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Abstract
Purpose—To characterize the morphology, prevalence, and topography of subretinal drusenoid
deposits (SDD), a candidate histological correlate of reticular pseudodrusen, with reference to
basal linear deposit (BlinD), a specific lesion of age-related macular degeneration (AMD); to
propose a biogenesis model for both lesions.

Methods—Donor eyes with median death-to-preservation of 2:40 hr were post-fixed in osmium
tannic acid paraphenylenediamine and prepared for macula-wide high-resolution digital sections.
Annotated thicknesses of 21 chorioretinal layers were determined at standard locations in sections
through the fovea and the superior perifovea.

Results—In 22 eyes of 20 Caucasian donors (83.1 ± 7.7 years), SDD appeared as isolated or
confluent drusenoid dollops punctuated by tufts of RPE apical processes and associated with
photoreceptor perturbation. SDD and BlinD were detected in 85.0% and 90.0% of non-
neovascular AMD donors, respectively. SDD was thick (median, 9.4 µm) and more abundant in
perifovea than fovea (p<0.0001). BlinD was thin (median, 2.1 µm) and more abundant in fovea
than perifovea (p<0.0001).

Conclusion—SDD and BlinD prevalence in AMD eyes are both high. SDD's organized
morphology, topography, and impact on surrounding photoreceptors imply specific processes of
biogenesis. Contrasting topographies of SDD and BlinD suggest relationships with differentiable
aspects of rod and cone physiology, respectively. A 2-lesion, 2-compartment biogenesis model
incorporating outer retinal lipid homeostasis is presented.
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Introduction
A lesion recently recognized in eyes with age-related macular degeneration (AMD) is
subretinal drusenoid deposit (SDD) 1. Clinicopathologic studies by the Sarks showed that
membranous debris, the principal component of soft drusen and basal linear deposit (BlinD),
is also found in vacuoles within the retinal pigment epithelium (RPE), basal mounds within
basal laminar deposit (BlamD), and within the subretinal space 2, 3. The subretinal material
was named SDD by one of us (CAC). SDD shares with soft drusen superficial ultrastructural
and compositional similarities, including membrane-bounded particles with neutral lipid
interiors, unesterified cholesterol (UC), apolipoprotein E (apoE), complement factor H, and
vitronectin 2-6. Conversely, SDD lacks immunoreactivity for photoreceptor, Müller cell, and
RPE marker proteins. SDD of lateral length 12-190 µm was present in 9% and 22% of two
small series of non-neovascular AMD eyes, respectively 4, 7. Because eyes in these
histological studies were non-exhaustively sectioned, SDD width and prevalence may have
been underestimated.

SDD has been linked to the phenotype reticular pseudodrusen, a lesion variably named and
described, depending on the imaging modality, patient population, and investigators. First
shown in blue reflectance photography 8, pseudodrusen visible in the blue channel of color
fundus photographs and in near-infrared reflectance images were attributed to SDD in our
previous studies, which revealed discrete collections of hyper-reflective material in the
subretinal space by spectral domain optical coherence tomography (SD-OCT) 1, 9. In an
early direct clinicopathologic correlation, the Sarks attributed reticular pseudodrusen seen in
red-free photography or infrared reflectance to choroidal fibrosis in an AMD specimen
lacking neurosensory retina 10. They later changed this attribution to SDD after reviewing
another specimen with an attached retina 11.

More information about the histopathology of SDD would facilitate understanding of its role
in AMD pathophysiology, including its relationship with AMD's signature sub-RPE lesions.
Here we report SDD morphology, prevalence, and topography in donor eyes meeting
histopathologic criteria for non-neovascular AMD. To provide insight into SDD
pathogenesis, we compared it to BlinD, a specific accumulation of material under the RPE
in AMD that also forms mounds seen clinically as soft drusen. 2, 12 We analyzed lesion
morphology in systematically sampled high-resolution histological cross-sections of whole
macula 13. We find that SDD is robust and as prevalent as BlinD, and located preferentially
in the perifovea, in contrast to BlinD's predilection for the fovea. These distinct lesion
topographies plausibly reflect differential aspects of rod and cone photoreceptor physiology.

Methods
This study used donor eyes accessioned for research from the Alabama Eye Bank
(1995-2008). Median death-to-preservation time was 2:40 hr. Eyes were preserved by
immersion in 1% paraformaldehyde and 2.5% glutaraldehyde in 0.1M phosphate buffer
following anterior segment removal. Donor eyes with gross macular appearance consistent
with early AMD and unremarkable maculas from age-matched donors were sectioned and
evaluated (n=64 total). Maculas with retina in place and vitreous removed were subjected to
ex vivo color photography with a dissection scope 14. Tissue was post-fixed by osmium
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tannic acid paraphenylenediamine for neutral lipids in extracellular AMD-associated
lesions 1516. Macula-wide, high-resolution sections were collected starting at the superior
edge of an 8 mm diameter full-thickness punch 13, 17 and stained with toluidine blue (Figure
1). Study sections were 2 mm superior the foveal center, i.e., within superior perifovea,
where reticular pseudodrusen are abundant clinically, and in the foveola.

Clinical records were available for some donors, but not all. AMD case ascertainment used
histopathologic criteria 1418. Criteria for non-neovascular AMD were a foveolar section
lacking evidence of choroidal neovascularization or a fibrovascular scar AND either a druse
>125 µm OR severe RPE change (hyperplasia, multiple layers, anterior migration) AND
either drusen OR continuous basal laminar deposit (BlamD) 143, 19.

The use of digital sections scaled to tissue units (µm), a fovea-centered coordinate system,
and systematic sampling enabled comparisons of morphological data across eyes and
inference about the extent of macula affected by lesions. Sections were scanned with a 40×
numerical aperture 0.95 objective, a robotic microscope stage, and image-stitching software
(CellSens, Olympus). Digital sections (∼500 MB) were used for recording annotated
thicknesses of chorioretinal layers 13. Using custom plug-ins written for ImageJ (http://
rsbweb.nih.gov/ij/), a single experienced observer (CAC) sampled maculas at 25 locations
from 3 mm nasal to 3 mm temporal. Thirteen locations were ≤1 mm of the foveal center
where neurosensory retina cell density gradients change rapidly 20, 21. At each location,
layer thicknesses were measured using the Segmented Lengths tool, and layer-appropriate
annotations chosen from a menu. RPE morphology and pigmentation was graded on an 8-
point scale adapted from 22, 23.. Glass slides were viewed with a 60× oil-immersion
objective (numerical aperture = 1.4) in parallel with digital sections to inform judgments
about small structures. Thicknesses and annotations were extracted by custom ImageJ plug-
ins for analysis with spreadsheets (Microsoft; Excel 2008) and statistical software (SAS,
Cary NC; StatPlus for Mac). Thicknesses accumulated relative to the RPE basal lamina were
displayed as layer plots (Figure 2).

Thicknesses are reported for the subretinal space, RPE, BlamD, sub-RPE space, and
choriocapillaris. In this post-mortem material, neurosensory retina was detached at 72.7% of
SDD-containing locations. Detachment may be accompanied by compaction of RPE apical
processes into a layer of relatively uniform thickness. Alternatively, RPE apical processes
may be upright and individually resolvable where pulled by detaching retina 22, 24. Even in
attached specimens, outer segments were frequently compacted. Although these factors can
compromise SDD morphology and impair its recognition, histological sections were
interpretable. Only a solid flocculent material that also appeared in attached specimens was
called SDD. Other materials in the subretinal compartment, including isolated cells, oil
droplets, pigment granules, and a fine proteinaceous substance, were distinguishable from
SDD. Scattered or loosely packed SDD-like components, or empty spaces between fascicles
of RPE microvilli were not called SDD. Because it is possible that other SDD forms did not
survive processing, our estimates of SDD thickness, coverage, and prevalence should be
considered lower bounds. Accordingly, we did not adapt a SD-OCT grading scale for SDD
and SDD-associated outer retinal hyper-reflective band deflections 1 to histological sections.

Within the sub-RPE compartment, a grayish-pink layer of non-uniform thickness was called
BlinD (Figure 3B,C arrowheads) and distinguished from a grayish-pink layer of uniform
thickness (Figure 3C, arrows) thought to represent stacked lipoprotein particles on the inner
surface of Bruch's membrane of many older eyes 15, 25, 26. Other sub-RPE components
included drusen, presumed Müller cells extending externally from the Henle fiber layer in
neurosensory retina 27, pigment-containing cells, and fluid.
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Lesion prevalence was determined from thicknesses measured at sampling locations.
Sampling locations were classified as SDD Only, BlinD Only, both SDD+BlinD, or Neither
Lesion, and associations of these lesions with RPE status and BlamD thickness at the same
eccentricity was computed. In the analysis of macular subregions, locations ≤0.6 mm from
the foveal center on the section through the foveola were called Fovea. Those on either side
were Nasal or Temporal perifovea. In sections through Superior perifovea, the percentage of
RPE-BrM length covered by SDD (coverage) was computed.

Morphometric characteristics were compared between lesion groups using mixed statistical
models and generalized estimating equations for continuous (e.g., BlamD thickness) and
categorical (e.g., RPE pathology grade) variables, respectively, to account for data clustering
(i.e., multiple sections from individual eyes and the fellow eyes). Calculation of lesion
prevalence on a per donor basis included only one eye per donor.

Results
Study eyes

Results are presented from 22 eyes of 20 Caucasian donors (14 female, 6 male, mean age
83.1 ± 7.7 yr) at early (n=17) and advanced (n=5) stages of non-neovascular AMD. Five of
9 donors with clinical histories were diagnosed with non-neovascular AMD 2.1 to 41.2 mo
prior to death. Others had clinically unremarkable maculas.

SDD morphology
SDD was found as either isolated or confluent drusenoid mounds or dollops9. Figure 4A
shows isolated SDD, which dominate in the valleys between conventional drusen. The
middle formation in Figure 4A has an apical cap of medium staining and irregular oval
inclusions ∼1 µm in diameter, superficially resembling a condensate of outer segment-like
material 28 but lacking internal structure resembling disks. Other nearby formations lacking
this cap have internal septa. In this specimen with an attached retina, photoreceptor
morphology is disturbed over all SDD formations, manifest as outer segment (OS)
shortening (Figure 4A, #1 and 3) and OS loss with inner segment deflection and absence
(Figure 4A, #2). The largest SDD encroached on photoreceptors, apparent even in detached
retinas, in which the border formed by OS tips was scalloped rather than straight (not
shown), and the lesion itself was decapitate. Figure 4B shows the best-preserved example of
perifoveal SDD in an eye where the retina is not only attached but the photoreceptors are
upright and closely apposed to the SDD internal surface. Here, confluent SDD have septae
of fasciculated apical processes (arrows).

Further details of sheet-like SDD morphology are shown in Figure 5. A formation in
superior macula resembling reticular pseudodrusen (“ill-defined networks of broad
interlacing ribbons” 29) was apparent in ex vivo color photographs of one eye (Figure 5A)
but not its fellow (Figure 5B) or others, presumably due to post-mortem opacification of
neurosensory retina. Apical processes in SDD-bearing eyes form regularly spaced bundles
resembling uplifted arms along a scalloped RPE surface (Figure 5C,D). Photoreceptor OS,
mostly rods, appear associated with microvilli bundles, wrapping around SDD mounds to
reach the RPE, as described 7 Shortened photoreceptors abut SDD's inner surface, between
bundles (Figure 5G). The narrowest SDD material visible by light microscopy in specimens
with attached retinas or in sites where SDD was clearly delimited by microvilli bundles and
associated OS tips is 8-17 µm, similar to the width of 1-2 RPE cells (Figure 5F). Whether
this implies that some RPE do not touch photoreceptors is not certain, as SDD may contain
tufts of apical processes visible in other sections. Perifoveal SDD were seen to be quite
extensive. Median coverage of RPE by SDD in Superior perifovea of 20 eyes was 20.3%
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(section length 6.70 ± 0.70 mm). Five eyes had SDD coverage of ≥62.4%. In Figure 6, SDD
overlies numerous partially intact soft drusen containing neutral lipid pools and additionally
lies within inter-druse valleys.

SDD fine structure is similar but not identical to the contents of soft drusen, BlinD, and
basal mounds, the classically described sites of membranous debris 2 (also called
lipoprotein-derived debris 30). In Figure 5C, SDD is packed with membranous profiles. In
Figure 5D, SDD comprise a dispersed phase of deeply stained particulate material within a
flocculent continuous phase. In these eyes different compositional textures appear to vary on
an eye-by-eye basis, i.e., SDD with particulate interiors are found throughout that section.
These findings may be due to between-eye differences in preservation quality or more
intriguingly, to a distinct taxonomy of SDD morphological phenotypes, like that described
for conventional drusen.

Lesion prevalence, topography, relationship to other AMD pathology
Median SDD thickness was 9.4 µm (range, 3.4-51.1 µm; Q1=6.2 µm; Q3=13.6). Median
BlinD thickness was 1.8 µm (range, 0.5-34.4 µm; Q1=1.1 µm; Q3=4.6). SDD was
significantly thicker than BlinD (t-test for unequal variances, p<0.0001).

Annotated layer thicknesses obtained through systematic sampling of retinal regions were
used to quantify SDD and BlinD prevalences, topography, and lesion associations with other
aspects of AMD pathology. Of 20 non-neovascular AMD donors covered by 1,000 sampling
locations, 17 (85.0%) had SDD, and 18 (90%) had BlinD, at any location. Under a stricter
criterion of at least 3 affected locations per eye, SDD was present in 14/20 (70.0%), and
BlinD, 13/20 (65.0%) of AMD donors. Individuals varied considerably in lesion extent,
from 1-25 affected locations per eye for SDD (mean, 9) and 1-22 for BlinD (mean, 7).
Variability in SDD and BlinD extent was not correlated (p=0.23).

A striking observation was the abundance of BlinD and paucity of SDD in the fovea, and the
abundance of SDD in the Superior perifovea (Table 1). Of sampling locations with SDD
only, 9.9% were in the Fovea, and 90.1% were in the perifovea, in the order Superior
(62.0%) ≫ Nasal (17.5%) > Temporal (10.5%) (p<0.0001 for difference among regions;
inferior retina was not sectioned). Of sampling locations with BlinD only, 57.1% were in the
fovea and 42.9% in the perifovea with similar proportions (12.0-15.8%) in Nasal, Superior,
and Temporal subregions. Topographies were also assessed by calculating the percentage of
sampling locations in each macular subregion, i.e., normalizing with respect to region rather
than by lesion group (Figure 7). This analysis shows that 34.5% of foveal locations had
BlinD, compared to only 4.0-15.0% of perifoveal locations. Conversely, 12.9-21.4% of
perifoveal locations had SDD, compared to only 7.7% of foveal locations. Pooling locations
with drusen with those containing only BlinD did not change this conclusion (data not
shown). A second striking observation is that any one location tended to have either SDD
(17.1% of total locations) or BlinD (13.3%), but not both (only 2.3%). Thus, even in regions
of topographic overlap, SDD and BlinD tend not to appear on opposite aspects of the same
RPE cells, as previously noted 11. Finally, both pairs of fellow eyes had highly concordant
findings of abundant SDD and minimal BlinD.

We examined other aspects of AMD pathology at sampling locations with SDD, BlinD, or
neither lesion. RPE morphology ranged from unaffected to atrophic (absence of a pigmented
layer, with or without BlamD, Table 1) in these non-neovascular AMD eyes. RPE
morphology was worse in locations with either SDD or BlinD compared to locations with
neither lesion (p<0.0001). More locations with BlinD only were associated with atrophic
RPE (14.0%) than with SDD only (0.6%; p=0.0036). BlamD, considered a marker of AMD
progression 3, was present at 76.8% of locations with SDD only and 81.5% of locations with
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BlinD only. BlamD was thicker (6.2 µm) at locations associated with BlinD than at locations
associated with SDD only (4.2 µm) (p<0.03). Finally, we checked for vascular changes
associated with SDD and BlinD. Choriocapillary ghosts are recognized readily by the
absence of endothelial cells in an arch-like space delimited by intercapillary pillars 31, 32.
Ghosts were present in similar proportions at locations with SDD+BlinD and with neither
lesion (7.7 and 8.7%, respectively, Table 1). They were higher in areas with either lesion,
especially sites with BlinD only (17.3%). We also examined the choroid external to these
lesions for signs of vascular sclerosis 10 or other abnormalities, and primarily noted overall
choroidal thinning, loss of large vessels, and hyalinization of stroma throughout the macula.

Discussion
This is the largest series of eyes devoted to histological characterization of SDD and the first
study to compare thicknesses and topographies of AMD-specific lesions. We solidify
previous observations from smaller series of AMD and non-AMD eyes 2, 4, 6, 7, 11, 28 that
SDD is an organized and stereotypical lesion that is readily distinguishable from other
subretinal components and from extracellular lesions in other compartments. Its association
in attached retinas with deflected and shortened photoreceptors supports the idea that the
lesions are in place during life and are not relocated by processing artifact 28, 33. Our
principal new finding is SDD preferentially localizes to the perifovea, a location where there
is a high density of rods whereas BlinD is thickest in the fovea, where there is a high density
of cones 21 (Figure 8). Results suggest that SDD and BlinD reflect differential aspects of rod
and cone physiology, linking macular photoreceptor topography and AMD pathology.

SDD and BlinD are both common in non-neovascular AMD, yet SDD has come to the fore
only recently. SDD's first two histological descriptions were separated by 15 years and
pertained to two different diseases 2, 28. The first two descriptions in AMD eyes were
separated by 17 years 2, 4. SDD was not reported in histological surveys of AMD eyes using
paraffin 19, 34, 35 or cryo-sections 36-38, likely because its optimal visualization requires
osmium post-fixation, semi- or ultra-thin sections, and samples that include non-foveal
macula. Ultrastructural studies, including our own, tended to concentrate on
fovea 2, 3, 5, 12, 39, 40 or did not specify sample location 41. Finding SDD requires looking for
it, and seeing it in enough attached specimens to enable informed interpretation of detached
specimens, which, in turn, implies tissues obtained quickly after donor death. In this study
we used high-resolution sections of short post-mortem (<3 hr) tissues post-fixed to preserve
neutral lipids in AMD's characteristic lesions. Finally, SDD's significance became apparent
only when new clinical imaging technologies such as spectral domain optical coherence
tomography enabled visualization of a widely distributed lesion with a distinctive
morphology, topography, and independent risk levels for progression 1, 42, 43.

A major question is whether SDD accounts for the clinical appearance of pseudodrusen
described by different investigators using various high-resolution instruments. Several
salient features of reticular pseudodrusen can be related to our current or past 7 histological
data: 1) Descriptions of interlacing yellow material or networks 2944. 2) High prevalence in
AMD eyes, especially geographic atrophy 45, with prevalence estimates varying widely with
detection method 45 and patient population (Table 2). 3) Bilateral symmetry 42, 46. 4)
Abundance in superior and superior temporal macula, with more outside the macula
superiorly 1, 10, 29, 47-49 and little 10, 47 in central macula. 6) Dynamism over time, with
expansion into superior retina 1011 and continuous focal enlargement and anterior migration
into the retina 50. It would be remarkable with this level of correspondence if SDD were not
the histological correlate of reticular pseudodrusen, as it would imply that another feature of
this magnitude in the same region remains to be detected clinically. Further, the varying
clinical appearances, ranging from dots to ribbons, raise the possibility of multiple SDD
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subtypes or stages of progression or both, with distinctive ultrastructural correlates and
compositions. The name reticular pseudodrusen appears inappropriate for this lesion, which
is neither universally reticular (network), pseudo (false), nor drusen (sub-RPE).

A comprehensive theory of AMD extracellular lesion formation would ideally account for
both SDD and sub-RPE drusen/ BlinD. An existing model for BlinD involving its largest
component, cholesterol-rich lipoproteins containing apolipoproteins B and E 30, 51 is
summarized as steps 1-4 in Figure 9. We hypothesize that the RPE is a polarized and
bidirectional secretor of lipoproteins which serve photoreceptor and RPE physiology driven
by OS membrane lipid composition, and that these lipoproteins participate in lesion
formation in two compartments, as follows.

Strong circumstantial evidence suggests that one or more HDL (high-density lipoprotein)
classes subserve intra-retinal lipid transport, including a rapid distribution of lipoprotein-
delivered UC from the choroid into neurosensory retina 52. HDL are multifunctional,
multimolecular assemblies consisting of an esterified cholesterol (EC)-rich core solubilized
by surface components of apolipoproteins and phospholipids. Plasma HDL, 7-11 nm in
diameter, is notable for multiple classes defined by different isolation techniques and by
extensive extracellular remodeling via enzymes and transfer proteins. These include lecithin
acyl cholesterol transferase (LCAT), cholesterol ester transfer protein (CETP), phospholipid
transfer protein (PLTP), hepatic lipase (LIPC) 53, 54. In reverse cholesterol transport, plasma
HDL receives UC from cellular membranes throughout the body via ATP binding cassette
A-I (ABCA-1) for transport to liver, where scavenger receptors (SRB-I, II) mediate selective
EC uptake. HDL carries >100 proteins, including complement factors and coagulation
factors. Fewer than half subserve lipid metabolism 55. Brain cerebrospinal fluid,
embryologically equivalent to the subretinal space, also harbors HDL-like lipoproteins
containing apoE. These serve the rich lipid traffic between astrocytes and neurons, subject to
remodeling via intracerebrally expressed LCAT, CETP, and PLTP 56-58. Of relevance to
SDD, variants in CETP and LIPC genes modify AMD risk independent of plasma HDL
levels 59-61. ApoE, CETP, LIPC, LCAT, and SRB-II immunoreactivity, along with PLTP
activity, localize to interphotoreceptor matrix 52, 62. ApoE is secreted by RPE and Müller
cells, appearing in aspirates from rhegmatogenous retinal detachments 63-67. SDD contains
complement cascade components and regulators 7, 68. Thus numerous molecules with well-
known HDL associations are present in the subretinal space.

Rod OS disks pinch off from the plasma membrane near the inner segment. They become
internal membranes, which unlike plasma membranes, are low in UC content (10% vs
30-35%) 6970. In transit from OS base to tip, 71 disks reduce UC and increase the fatty acid
docosahexaenoate (DHA) within phospholipids (step 5, Figure 10). These changes enable
the conformational flexibility of rhodopsin required by single-photon sensitivity. OS-derived
DHA stored in RPE after disk shedding and phagocytosis are recycled back to inner
segments 72, 73 by an as-yet unspecified mechanism. HDL particles cycling between RPE
and photoreceptors, proposed for intra-retinal lipid transfer to inner segments 52, could move
both UC from, and DHA to, OS disks progressing toward the RPE. In contrast (step 6,
Figure 10), cone OS disks are comb-like projections of plasma membrane and are believed
to maintain high UC content along their length (unpublished observations; personal
communication, R. Mullins, 5/9/12) 71. Cone OS UC enters RPE via disk shedding and
lysosomal uptake. This UC is released for intracellular transfer, esterification, and assembly
into basolaterally-secreted apoB,E-containing lipoproteins, especially under cone-dominant
fovea, where they form the basis of BlinD (Step 3, 4, Figure 10). Using perturbation of
cholesterol homeostasis and lipid transfer as unifying mechanisms, it may be possible to
explain the formation of SDD in areas enriched with rods and BlinD under the cone-
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dominant fovea, with downstream negative consequences such as inflammation, in both
compartments.

Strengths of this work include short post-mortem donor eyes, time-of-study histopathologic
AMD ascertainment as opposed to clinical histories obtained at variable pre-mortem
intervals, a tissue preparation technique designed to improve neutral lipid preservation, a
quantized RPE grading scale, and a retina-centered coordinate system and systematic
sampling that together facilitated statistical analysis across eyes. Limitations include post-
mortem retinal detachment, absence of extensive serial section reconstruction, limited
clinical histories that did not include imaging or genotype, and the subjective nature of
histological judgments.

Reflecting remarkable compartmentalization of photoreceptor, RPE, and Bruch's membrane
functions, AMD's lesions reflect different biological pathways deployed with micrometer
precision in the vertical axis. BlinD and soft drusen are external to RPE basal lamina and
SDD are subretinal and likely reflect activity along distinct pathways within polarized
RPE 74. The fovea is the region with the highest packing density of cones, and cone damage
and destruction is an important consequence of late AMD. This is the first study to show that
rods may play an important pathophysiologic stimulus for the development of AMD, due to
the formation of SDD. A component of early AMD, SDD is a recognized risk factor for the
development of both geographic atrophy and choroidal neovascularization.
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Figure 1. Macula-wide, high-resolution section of an eye with non-neovascular AMD
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Figure 2. Histological layer thicknesses in non-neovascular AMD
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Figure 3. Basal linear deposits in atrophic AMD eyes
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Figure 4. SDD morphology
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Figure 5. SDD in superior-temporal perifovea
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Figure 6. SDD is abundant in superior perifovea

Curcio et al. Page 18

Retina. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Prevalence of SDD and BlinD
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Figure 8. SDD and BlinD thicknesses and photoreceptor topography
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Figure 9. Biogenesis of sub-RPE and sub-retinal AMD lesions: model
Normal at left-center, AMD at right. Details in 1, 51. OS, outer segment.. BlinD, current 1)
Plasma lipoproteins delivering lipophilic nutrients enter RPE 83. 2) ApoB,E lipoproteins
secreted basolaterally by RPE 84 (gold circles) are assembled from multiple lipid sources.
Fatty acids are dominated by linoleate, implicating internalized plasma lipoproteins as a
major source. UC from all sources is esterified to EC. 3) Lipoproteins are retained by
interacting with BrM extracellular matrix and accumulate throughout adulthood, creating a
lipid wall on BrM's inner surface. 4) Reactive oxygen species from neighboring
mitochondria promote appearance of pro-inflammatory and toxic moieties. Lipoproteins
fuse and form lipid pools and UC-rich liposomes within BlinD/ soft drusen, rendering them
biomechanically unstable. SDD, new 5) Disks in rod OS lose UC and gain
docosahexaenoate in transit from OS base to tip 71 (shown as loss of white). OS-derived
DHA stored as triglycerides in RPE after phagocytosis return to OS 73. HDL particles
cycling between RPE and photoreceptors 52 could handle both transfers as part of a vectorial
lipid flow retainable within interphotoreceptor matrix as UC-containing SDD, especially
under rod-rich perifovea. BlinD, new 6) Cone OS maintain high UC content along their
length, because their disks are comb-like projections of plasma membrane 71. Cone OS UC
enters RPE via disk shedding, lysosomal uptake, and acid lipase activity 85. UC is released
for intracellular transfer, esterification, and assembly into basolaterally-secreted
lipoproteins, especially under cone-rich fovea.
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Table 2
Clinical studies reporting reticular drusen/SDD prevalence (chronological order)

Reference Patient population (a) Imaging modality % affected

10 Newly presenting AMD cases Various 13.0%

75 Non-AMD fellow eye Red-free 3.0%

76 AMD 20.0%

77 Early AMD; non-neovascular AM D FAF-SW 8.4%

77 CNV FAF-SW 36.0%

78 Exudative AMD 24.0%

79 Population based; >80 yr Color fundus photos (b) 30.0%

47 Population based; 75-86 yr Color fundus photos 2.4%

42 Late AMD SD-OCT 33.0%

45 Geographic atrophy FAF-SW 55.7%

45 Geographic atrophy IR reflectance 59.1%

80 Geographic atrophy Various 91.0%

81 Geographic atrophy FAF-SW 92.3%

82 Atrophic AMD FAF-SW, FAF-NIR 29.0%

Notes: (a), as described by authors; FAF-SW = fundus autofluorescence, short wavelength (488 nm excitation); FAF-NIR = fundus
autofluorescence, near infrared (830 nm excitation); (b) combined with indistinct drusen
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