
RESULTS: CFA treatment diminished fibrosis index in 
treated animals. The Knodell index showed both lower 
fibrosis and necroinflammation. Expression of profibro-
genic genes CTGF , Col-1  and TGF-β1  and proinflam-
matory genes TNF-α , IL-6  and IL-1  was substantially 
diminished with CFA treatment with less CD11b positive 
areas. Significantly lower values of transcriptional fac-
tor Snail-1 were detected in CFA treated rats compared 
with cirrhotic rats without treatment; in contrast Nrf2 
was increased in the presence of CFA. Expression of 
SOD and CAT was greater in animals treated with CFA 
showing a strong correlation between mRNA expression 
and enzyme activity.

CONCLUSION: Our results suggest that CFA inhibits 
the transcriptional factor Snail-1, down-regulating profi-
brogenic genes, and activates Nrf2 inducing antioxidant 
enzymes system, preventing inflammation and fibrosis.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: This paper shows the protective effect of caf-
feine in the liver to the constant aggressiveness of a 
hepatotoxic. Here we present evidence not published 
before of some molecular mechanisms like inhibition 
of Snail-1 and activation of Nrf2 that could be involved 
in this beneficial effect down-regulating pro-fibrogenic 
genes and up-regulating antioxidant molecules.
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Abstract
AIM: To determine the molecular mechanisms involved 
in experimental hepatic fibrosis prevention by caffeine 
(CFA).

METHODS: Liver fibrosis was induced in Wistar rats by 
intraperitoneal thioacetamide or bile duct ligation and 
they were concomitantly treated with CFA (15 mg/kg 
per day). Fibrosis and inflammatory cell infiltrate were 
evaluated and classified by Knodell index. Inflamma-
tory infiltrate was quantified by immunohistochemistry 
(anti-CD11b). Gene expression was analyzed by quan-
titative reverse transcription-polymerase chain reaction 
for collagen Ⅰ (Col-1), connective tissue growth factor 
(CTGF), transforming growth factor β1 (TGF-β1), tumor 
necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, 
superoxide dismutase (SOD) and catalase (CAT). Ac-
tivation of Nrf2 and Snail-1 was analyzed by Western-
blot. TNF-α expression was proved by enzyme-linked 
immunosorbant assay, CAT activity was performed by 
zymography.
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INTRODUCTION
The liver performs essential functions in the body[1]. 
Hepatic stellate cells (HSC) are key in the fibrogenic pro-
cess[2]. After stimulation of  liver damage, HSC undergo 
a process called “activation”; characterized by synthesis 
of  type Ⅰ and Ⅲ collagens[3-5]. This state of  activation 
is maintained by growth factors such as transforming 
growth factor β1 (TGF-β1)[6], connective tissue growth 
factor (CTGF)[7], and pro-inflammatory molecules such 
as tumor necrosis factor alpha (TNF-α), interleukin-1β 
(IL-1β), interleukin 6 (IL-6)[8] and reactive oxygen species 
(ROS).

Epidemiological studies had associated caffeine (CFA) 
consumption with protection against development of  
chronic liver disease or reduction of  disease severity[9-11]. 
In vitro studies have shown beneficial effects of  CFA, that 
can be useful in preventing HSC activation and perpetu-
ation of  this state[12,13]. Among CFA effects observed in 
vitro are: inhibition of  expression of  CTGF[14-16]; reduc-
tion of  pro-inflammatory cytokines expression such as 
TNF-α, IL-1 and IL-6 by mechanisms not yet defined[8], 
and CFA antioxidant effect[17-21].

On the other hand, a potent natural antioxidant, quer-
cetin increases the transcriptional and translational activ-
ity of  the transcriptional factor Nrf2 which has potent 
antioxidant activity[22].

Activation of  HSC is a complex process where the 
transcriptional factor Snail-1 has an important role. Sev-
eral authors have reported the overexpression of  Snail-1 
in pathological conditions associated with extracellular 
matrix (ECM) deposition[23,24]. Snail-1 expression has 
been shown in cholangiocytes and hepatocytes of  fi-
brotic livers[14,16], and recently, Snail-1 has been published 
as a central transcription factor on the activation of  HSC 
demonstrating its essential role in regulating the liver fi-
brosis process[25].

According to our findings, CFA-mediated molecular 
mechanisms comprise in part down-regulation of  pro-
fibrogenic genes, diminishing of  inflammatory cell infil-
trate, down-regulation of  pro-inflammatory cytokines, 
and up-regulation of  antioxidant enzymes. Our results 
suggest that these events could be mediated, at least in 
part, by Nrf2 activation and inhibition of  Snail-1 which 
are key factors in the development of  this process.

MATERIALS AND METHODS
Materials 
CFA was acquired from Sigma Aldrich Co., (St Louis Mis-
souri). Thioacetamide (TAA) was purchased from Merck 
Company, (Darmstadt, Germany). CD11b antibody was 
obtained from Biolegend (San Diego, CA, United States). 
Biotinylated secondary antibody and avidin-conjugated 

peroxidase were obtained from Vector Laboratories (Bur-
lingame, CA, United States).

DuoSet enzyme-linked immunosorbant assay (ELISA) 
Development kit was acquired from R and D Systems, 
(Minneapolis, United States). Primers and probes to de-
sign real time polymerase chain reaction (PCR) were ac-
quired from Applied Biosystems (Hammonton, NJ, Unit-
ed States). Poly vinylidene fluoride (PVDF) membranes 
(Bio-Rad Laboratories, Hercules CA, United States). 
Nrf2, Snail-1 and secondary antibodies were purchased 
from Avcam Inc (Cambridge MA, United States).

Animals and experimental design
Wistar rats used in this study were obtained from Charles 
Rivers (Boston, MA, United States) and housed accord-
ing to the Animal Care protocol established by Univer-
sity of  Guadalajara. Thirty male Wistar rats, weighing 
250-280 g were divided into three groups (10 rats in each 
group) as follows: (1) healthy (n = 10); (2) TAA (n = 10), 
rats with intraperitoneal TAA to develop liver fibrosis; 
and (3) bile duct ligation (BDL) (n = 20), rats that un-
derwent a laparotomy and BDL. Finally 5 rats of  each 
group were treated with CFA and other 5 rats received 
vehicle only (fibrotic rats).

CFA administration in TAA-intoxicated and BDL rats
Two in vivo models were intended to assess fibrosis pre-
vention via CFA administration, TAA and BDL. TAA-
induced fibrosis was achieved using a dose of  200 mg/kg 
administrated intraperitoneally 3 times a week for 7 wk, 
as described previously[26-28]. BDL-induced fibrosis was 
achieved under general anesthesia and laparotomy was 
made, the common bile duct was localized, doubly ligated 
and cut between these two ligatures[29]. CFA administra-
tion was carried out concomitantly with BDL and TAA 
intoxication regimen once a day with a dose of  15 mg/kg 
by the orogastric route. Rats sacrifice was performed at 
the seventh week for the TAA model, and at the fourth 
week for the BDL model. Representative liver sections 
were excised and either fixed with 4% buffered parafor-
maldehyde for histological examination, or frozen for 
RNA and protein extraction.

Biochemical assays
Blood was obtained from animals immediately before 
sacrifice, and serum transaminases, alanine transaminase 
(ALT) and aspartate transaminase (AST), were deter-
mined in automated Vitros DT 60 equipment (Johnson 
and Johnson, New Jersey, United States).

Histological examination of liver sections
For histological studies, livers were removed and fixed 
by immersion in 4% paraformaldehyde diluted in PBS, 
dehydrated in graded ethylic alcohol, and embedded in 
paraffin.

Assessment of  liver inflammatory activity and fibro-
sis: The Modified Histological Activity Index of  Knodell 
was used to grade the severity of  the necroinflammatory 
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process (0-18 scale) and fibrosis (0-6 scale), and was per-
formed blindly by two experienced pathologists[30-32]. Ad-
ditionally, liver fibrosis was also quantitatively assessed by 
Masson’s trichromic staining in 4-m liver sections by light 
microscopy as described previously[33,34] using a comput-
er-assisted morphometric analyzer (Image-ProPlus 6.0; 
Media Cybernetics, Inc., Bethesda, MD, United States) 
by analyzing ten random fields per slide and calculating 
the ratio of  connective tissue to the whole liver area, ex-
pressed as fibrosis percentage.

Immunohistochemical determination of  CD11b: He-
patic tissue sections were deparaffinized and rehydrated 
with xylene and decreasing graded ethanol. Slides were 
incubated in 3% H2O2 for 30 min, followed by incubation 
with polyclonal anti-rat against purified CD11b/c (Bio-
legend, Cat. No. 201801, San Diego, CA, United States) 
diluted in PBS (1:100).

The primary antibody was incubated at 4 ℃ over-
night, followed by incubation with biotinylated second-
ary antibody (Vectastain, Universal Quick Kit, Cat. No. 
PK-8800). Secondary antibodies were complexed indi-
vidually with avidin-conjugated peroxidase Vectastain 
ABC-Elite reagent (Vector Laboratories, Burlingame, 
CA, United States) and resulting peroxidase activity was 
detected with 3,30-diaminobenzidine in sections that 
were briefly counterstained with hematoxylin. Positive 
areas were analyzed in 20 random fields of  pericentral, 
mid-zonal and periportal areas. Counting was carried 
out using automated software (Image-Pro plus Analyzer, 
Qwin-Leica, United States). Results were expressed as a 
percentage of  the positive area.

ELISA assay for TNF-α
Liver tissue was homogenized with Polytron (Janke Kun-
kel IKA-WERK, Staufen im Breisgau, Germany) and 
centrifugated at 4 ℃ for 4 min at 12000 g in lysis buffer 
with protease inhibitors [50 mmol/L Tris (hydroxymethyl) 
aminomethane-HCI buffer, pH 7.4, containing 0.02% 
sodium azide, 150 mmol/L NaCl, 0.1% Tween-20, 150 
mmol/L NaCl, 10 g/mL aprotinin, 5 g/mL pepstatin, 5 
g/mL leupeptin, 1 mmol/L phenyl-methylsulfonyl fluo-
ride and 25 g/mL E64][35].

Protein concentration of  cleared tissue lysates were 
determined by Bradford method. After quantitation sam-
ples were stored at -80 ℃ until analysis.

We used the kit DuoSet for ELISA for rat TNF-α/
TNFSF1A (DuoSet ELISA Development kit, rat TNF-α 
Cat. No. DY510, R and D Systems, Minneapolis, United 
States), following the protocol provided by the manufac-
turer. Finally, the reaction was stopped and the optical 
density of  each well was determined at 450 nm.

Quantitative real-time reverse transcriptase-PCR
RNA was isolated from the liver from different groups 
of  rats with Trizol reagent (Invitrogen, Carlsbad, CA, 
United States)[36]. Retrotranscription using 2 g of  total 
RNA was achieved using moloney-murine leukemia virus 

reverse transcriptase (Invitrogen). Then, 2 μL of  cDNAs 
were subjected to real-time PCR using a Rotor Gene Ter-
mocycler under the following conditions: 2 min at 50 ℃, 
5 min at 94 ℃, and 45 cycles of  30 s at 94 ℃ and 40 s at 
60 ℃. Specific primers and probes designed to align in 
collagen α1 (Ⅰ), CTGF, TGF-β1, TNF-α, IL-1, IL-6, su-
peroxide dismutase (SOD) and catalase (CAT) rat RNAs 
were acquired from Applied Biosystems (Hammonton, 
NJ, United States). Gene amplification was normal-
ized against glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) expression. Relative quantification by the 
2-∆∆CT method was realized by comparing to control 
groups as an internal calibrator[37,38]. Expression gene lev-
els are shown as expression relative units.

Catalase activity
Reported CAT activity was determined according to the 
zymographic method by Gennady P Manchenko (1994). 
The method is based on the starch-iodine reaction. Thio-
sulfate in the staining solution is inactivated by hydrogen 
peroxide except at the sites of  CAT activity, where hy-
drogen peroxide is destroyed enzymatically. The iodide is 
oxidized by hydrogen peroxide to iodine which forms a 
chromatophore with the starch and sites of  CAT local-
ization remain achromatic[29].

Western-blot assays
Western blot assays of  tissue homogenates were per-
formed to analyze the activation of  Nrf-2 and Snail-1. 
Proteins were extracted from 100 mg of  liver tissue using 
lysis buffer (50 mmol/L Tris-HCl pH 8.0, 150 nmol/L 
NaCl, 0.02% NaN3). After centrifugation at 13000 rpm/5 
min/4 ℃, supernatant was collected and quantified by 
Bradford assay. Briefly, 30 μg of  total proteins were sepa-
rated by 10% sodium dodecyl sulfate psulfate polyacryl-
amide gel electrophoresis under reducing conditions and 
transferred to PVDF membranes (Bio-Rad Laboratories, 
Hercules CA, United States). Blocking was carried out 
using 3% dry milk for 2 h; primary antibody dilution was 
1:500 for GAPDH (loading control) and 1:800 for Nrf2 
and Snail-1 antibodies. (Abcam Biotechnology, Santa 
Cruz CA, United States). Antibody binding was revealed 
with a secondary anti-antibody diluted 1:5000-1:6000 
using BM Chemiluminiscence kit (Roche Diagnostics, In-
dianapolis IN, United States). Densitometric analysis was 
realized with a Kodak 1D 3.5 Image analyzer (Eastman 
Kodak Co., Rochester NY) GAPDH was used as a cell 
fractionation control.

Statistical analysis
Normally distributed data were analyzed using t test, 
where statistical significance was P < 0.05. Data are 
shown as the mean ± SD. For real-time PCR experi-
ments, results are shown as the 2-∆∆CT value (mean ± 
SD), where the standard deviation was calculated as: 
s = [s(GAPDH)

2 + s(target gene)
2]1/2, according to user bulletin 2 

from Applied Biosystems.
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  Group Healthy TAA TAA + CFA BDL BDL + CFA

  Rats weight at the beginning of the treatment (g) 296.0 ± 9.73       284.0 ± 22.1 282.2 ± 9.1 280.1 ± 18.3 275.0 ± 19.0
  Rats weight after CFA treatment (g)        321.0 ± 8.5       223.1 ± 14.0b 253.7 ± 5.7 219.4 ± 15.3 221.0 ± 17.5
  AST (U/L)        226.0 ± 61.0 379.7 ± 179.8         318.2 ± 144.3 576.7 ± 70.0        329.5 ± 41.4c

  ALT (U/L)          63.0 ± 1.0       132.7 ± 7.5     98.2 ± 28.7 214.7 ± 37.0    76.0 ± 10.6d

Table 1  Weight at the beginning of the treatment and after caffeine treatment, serum markers enzymes in bile duct ligation and 
thioacetamide-intoxicated rats

Treatment duration: 7 wk for thioacetamide (TAA) and 4 wk for bile duct ligation (BDL). bP < 0.01 vs TAA group; cP < 0.05, dP < 0.01 vs BDL group. Data are 
shown as the mean ± SD (n = 10). CFA: Caffeine; AST: Aspartate transaminase; ALT: Alanine transaminase.
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In contrast, both cirrhotic groups treated with CFA had 
a lower amount of  inflammatory infiltrate, more evident 
in the TAA + CFA group (Figure 1D). The Knodell 
score resulted in lower necroinflammation in the treated 
groups, TAA + CFA and BDL + CFA (8 ± 0.5 and 9 ± 
0.5 points), compared with the cirrhotic groups, TAA 
and BDL (16 ± 0 and 18 ± 0 points) (both P < 0.001) 
(Figure 1E).

Fibrogenic genes expression decrease with CFA 
treatment even in the continuous presence of liver 
fibrosis inducers
In addition to the histologic analysis we analyzed expres-
sion of  the fibrogenic genes.

As expected, cirrhotic groups showed an increase in 
fibrogenic genes expression. In the TAA group there was 
a 5.3-fold increase for CTGF (P < 0.01), a 10.5-fold in-
crease for collagen Ⅰ (Col-1) (P < 0.01) and and a 4.3-fold 
increase for TGF-α1 (P < 0.05). In the BDL group fi-
brogenic genes expression also showed an increase; this 
increase was 11.6-fold for CTGF (P < 0.01), 21.5-fold 
for Col-1 and 3.5-fold for TGF-α1 (P < 0.05), compared 
with healthy rat group levels (Figure 2A-C). Treatment 
with CFA also induced a lower expression of  fibrogenic 
genes; in the TAA + CFA group this was 3.5-fold lower 
for CTGF (P < 0.01), 3.5-fold lower for Col-1 (P < 0.05) 
and 3.1-fold lower for TGF-β1 (P < 0.01) compared with 
the TAA group. In the BDL+CFA group the reduction 
in gene expression was 5.0-fold lower for CTGF (P < 
0.01), 3.0-fold lower for Col-1 (P < 0.01), and 1.5-fold 
lower for TGF-β1, indicating only a declining trend but 
no statistical significance, compared with BDL group 
(Figure 2A-C).

CFA limits pro-inflammatory genes expression in 
experimental liver fibrosis models
We performed an immunohistochemical determination 
of  CD11b in hepatic tissue sections. We observed that 
CD11b positive areas in the TAA + CFA versus the TAA 
group were lower by 65.5% (P < 0.01), and the BDL 
group treated with CFA versus the BDL group were low-
er by 60.8% (P < 0.05) (Figure 3A). In addition to testing 
the anti-inflammatory effect of  CFA at the protein level, 
we analyzed TNF-α expression by ELISA. Both liver 
cirrhotic groups showed an increase in TNF-α levels, 
560.2 ± 67.8 pg/mL (P < 0.0001) for the TAA group, 

RESULTS
CFA prevents weight loss in TAA-intoxicated rats
Basal weight and weight at the end of  treatment were reg-
istered in all groups. As shown in Table 1, CFA prevented 
weight loss of  rats in the TAA model, which suggested 
that CFA had an effect in improving the nutritional status 
of  rats measured solely by weight.

CFA dosed groups had less hepatocellular damage
AST and ALT levels were higher in TAA-intoxicated (1.7- 
and 2.1-fold respectively) and BDL (2.6- and 3.4-fold re-
spectively) groups compared with the healthy rats group. 
The BDL + CFA group showed lower levels in AST 
compared to the BDL group (1.8-fold) (P < 0.05). The 
TAA + CFA group only showed a tendency to lower lev-
els. Similarly, ALT levels in the BDL + CFA group were 
lower (2.8-fold) when compared against the BDL group (P 
< 0.01) (Table 1).

CFA treatment reduced both BDL and TAA-induced liver 
fibrosis
To test the antifibrogenic effect of  CFA, morphological 
analysis of  liver sections stained with Masson’s was per-
formed. Looking at the histology of  the healthy group, 
we observed a normal morphology, with scarce ECM 
and hepatocytes arranged in a radial pattern. Histology 
of  TAA and BDL groups showed an altered morphol-
ogy, with thick collagen bundles, much more noticeable 
in the BDL group. In contrast, the treated groups TAA + 
CFA and BDL + CFA showed lower ECM content (Fig-
ure 1A). Quantification of  ECM demonstrated a potent 
antifibrogenic effect of  CFA. In the TAA + CFA group, 
fibrosis was lower by 80% compared to the TAA group 
(P < 0.0001). Likewise, in the BDL + CFA group fibro-
sis was lower by 38% compared to the BDL group (P < 
0.0001) (Figure 1B).

The Knodell score indicated lower fibrosis in the 
TAA + CFA and BDL + CFA groups (3 ± 0.5 and 4 ± 0.5 
points respectively) compared with the TAA and BDL 
cirrhotic groups (6 ± 0 and 6 ± 0 points respectively) 
(both P < 0.05) (Figure 1C).

Fewer inflammatory cells infiltrate in CFA groups
It was noted that CFA groups had a low amount of  in-
flammatory infiltrate. TAA and BDL groups had a large 
number of  inflammatory cells, especially the BDL group. 
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Figure 1  Macroscopic and histological differences and fibrosis index with caffeine treatment. A: Liver fibrosis percentage of healthy rats, caffeine (CFA)-treated, 
thioacetamide (TAA)-intoxicated, TAA-intoxicated treated with CFA, bile duct ligation (BDL) rats, BDL rats treated with CFA. Sections, 4 μm thick, stained with Mas-
son’s trichrome, × 10. White arrows show the extracellular matrix (ECM) (fibrosis); B: Fibrosis quantification. Fibrosis percentages are shown, they were obtained by 
computer-assisted morphometric analysis (Software Image pro plus 6.3); C: Knodell Index for fibrosis, sections 4 μm thick, stained with Masson’s trichrome, × 10; D: 
Inflammatory infiltrate amount. Sections 4 μm thick, stained with hematoxylin and eosin, × 40. Black arrows show inflammatory cells; E: Knodell Index for fibrosis, sec-
tions 4 μm thick, stained with hematoxylin and eosin, × 40.
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and 590.3 ± 71.3 pg/mL (P < 0.0001) for the BDL 
group, compared with healthy rat group levels (140.4 ± 
3.4 pg/mL). We observed lower levels in the CFA treated 
groups; for the TAA + CFA group 313.1 ± 56.6 pg/mL 
(P < 0.01), and for the BDL + CFA group 420.6 ± 166.1 
pg/mL (Figure 3B).

Then, we analyzed at the molecular level the pro-
inflammatory genes expression of  TNF-α, IL-1β and 
IL-6. Both cirrhotic groups showed a significant increase 
in all proinflammatory genes expression; in TAA group 
this was 1.8-fold for TNF-α (P < 0.05), 1.8-fold for IL-1 
(P < 0.05) and 32.3-fold for IL-6 (P < 0.001). In the BDL 
group it was 6.6-fold for TNF-α (P < 0.001), 3.2-fold for 
IL-1β (P < 0.01) and 128.2-fold for IL-6 (P < 0.0001) 
compared with the healthy rats group (Figure 3C-E). 
In groups treated with CFA we observed a decrease of  
expression; in the TAA + CFA group this was 1.6-fold 
for TNF-α (P < 0.05), 9-fold for IL-1β (P < 0.01); and 
6.1-fold for IL-6 (P < 0.05); and in the BDL + CFA 
group there was a decrease of  9.4-fold for TNF-α (P < 
0.001), 1.1-fold for IL-1 and 5.1-fold for IL-6 (P < 0.001) 
(Figure 3C-E).

Antioxidant enzymes gene expression and activity is 
modified by CFA intake
It is known that both liver fibrosis models course with an 
oxidative stress state. Thus, antioxidant enzymes expres-
sion levels were analyzed. We noticed that hepatocellular 
expression of  SOD increased 1.5 (P < 0.05) and 1.6 (P < 
0.05)-fold in TAA and BDL models, respectively, when 
they received CFA (Figure 2D). Likewise, CAT enzyme 
expression was significantly increased, showing an in-
crease of  1.5-fold (P < 0.05) in the TAA model, and an 
increase of  211-fold (P < 0.05) in the BDL model (Figure 
2E). To explore this last effect we performed an assay to 
measure SOD and CAT antioxidant activities, where we 

found a strong correlation between mRNA expression 
and enzyme activity; in the BDL + CFA group antioxi-
dant CAT activity was significantly increased (535-fold) (P 
< 0.0001) (Figure 2F) and SOD activity increased twice 
compared with BDL group (Figure 2G).

Activity of Snai-1 and Nrf2 by Western blot
Protein levels of  the antioxidant transcription factor Nrf2 
were significantly higher in both animal models com-
pared to healthy rats. Treatment with CFA in liver-injured 
rats increased these levels significantly in both BDL and 
TAA models (Figure 4A). This increase suggests that 
Nrf2 could be inducing SOD and CAT expression, thus 
preventing liver damage.

On the other hand, the pro-fibrogenic transcription 
factor Snail-1 reduced its protein levels when the animals 
were treated with CFA in both animal models. These val-
ues were 2.33 and 3.25 times higher than healthy animals 
for BDL and TAA respectively, where animals treated 
with CFA presented values only of  0.77 and 1.58 times 
higher with respect to healthy animals (Figure 4B).

DISCUSSION
There are epidemiological data indicating that consump-
tion of  CFA protects against development of  chronic 
liver disease or reduces the severity of  the disease[12-14]. In 
vitro studies have shown beneficial effects of  CFA useful 
in preventing HSC activation and perpetuation of  this 
state[15,16]. Although there is a recent preliminary report 
describing the effect of  coffee on liver fibrosis[39], here 
we describe a more comprehensible mechanism for CFA 
action on the most important molecules implicated in 
liver fibrosis. Our experiments were designed to compare 
CFA effects in two experimental liver fibrosis models, 
BDL and chronic TAA intoxication, to test whether the 

Figure 2  Expression of fibrogenic and antioxidant genes in liver. Reverse transcription-polymerase chain reactions were performed for connective tissue growth 
factor (CTGF) (A), collagen Ⅰ (Col-1) (B), and transforming growth factor β1 (TGF-β1) (C), superoxide dismutase (SOD) (D) and catalase (CAT) (E). Gene amplifica-
tion was normalized against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. CAT (F) and SOD antioxidant activity (G) were analyzed by zymogra-
phy in acrylamide gels. TAA: Thioacetamide; BDL: Bile duct ligation; CFA: Caffeine.
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preventive effects of  CFA were independent of  the etiol-
ogy of  liver damage. Dose was chosen based on positive 
effects of  CFA regarding liver disease in epidemiologi-
cal studies. These studies suggested a CFA consumption 
of  274 mg/d approximately in humans (2 cups of  cof-
fee)[12,40-43]. In our study we used a CFA dose of  15 mg/kg 
per day, because it is known that rat metabolism is ap-

proximately 10 times more accelerated than humans[42,43]. 
This animal dose is translated to a human dose using the 
body surface area (calculated with Du Bois formula)[44-47], 
and an adjustment of  rat km (9) to human km (41), result-
ing in a human dose of  2.4 mg/kg (1.5 cups of  coffee)[46], 
and expecting the same beneficial effects observed in the 
animal model and diminishing the probability of  second-

Figure 4  Expression of transcriptional factors. Western-blots were performed for the transcriptional factor Nrf2 (A) and Snail-1 (B). Densitometric values were 
normalized against the constitutive protein glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and represented like fold increase respect to healthy animals. TAA: 
Thioacetamide; BDL: Bile duct ligation. CFA: Caffeine.
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ary effects.
It was observed that TAA-intoxicated rats treated 

with CFA had a higher body weight indicating overall 
improvement, probably because CFA reduces liver dam-
age (as seen in histological analysis) and thus prevents 
the loss of  appetite. Liver metabolic functions could be 
less altered, indicating that BDL and liver damage are the 
most important factors in weight loss.

In a previous experimental study of  acute liver dam-
age induced by a single dose of  D-galactosamine/lipo-
polysaccharide, CFA pretreatment correlated with lower 
levels of  AST and ALT. Also, it has been reported in an 
animal model of  liver damage with alcohol that transami-
nase levels are diminished by the effect of  CFA. However 
these experimental models are different than the ones 
used in this communication[48,49].

Our results also show that CFA-treated groups had 
lower levels of  AST and ALT. It was observed that levels 
of  both enzymes were similar for both animal models 
(BDL + CFA and TAA + CFA), and comparing these 
levels with healthy rats, no significant differences were 
found. These results suggest that CFA treatment prevents 
hepatocellular damage resulting in normal levels of  these 
enzymes with prevention of  liver fibrosis.

A study in patients with chronic hepatitis C shows 
that a daily CFA consumption above 308 mg (approxi-
mately 2.25 cups of  coffee) was significantly associated 
with reduced liver fibrosis, and the protective association 
persisted after controlling for age, sex, race, liver disease, 
body mass index and alcohol intake in all patients[12].

Our results presented in this report are similar; we 
showed that fibrosis was successfully prevented in the 
liver of  rats treated with CFA, finding a strong effect of  
CFA on ECM content in rat liver, showing 80% reduction 
in the TAA + CFA group and 38% reduction in the BDL 
+ CFA group. Both results show that CFA had a power-
ful preventive effect on the development of  fibrosis. The 
Modified Histological Activity Index of  Knodell resulted 
in significantly lower fibrosis in both treated groups.

In a previous in vitro study, it was found that CFA 
increases intracellular cAMP, resulting in inhibition of  
CTGF via Smads proteosomal degradation[18]. CTGF has 
similar effects to TGF-β1 as ECM production stimula-
tion, chemotaxis, proliferation and integrin expression. 
Our in vivo data shows that CFA has a strong effect on 
hepatic CTGF expression, resulting in lower expression 
of  profibrogenic and pro-inflammatory genes. TGF-β1 
is a major fibrogenic mediator in which expression is 
increased in inflamed liver and it is considered the prin-
cipal fibrogenic component[47]. It has been suggested 
that TGF-β1 up-regulates gene expression of  connective 
tissue, and Col-1 in activated HSC[6,47]. Results obtained 
in CFA-treated groups are very interesting, since in both 
animal models Col-1 expression was significantly lower, a 
result that correlates with fibrosis percentage shown for 
each group with CFA.

It has been observed that liver fibrosis process devel-
opment is accompanied by inflammation, in which pro-

inflammatory cytokines play an important role in the per-
petuation of  signaling pathways[47,50]. Furthermore, one 
report in alcoholic liver injury shows that CFA decreased 
serum and tissue inflammatory cytokines levels[48]. In this 
study we found that induction of  both liver fibrosis mod-
els had a large amount of  inflammatory cell infiltrate; in 
contrast, CFA-treated groups showed decreased number 
of  inflammatory cells, necroinflammation, CD11b posi-
tive areas and TNF-α levels. These results at cellular and 
molecular levels match with serum and tissue inflamma-
tory cytokines levels in other studies about CFA[48].

IL-1β expression was reduced in CFA-treated groups. 
ECM signaling is of  great importance as it serves as a 
reservoir of  various cytokines such as TGF-β1, TNF-α, 
platelet-derived growth factor (PDGF), IL-6 and IL-1β, 
protecting these factors for proteolysis and modulating its 
bioactivity and bioavailability. In this microenvironment, 
the cytokines might have a key role in the onset of  fibro-
sis, and perpetuating inflammation[47], where CFA treat-
ment could be useful to break this inflammatory circle, as 
demonstrated in our different experiments.

HSC have an important role in fibrosis and fibrosis 
development. HSC activation and proliferation, and col-
lagen synthesis are influenced by factors derived from 
Kupffer cells (TGF-β1, TNF-α, IL-1β, IL-6 and IL-4), 
endothelial cells (PDGF) and hepatocytes (insulin-like 
growth factor). Also, TNF-α, IL-1β, TGF-β1, IL-6 and 
IL-4, and PDGF are regulated by NF-κB and this pro-
motes inflammatory signaling pathway perpetuation[9-11]. 
We found that CFA promotes lower levels of  pro-
inflammatory cytokines expression. These findings could 
be due to the fact that CFA prevents HSC activation and 
ECM production.

ROS activate the NF-κB pathway. It is known that 
both liver fibrosis induction models used here, course 
with an oxidative stress state. Because of  this, we mea-
sured antioxidant enzymes gene expression levels to 
monitor them with CFA treatment[51].

As expected, untreated groups showed lower expres-
sion of  antioxidant enzymes SOD and CAT, indicat-
ing indirectly an oxidative stress state. CFA-treated rats 
showed higher levels of  antioxidant enzymes, especially 
of  CAT in the BDL + CFA group, that could be ex-
plained by the type of  substrate metabolized (hydrogen 
peroxide). SOD catalyzes O2

- dismutation into O2 and 
H2O2. In contrast, CAT catalyzes decomposition of  
H2O2 into O2 and H2O[45]. Considering this, we assume 
that CAT was much higher in the BDL + CFA group, 
due to accumulation of  H2O2 at 4 wk of  treatment by 
SOD action. To verify this last effect we performed an 
assay to measure CAT antioxidant activity, where we 
found a strong correlation between mRNA expression 
and enzyme activity, especially in the BDL + CFA group; 
antioxidant CAT activity was significantly increased (P < 
0.0001) compared with BDL group.

Along with these results, the significant higher ex-
pression of  transcription factor Nrf2 in the CFA treated 
groups supports the evidence of  the potent antioxidant 
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effect of  CFA acting as an important hepatoprotector 
agent in the presence of  a chronic organ aggression. 
These results agree with the report by Boettler et al[52] 

where they found higher expression of  Nrf2 in humans 
with consumption of  coffee with respect to normal diet 
where Nrf2 expression was reduced. In response to oxi-
dative stress Nrf2 is activated, translocates to the nucleus 
and binds to the promoter of  its target genes such as 
CAT and SOD inducing their expression. Nrf2 half  life 
is around 13-20 min. In oxidative stress and in the pres-
ence of  antioxidant molecules like quercetin, the half-life 
is duplicated[53]. Thus, given that CFA is also an antioxi-
dant molecule, we believe the same thing may be taking 
place, though it would require additional experiments to 
test this hypothesis. Nguyen et al[54] have suggested that in 
oxidative stress, Nrf2 diminishes its degradation accumu-
lating in nucleus increasing its transcriptional activity.

On the other hand, activation of  HSC is a complex 
process where the transcriptional factor Snail-1 has an 
important role.

In vertebrates Snail-1 is activated by a different signal 
pathway from ERK2, NF-κB and phosphatidylinositol 
3-kinase[55-57]. All these pathways have been involved in 
activation of  HSC. Several authors have reported the 
overexpression of  Snail-1 in pathological conditions 
associated with ECM deposition[23,24]. In vitro studies 
showed that Snail-1 is expressed by HSC and its tran-
scription is augmented in vitro and in vivo in activated 
HSC compared with quiescent HSC. At the protein level, 
the nuclear translocation of  Snail-1 in activated HSC was 
observed[58].

Scarpa et al[25] reported that the use of  an adenovec-
tor expressing Snail-1 small-interfering (sh) RNA to 
silence Snail expression in HSC isolated from mouse, 
dramatically reduced activation-related genes α-smooth 
muscle actin (α-SMA) and Col-1 and increased quies-
cence-related gene peroxisome proliferator-activated re-
ceptor, evidencing the important role of  Snail-1 in HSC 
activation (Snail-1 transcription factor Am J Physiol 2011). 
However other studies suggest a multiple cell-type origin 
of  cell source for Snail-1 in human liver fibrosis; thus, 
this fact should be analyzed. Indeed, it was reported that 
Snail-1 overexpression induces epithelial mesenchymal 
transition and siRNA against Snail-1 attenuated this 
epithelial mesenchymal transition. Immunostaining of  
fibrotic livers from mice treated with CCl4 revealed the 
presence of  Snail-1+, α-SMA+ cells as well as Snail-1+ 
α-SMA- and Snail-1-α-SMA+ cells along the fibrotic 
septa. This staining pattern could be explained by the 
epithelial mesenchymal transition process where hepato-
cytes transdifferentiate to mesenchymal cells resulting in 
new HSC[59-61].

In the same way, Dooley et al[62] observed a hepatic 
marker at the border of  the inflamed region from human 
liver Snail-1+ cells lacking transferrin and they hypothesize 
that these cells are hepatocytes in a later stage of  transi-
tion to mesechymal cells.

In our results, CFA treatment diminished Snail-1 ex-

pression in rats with chronic liver injury suggesting that 
CFA prevents HSC activation and suggesting its protec-
tor effect on fibrosis development. Our results together 
allow us to propose CFA use in pathologies with early 
chronic damage before the establishment of  fibrosis.

The observed effect of  CFA in this work on necrosis 
of  hepatocytes and on HSC activation could be explained 
by an indirect effect of  CFA. This might be taking place 
through a decrease of  oxidative stress in the liver pro-
duced principally by Kupffer cells which secret cytokines 
activating HSC.

From the very beginning of  its administration, CFA 
neutralizes free radicals and induces antioxidant mol-
ecules production which protect hepatocytes from CCl4 
damage; this means there is less hepatocyte death, reflect-
ed in there being lower levels of  ALT and AST found in 
CFA treatment groups. TGF-β and TNF-α production is 
decreased rendering a drop in HSC activation, and con-
sequently, less fibrosis. On the other hand, ECM deposi-
tion and loss of  microvilli on hepatocytes caused by CCl4 
intoxication blocks the free flow of  nutrients causing 
hepatocytes death. It was found in this paper that CFA 
treatment yields less fibrosis, less block of  nutrients and 
less hepatocyte death. However, a direct effect of  CFA 
on hepatocytes and HSC cannot be ruled out.
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