlarged radii.

3. Results

The three small proteins studied by MB are prb, protein G, and TNfn3, with 47, 56, and 90 

residues respectively (figure 1). The 100 × 100 × 100 Å3 simulation box contained a test 

protein without or with various numbers (Nc) of spherical crowders (radius: Rc). The 

interactions between the Cα beads of the protein and the crowders were purely repulsive. 

The nominal volume fraction, ϕ0, of the crowders equals 4πNcRc
3 3 × 106 . Below we 

compare their simulation results for Fc(Q) against those predicted by the postprocessing 

approach, which uses only the simulations without crowders. We also compare the resulting 

effects of crowding on the folding free energy and on the folding rate constant.
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3.1 Folding free energy function under crowding

We first made the postprocessing calculations for Fc(Q) by assuming ϕ0 as the actual 

crowder volume fraction ϕ. The results generally show reasonable agreement with MB's 

direct simulation results, but as illustrated in figure 2a for protein G in the presence of 8 Å 

crowders, there is a systematic underestimation of crowding effects.

We then realized that the simulation system has a small, finite size. The test protein presents 

a volume that is inaccessible to the crowders; the actual volume fraction of the crowders 

around the test protein is thus higher than that (i.e., ϕ0) calculated by assuming the absence 

of the test protein. We thus re-calculated ϕ by carving out from the total volume the region in 

and around the test protein inaccessible to each crowder (figure 3). The inaccessible volume 

vinac, could be calculated by rolling around the protein a spherical probe with the crowder 

radius Rc, or could be estimated by Steiner's formula [22]

vinac = vp + Rcsp + lpsc + vc (26)

where sc = 4πRc
2 and vc = 4πRc

3 3, respectively, are the surface area and volume of the 

spherical probe. We found that these two ways gave very similar results for vinac and all the 

data presented below are by using equation (26). The correction in ϕ brings the 

postprocessing predictions into close agreement with MB's direct simulation results for 

Fc(Q), as illustrated in figure 2b for protein G interacting with 8 Å crowders.

Note that calculating the transfer free energy Gc(X) required for predicting Fc(Q) amounts to 

inserting a fictitious test protein into the crowders around the real test protein (figure 3). The 

above correction for the finite size of the simulation system by carving out the region in and 

around the real test protein inaccessible to the crowders could result in overestimation of the 

crowding effect, since, when inserting the fictitious test protein, the inaccessible volume 

around the real test protein and the inaccessible volume around a crowder can overlap. This 

overlap volume is effectively counted twice in the above correction, once in calculating ϕ, 

and a second time when testing whether an insertion attempt is allowed. The overlap volume 

increases with increasing sizes of the test protein and the crowders. The resulting 

overestimation of the crowding effect was significant only for protein G interacting with 16 

Å crowders and for TNfn3 interacting with 16 Å or 20 Å crowders.

A better correction for the finite size of the simulation system is to treat the insertion of a 

fictitious test protein into the crowders around the real test protein as insertion into the 

mixture of the real test protein and the crowders (figure 3). With this treatment, the 

postprocessing predictions for Fc(Q) are in good agreement with MB's direct simulation 

results for all the three proteins interacting with all the different sized crowders. The results 

for protein G interacting with 8 Å crowders shown in figure 2c are representative of the 

extent of the agreement.
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3.2 Effect of crowding on folding stability

As figure 2 shows, the free energy functions and F(Q) and Fc(Q) define two basins, one for 

the unfolded state (with free energy minimum at Q ≡ QU~0.1), and the other for the native 

state (with free energy minimum at Q ≡ QN ~ 0.9). The folding stability is measured by the 

free energy difference, ΔFN–U, which can be calculated from the free energy functions F(Q) 

as

ΔFN − U = − kBT ln ∫
0

Q‡
exp − βF Q dQ ∫

Q‡
1
exp − βF Q dQ (27)

where Q‡, with a value ~ 0.5, denotes the location of the free energy maximum separating 

the two stable states. An analogous free energy difference can be calculated for the situation 

under crowding. In figure 4 we compare the postprocessing predictions and MB's direct 

simulation results for the change in the free energy difference by crowding, ΔΔN–U, for the 

three proteins under various levels of crowding. It can be seen that, after correcting for the 

finite size of the simulation system, there is good agreement between postprocessing and 

direct simulation.

Some of the direct simulation results are apparently noisy, such as those for TNfn3 in the 

presence of 12 Å crowders at five ϕ0 values. The noisy data can be attributed to the small 

number of crowders included in the simulations. For TNfn3 in the presence of 20 Å 

crowders, there were only 4 to 10 crowders in the simulation box. In contrast, in the 

postprocessing approach, the test protein fictitiously probes an essentially infinite 

suspension of crowders. The resulting better statistics yield the smooth dependences of 

ΔΔFN–U on ϕ0 shown in figure 4.

3.3 Effect of crowding on folding kinetics

The rate constant for the transition from the unfolded state to the native state can be 

calculated according to Kramers’ theory [23]:

kf = 1 ∫
0

Q‡
exp − βF Q dQ∫

QU

QN
D Q −1exp βF Q dQ (28)

where D(Q) is the effective diffusion coefficient along Q. The folding rate constant under 

crowding, kfc, can be similarly calculated. If the crowding does not affect D(Q), the we have

kfc
kf

=
∫ 0

Q‡
exp − βF Q dQ∫ QU

QNexp βF Q dQ

∫ 0
Q‡

exp − βFc Q dQ∫ QU

QNexp βFc Q dQ
(29)

Qin et al. Page 9

Phys Biol. Author manuscript; available in PMC 2015 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MB found that equation (29) predicts accurately the effect of crowding on the folding rate 

constant, supporting that crowding does not affect D(Q) for the present systems.

In figure 5 we compare the kfc/kf results calculated from equation (29), using either the 

Fc(Q) predicted by postprocessing or the Fc(Q) from MB's direct simulation, for prb under 

various levels of crowding. This comparison again validates the postprocessing approach.

4. Discussion

We have shown that the postprocessing approach, using only the simulations in the absence 

of crowders, can predict well the entire free energy surfaces of three small proteins under 

repulsive crowding. Consequently the effects of crowding on the folding stability and the 

folding rate constant can be well predicted. Although we have previously validated the 

postprocessing approach against direct simulation with crowders for the flap open-to-closed 

population ratio [14], there the conformational space involved was relatively limited. In 

contrast, here the conformational space sampled encompasses the fully folded and fully 

folded state, and thus presents a much more stringent validation of the postprocessing 

approach.

To sample the entire folding free energy surface under crowding, MB used a relatively small 

100 × 100 × 100 Å3 simulation box. For the largest sized (20 Å) crowders, only a few (4 to 

10) of them were in the simulation box to represent the crowded environment. We found that 

the finite size of the simulation system has a significant effect. The crowded environment in 

the direct simulation is different from that if the single test protein were taken away. We 

found a way to correct for the finite size effect, by treating the insertion of a fictitious test 

protein into the crowded environment in the direct simulation as insertion into the mixture of 

the real test protein and the crowders. In our previous validation study [14], the simulation 

was much larger (at 510 × 510 × 510 Å3) and hence the finite size effect would have been 

negligible. We emphasize that the correction for the finite size effect was necessary only 

because we wanted to compare the postprocessing predictions against the direct simulation 

results. In all our other applications [8, 18, 24-28], we use an essentially infinite crowder 

suspension for the insertion to calculation the transfer free energy.

In addition to avoiding the finite size effect, in the postprocessing approach the crowder 

configurations are exhaustively sampled because the fictitious test protein is inserted 

everywhere in the essentially infinite crowder suspension. The postprocessing results thus 

have better statistics than the direct simulation counterparts.

The postprocessing calculation is formally exact if the conformational space of the protein is 

exhaustively sampled by crowder-free simulations, so as to cover the important 

conformational region in the presence of crowders. A potential concern is whether crowder-

free simulations in practice can achieve this goal. The present validation study as well as the 

previous one [14] allays this concern. However, we do note that in both studies the test 

proteins had purely repulsive interactions with the crowders. It is possible that attractive 

protein-crowder interactions may alter the energy landscape of a protein such that new low-

energy regions emerge in the presence of crowders. These regions could be under-sampled 
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in crowder-free simulations, leading to errors in the postprocessing calculation. Only further 

validation will tell the level of these errors.

The most important advantage of the postprocessing approach is the ability to represent the 

test protein at the atomistic level and its interaction with the crowders more realistically. As 

observed recently by Gruebele and co-workers [6], the atomistic level representation is 

required to capture the subtle effects of crowding on protein folding. With the present 

validation study, a major potential concern regarding the validity of the postprocessing 

approach is removed at least for repulsive crowders. We can now apply this powerful 

approach with confidence for realistic modeling of crowding effects.
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Figure 1. 
The three proteins studied. Their structures and four different-sized crowders are shown to 

scale.
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Figure 2. 
Comparison of Fc(Q) results from MB's direct simulations and predicted by the 

postprocessing approach. Circles, diamonds, and triangles show the simulation results for 

protein G in the presence of 8 Å crowders at ϕ0 = 0.05, 0.15, and 0.26, respectively. The 

dashed curve shows the free energy function in the absence of crowders; the three solid 

curves show Fc(Q) for the three ϕ0 values by postprocessing the crowder-free simulations. 

The temperature is 310 K. The postprocessing results are obtained by either (a) assuming ϕ0 

as the actual crowder volume fraction ϕ; or correcting for the finite size of each simulation 

system, through (b) carving out the region in and around the real test protein inaccessible to 

a crowder in calculating ϕ or (c) treating the insertion of a fictitious test protein into the 

crowders around the real test protein as insertion into the mixture of the real test protein and 

the crowders.
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Figure 3. 
Correcting for the finite size of MB's simulation system. Because the test protein in the 

direct simulation presents a volume (vinac) inaccessible to the crowders, the actual volume 

fraction of the crowders is higher than the nominal volume fraction ϕ0. Inserting a fictitious 

test protein into the crowders around the real test protein is equivalent to inserting into the 

mixture of the real test protein and the crowders.
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Figure 4. 
Comparison of the postprocessing predictions and MB's direct simulation results for the 

effects of crowding on the folding stability of the three proteins. Circles, diamonds, 

triangles, and squares show the simulation results for crowders with radii at 8, 12, 16, and 20 

Å, respectively. The corresponding curves show the postprocessing predictions after 

correcting for the finite size of each simulation system, by either (a-c) the mixture treatment 

or (d) the carving out treatment. (a) prb at 320 K; (b) and (d) protein G at 320 K; (c) TNfn3 

at 300 K.
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Figure 5. 
Comparison of the postprocessing predictions and MB's direct simulation results for the 

effect of crowding on the folding rate constant of prb. Symbols have the same meaning as in 

figure 4a.
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