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Subduction tectonics imposes an important role in the evolution
of the interior of the Earth and its global carbon cycle; however,
the mechanism of the mantle–slab interaction remains unclear.
Here, we demonstrate the results of high-pressure redox-gradient
experiments on the interactions between Mg-Ca-carbonate and
metallic iron, modeling the processes at the mantle–slab bound-
ary; thereby, we present mechanisms of diamond formation both
ahead of and behind the redox front. It is determined that, at
oxidized conditions, a low-temperature Ca-rich carbonate melt is
generated. This melt acts as both the carbon source and crystalli-
zation medium for diamond, whereas at reduced conditions, di-
amond crystallizes only from the Fe-C melt. The redox mechanism
revealed in this study is used to explain the contrasting heteroge-
neity of natural diamonds, as seen in the composition of inclu-
sions, carbon isotopic composition, and nitrogen impurity content.
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Subduction of crustal material plays an important role in the
global carbon cycle (1–6). Depending on oxygen fugacity and

pressure-temperature (P-T) conditions, carbon exists in the Earth’s
interior in the form of carbides, diamond, graphite, hydrocarbons,
carbonates, and CO2 (7–11). In the upper mantle, the oxygen fu-
gacity (fO2) varies from one to five log units below the fayalite-
magnetite-quartz (FMQ) buffer, with a trend of a decrease with
depth (6, 12–15). At a depth of ∼250 km, mantle is reported to
become metal saturated (16, 17), which holds true for all mantle
regions below, including the transition zone and lower mantle. The
subduction of the oxidized crustal material occurs to depths greater
than 600 km (4–6). The main carbon-bearing minerals of the
subducted materials are carbonates, which are thermodynamically
stable up to P-T conditions of the lower mantle (10, 11, 18). As
evidenced by the compositions of inclusions in diamond, which vary
from strongly reduced, e.g., metallic iron and carbides (19–23), to
oxidized, e.g., carbonates and CO2 (6, 20, 24–28), carbonates may
be involved in the reactions with reduced deep-seated rocks, in-
cluding Fe0-bearing species (29–31). A scale of these reactions is
determined mainly by the capacity of subducted carbonate-bearing
domains. An important consequence of such an interaction is that it
can producediamond.However, studies ondiamond synthesis via the
reactions between oxidized and reduced phases are limited (32–35).
To understand the mechanisms of the interaction of carbon-

bearing oxidized- and reduced-mineral assemblages, we performed
high-pressure experiments with an iron-carbonate system; an ap-
proach was used that enabled the creation of an oxygen fugacity
gradient in the capsules (Materials and Methods and SI Materials
and Methods).

Results and Discussion
The experimental results and the phase compositions are given
in Table 1 and Table S1, respectively. At temperatures of 1,000
and 1,100 °C, the iron–carbonate interaction can be described, in
general, by the reaction

ðMg;CaÞCO3 +Fe0 → ðFe;MgÞO+Fe3C+ ðCa;Mg;FeÞCO3 +C0:

[1]

Iron carbide (Fe3C, cohenite) in the above reaction is formed
on saturation of the iron with reduced carbon. This iron carbide
further reacts with the initial carbonate to produce an associa-
tion of magnesiowustite + metastable graphite + Ca-rich car-
bonate. Finally, in the central (reduced) part of the capsules, Fe3C
is produced, which is surrounded by a reaction zone (Fig. 1A),
consisting of carbide, graphite, and magnesiowustite. The mag-
nesiowustite exhibits an increase in the Mg number (Mg#) from
0.13 at the contact with carbide to 0.37 at the periphery of the
zone. In the outer (oxidized) part of the capsules, an assembly of
magnesiowustite (Mg# = 0.38), aragonite (Ca# = 0.89), and
graphite (Fig. 2A) is formed. When cohenite was used as the
starting material instead of iron, the character of the interaction
did not change, but the amount of graphite significantly increased.
At 1,200 °C and higher temperatures, a Ca-rich carbonate melt

coexisting with almost Ca-free magnesiowustite and ferromagne-
site was present in the system. On quenching, this melt crystallized
to dendritic aggregates of Ca,Mg,Fe carbonates and magnesiowus-
tite (Figs. 1 B andD and 2 B–E). A notation [CaCO3 + (Fe,Mg)O]L
will further be used to designate the Ca-rich carbonate melt with
dissolved magnesiowustite. As a result of the redox reaction,
metallic iron extracts carbon from carbonate to form carbide. A
reaction zone, consisting of high-Fe magnesiowustite, Fe3C,
and graphite is formed around the carbide (Fig. 2F). Cohenite
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reduces some carbon from the carbonate melt, according to the
reaction

ðCa;Mg;FeÞCO3ðLÞ +Fe3C→ ðFe;MgÞO+ ½CaCO3

+ ðFe;MgÞO�L +C0: [2]

Thus, in the center, where carbide and the reaction zone (Mws +
Coh + Gr) are present, the fO2 values correspond approximately
to that of the iron-wustite (IW) buffer (about FMQ-5 log units).
In the peripheral part of the capsules, where the magnesiowustite +
carbonate melt + C0 association is formed, fO2 corresponds to
values characteristic of magnesiowustite-poor carbonate melt in
equilibrium with graphite or diamond (about FMQ-1 log unit)
(14). Therefore, at the initial stages of the interaction, the oxygen
fugacity gradient over the capsules is nearly 4 log units. As a
consequence, a redox front arises at the iron/carbonate boundary.
As the interaction progresses, the fO2 gradient in the capsules
gradually decreases. A reconstructed scheme of the iron-carbon-
ate interaction is shown in Fig. 3. The exchange between the ox-
idized periphery and reduced center involves a fluid and Ca-rich
carbonate melt, capable of dissolving and transporting a significant
amount of magnesiowustite. In this process, the melt is partly
consumed to form magnesiowustite and elemental carbon. The
rate of the iron–carbonate interaction can be estimated by the
width of the reaction zone containing magnesiowustite. It was
determined that the fronts of the iron–carbonate and carbonate–
cohenite reactions propagate at similar rates, which increase from
6.7 to 14.8 μm/h as the temperature increases from 1,000 °C to
1,400 °C, respectively, at 7.5 GPa. The redox interaction ceases
when Fe3C is completely consumed.
The compositions of the final phases and their trends are

shown in Table S1 and Fig. 4. The Mg# of magnesiowustite and

ferromagnesite, coexisting with the carbonate melt, increases with
temperature. An increase in temperature, and thus the degree of
partial melting, leads to a decrease in Ca# of the carbonate melt.
Analyses of the quench aggregate show that the carbonate melt
can dissolve a significant amount of magnesiowustite, as high as 15
wt.% at 1,200 °C and up to 22 wt.% at 1,650 °C.
The formation of elemental carbon (graphite and diamond)

through the iron–carbonate redox interaction deserves special
consideration. In most experiments, as a result of the oxidation
of iron carbide, metastable graphite in association with magne-
siowustite is formed in the central zone (Fig. 2 D and E). Crys-
tallization of graphite rather than diamond can be accounted for
by the absence of the solvent, as well as by the P-T conditions
insufficient for the direct graphite-to-diamond transformation.
Finally, in most experiments after complete exhaustion of cohenite,
a graphite lens (Fig. 1C) with inclusions of carbide in association
with magnesiowustite remains in the center of the samples.
However, in some experiments at temperatures ≥1,450 °C (Table
1), a quenched metal melt with relatively large (up to 1 mm)
diamond crystals (Fig. 5) occurred. The number of diamond
nucleation centers is rather small (10−1/mm3), and the growth
rate is ∼40 μm/h. Crystallization of these diamonds is associated
with the appearance of a metal-carbon melt, which arises due to
the existence of the metastable Fe-graphite eutectic (8, 36). At
the initial stages of the interaction, the iron is gradually saturated
with carbon to form metal-carbon melt and carbide. If graphite is
in contact with the metal melt, nucleation of diamond occurs. As
iron reacts with carbonate, the metal melt saturates with carbon,
and the iron is gradually consumed by oxidation. Thereby, car-
bon supersaturation is established in the residual melt, which
facilitates further growth of the diamond. A similar mechanism
possibly operates in the micropools of metal melt, located in the
reaction zone containing magnesiowustite. In this case, diamond

Table 1. Experimental conditions and results

Run no. P, GPa T, °C t, h

Initial composition, mg

Phase association of zones* (from center to periphery of samples)Mg0,9Ca0,1CO3 Fe0

1567 6.5 1,350 20 440 507 [Сoh, (Fe-C)L] → [Coh, Mws, Gr] → [Mws, (Carb+Mws)L, Gr] →
[Fms, (Carb+Mws)L, Dm, Dm*]

1250 6.5 1,450 20 340 700 [Сoh, (Fe-C)L] → [Coh, Mws, Gr, Dm] → [Mws, (Carb+Mws)L, Gr, Dm] →
[(Carb+Mws)L, Mws, Gr, Dm]

1566 6.5 1,550 10 340 535 [Сoh, (Fe-C)L, Dm] → [Coh, Mws, Dm] → [Mws, (Carb+Mws)L, Gr, Dm] →
[(Carb+Mws)L, Gr, Dm]

1571 6.5 1,600 8 440 494 [Coh, (Fe-C)L, Dm] → [Coh, Mws, Dm] → [Mws, (Carb+Mws)L, Gr,Dm] →
[(Carb+Mws)L, Gr, Dm]

1541 7.5 1,000 60 110 55 Coh → [Coh, Mws, Gr] → [Mws, Marg, Gr] → [Fms, Marg]
1540 7.5 1,100 60 110 53.9 [Mws, Marg, Gr] → [Fms, Marg, Gr]
1532 7.5 1,200 60 110 58 [Mws, (Carb+Mws)L, Gr] → [Fms, (Carb+Mws)L, Mws, Gr, Dm**]
1528 7.5 1,300 60 130 80 [Mws, (Carb+Mws)L, Gr, Dm] → [Fms, (Carb+Mws)L, Mws, Gr, Dm, Dm**]
1525 7.5 1,400 60 130 78 [Mws, (Carb+Mws)L, Gr, Dm] → [Fms, (Carb+Mws)L, Mws, Gr, Dm, Dm**]
1517 7.5 1,450 30 140.1 59.1 [Mws, (Carb+Mws)L, Gr, Dm] → [(Carb+Mws)L, Mws, Fms, Gr, Dm]
1515 7.5 1,550 20 127.2 56.1 [Mws, (Carb+Mws)L, Gr, Dm] → [(Carb+Mws)L, Mws, Fms, Gr, Dm]
1521 7.5 1,650 8 140 75.8 [Mws, (Carb+Mws)L, Dm] → [(Carb+Mws)L, Fms, Dm]

Mg0,9Ca0,1CO3 Fe3С
1561 7.5 1,000 60 110 63 Coh → [Coh, Mws] → [Coh, Mws, Gr] → [Mws, Arg, Gr] → [Fms, Arg]
1560 7.5 1,100 60 110 57 Coh → [Coh, Mws] → [Coh, Mws, Gr] → [Mws, Arg, Gr] → [Fms, Arg]
1552 7.5 1,200 60 110 67 Coh → [Coh, Mws, Gr] → [Mws, (Carb+Mws)L, Gr] →

[Fms, (Carb+Mws)L, Mws, Dm**]
1548 7.5 1,300 60 120 107 Coh → [Coh, Gr, Mws] → [Mws, (Carb+Mws)L, Gr] →

[(Carb+Mws)L, Mws, Fms, Gr, Dm**]
1545 7.5 1,400 60 120 110 Coh → [Coh, Gr, Mws] → [Mws, (Carb+Mws)L, Gr] →

[Fms, (Carb+Mws)L, Mws, Gr, Dm, Dm**]

*Compositions of phases from different zones are given in Table S1. Arg, aragonite; (Carb+Mws)L, carbonate melt with dissolved magnesiowustite; Coh,
cohenite (Fe3C); Dm, diamond; Dm**, diamond growth on seeds; (Fe-C)L, iron-carbon melt; Fms, ferromagnesite; Gr, graphite; Marg, Mg-aragonite; Mws,
magnesiowustite.
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microcrystals (3–5 μm in size) and their aggregates are formed.
Finally, the metal-carbon melt is consumed completely and
replaced with diamonds, in association with magnesiowustite. It
is important to note that in experiments where Fe3C was used
instead of Fe0 as the starting material, no metal-carbon melt was
generated, and consequently, no diamonds were seen to form
ahead of the redox front.
Behind the redox front, in the oxidized conditions, diamond

growth on the seeds in the carbonate melt is established at
temperature as low as 1,200 °C. At 1,300 °C, spontaneous growth
of diamond crystals occurs on the seeds, which demonstrates
heterogeneous nucleation. At temperatures ≥1,400 °C, homo-
geneous nucleation of diamond takes place (Fig. 5). With in-
creasing temperature from 1,200 °C to 1,650 °C, the average
diamond growth rate increases from 0.04 to 2 μm/h, respectively.
The number of diamond nuclei in the carbonate melt increases
from tens to hundreds per cubic millimeter as the temperature
increases from 1,400 °C to 1,650 °C. The formation of diamond
from the carbonate melt can generally be described by reaction

2. These diamonds grew through the carbon reduction from the
carbonate melt, as long as the Fe3C was present in the capsule.
New diamonds nucleate near the interface between the inter-
acting Fe3C and carbonate melt. When the Fe3C is completely
consumed, redox reaction 2 ceases, but a significant amount of
carbon in the form of metastable graphite remains in the central
part of the capsule. Therefore, in prolonged experiments, di-
amond growth continues owing to the transport of carbon dis-
solved in the carbonate melt, along with the recrystallization of
magnesiowustite. Thus, we can conclude that the carbonate melt,
generated in the course of the carbonate–iron interaction at
temperatures ≥1,200 °C, plays a key role in the formation of
diamond, being both a crystallization medium and the source
of carbon.
Infrared absorption measurements show that diamond crystals

synthesized in the metal-carbon melt contain 100–200 atomic
ppm of nitrogen impurity in the form of single substitutional
atoms (C-centers; Fig. 5). Inclusions of the quenched Fe-C melt
are typical of these crystals. Diamonds, formed in the carbonate
melt, exhibit significantly higher nitrogen concentrations ranging
from 1,000 to 1,500 ppm. Nitrogen in this case is present mainly

Fig. 1. SEM micrographs: (A) reaction zone (cohenite + magnesiowustite +
graphite) (N 1541); (B) magnesiowustite crystals in a dendritic aggregate of
quenched carbonate and magnesiowustite (N 1521); (C) lens of metastable
graphite in a dendritic aggregate of carbonate and magnesiowustite (N
1517); (D) dendritic aggregate of carbonate and magnesiowustite (N 1532);
(E) diamond and magnesiowustite in quenched carbonate melt (N 1515); (F)
diamond in polycrystalline aggregates of magnesiowustite, cohenite, and
quenched iron-carbon melt (N 1566). Coh, cohenite (Fe3C); Mws, magne-
siowustite; L, carbonate melt with dissolved magnesiowustite; (Fe-C)L, iron-
carbon melt; Arg, aragonite; Gr, graphite; Dm, diamond.

Fig. 2. SEM micrographs of representative phase assemblages, combined
with compositional maps: (A) magnesiowustite + aragonite + graphite at the
contact with ferromagnesite (N 1541); (B) dendritic aggregate of carbonates
and magnesiowustite (N 1515); (C) ferromagnesite in carbonate melt (N 1517);
(D) magnesiowustite and metastable graphite in carbonate melt (N 1250); (E)
magnesiowustite, metastable graphite, and diamond in carbonate melt (N 1525);
(F) reaction zone (cohenite + magnesiowustite) (N 1250). Fms, ferromagnesite.
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as C-centers, but for diamonds crystallized at higher temper-
atures (>1,500 °C) with considerable run duration (20 h), a sig-
nificant portion of nitrogen (30–40%) occurs in the aggregated
form, as nitrogen pairs or the so-called A-centers. In addition,
absorption spectra frequently showed an absorption peak at
∼1,440–1,450 cm−1, which is associated with carbonate inclu-
sions, and a weak peak at 3,107 cm−1, which is due to hydrogen-
related defects (Fig. 5). It is interesting to note that, whereas the
nitrogen content of ∼200 ppm is typical for most synthetic dia-
monds produced from metal–carbon systems, concentrations of
around 1,000 ppm is normal for natural type Ia diamonds.
Carbon isotope analysis reveals that the starting carbonate has

δ13C = +0.2 ‰, relative to the Pee Dee Belemnite (PDB) stan-
dard. The iron carbide formed in the reduced part of the capsules
at 6.5 GPa and temperatures of 1,350 °C, 1,450 °C, and 1,550 °C
has δ13C of −3.7‰, −5.9‰, and −5.0‰, respectively. The car-
bonate melt, which is present in the oxidized part of the capsules,
is enriched in the heavy carbon isotope and has δ13C = +2.1‰
(1,350 °C), +1.7‰ (1,450 °C), and +1.4 ‰ (1,550 °C). Thus, the
isotope fractionation, accompanying the formation of iron carbide
from the carbon of carbonate, has an average magnitude of 6.5‰.
The interaction of carbonate with Fe0 is considered a simpli-

fied model of the processes attending the interaction of Fe0-
saturated peridotites with oxidized subducted crustal material in
the deep zones of the Earth. Therefore, we believe that the basic
regularities, found in this study, may reasonably be applied to
natural, more complex systems. Taking into account the results
of previous studies on diamond crystallization in different systems
modeling natural media, we can discuss the possible effects of the

individual components on the diamond-forming processes. First,
it should be noted that the presence of alkalies will significantly
decrease the temperature of generation of carbonate melts
(37–39). A similar effect will be produced by H2O-CO2 fluids
(40–42). It was experimentally shown that the addition of these
components in the system significantly increases the diamond-
forming ability of mantle fluids/melts (43, 44), acting in the ox-
idized conditions behind the redox front. Under reducing con-
ditions, ahead of the redox front, where the diamond crystallized
from Fe-C melt only, the presence of H2O will lead to the in-
hibitory effect on the diamond-forming process (45). The addition
of sulfur to the Fe-C system significantly decreases the melting
temperature (46, 47). The produced melts are two immiscible
liquids, with compositions similar to the Fe3C and FeS. Sulfide
melts are the least efficient diamond-forming media compared
with carbonate, fluid, and carbonate-silicate-fluid environments
(48, 49). The role of sulfides as reducing agents in the interaction
with carbonates or CO2 fluid, leading to the formation of ele-
mental carbon (graphite or diamond), was experimentally dem-
onstrated (35, 50).
The applicability of the redox mechanism is to the existence of

deep zones in the Earth, containing native iron or iron carbides,
and the possibility of subduction of carbonate minerals to these
depths. In fact, there has been a growing body of evidence for the
ultradeep subduction of carbonates and their participation in

A

B

Fig. 3. A scheme of the iron–carbonate interaction, illustrating the mech-
anism of redox front formation via fO2 gradient: (A) distribution of phases
in a sample; (B) fO2 profiles in a sample at the initial stage (solid line) and at
a certain moment of the redox interaction (dashed line). Arrow denotes
direction of the redox front propagation.
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the formation of diamonds. This evidence involves the dis-
covery of inclusions in diamonds, consisting of carbonates in
association with the superdeep phases CaSiO3 or MgO +MgSiO3,
as well as some experimental and geochemical observations (51–
54). Our results suggest that the Ca-rich carbonate melt, which
forms through the carbonate–iron interaction and can be
generated even in the absence of alkalis and H2O, can be
considered as a transmantle interstitial melt. High solubility of
magnesiowustite in this carbonate melt produces a relatively
low-melting temperature. The minimum temperature of nucle-
ation and growth of diamonds in the carbonate melt, estab-
lished in this study, is lower than that previously found for dry
alkaline-carbonate melts (55).
Another important implication of the proposed redox front

model is that it can explain the occurrence of inclusions in nat-
ural diamonds, with contrasting fO2, which are traditionally
considered as indicators of differing redox conditions (6, 21).
The specifics of nucleation and growth of diamond under the
carbonate–Fe0 interaction may result in diamond formation at
reduced conditions. Findings of central inclusions in diamond,
represented by Fe0 + Fe3C + graphite and FeO + graphite
assemblages (21), indicate possible relevance of the studied in-
teraction to the natural processes. On the other hand, diamonds,
which are thought to originate from the lower part of the tran-
sition zone, contain primary alkali-earth carbonate inclusions
(e.g., CaCO3) (52). These diamonds could have formed from
a Ca-rich carbonate melt, produced as a result of the subduction
of oxidized material. We believe this to be a possible situation
in nature, whereby diamonds nucleate in the metal melt and

subsequently crystallize in the carbonate melt. In addition, it was
determined that magnesiowustite formed in our experiments both
at reduced and oxidized conditions, and its composition changes
significantly as the redox front propagates. Therefore, we propose
that the variations in the Mg/Fe ratio found for magnesiowustite
inclusions in diamonds (53, 56) are directly related to the pro-
cesses investigated in our experimental study.
A noteworthy finding in our study is highly contrasting con-

centrations of nitrogen impurities, exhibited by diamonds, crys-
tallized at reduced and oxidized conditions in the course of a
single redox interaction. This observation demonstrates that the
partition coefficients of nitrogen are different for diamond
crystallization in metal and carbonate melts and will require
additional investigation. Nevertheless, even with the present
results, it becomes clear that the changes in the crystallization
conditions, brought about by the redox front propagation, can
give rise to contrasting zonation in nitrogen and related defects
distribution within a single diamond crystal. In general, the ni-
trogen content increases as the conditions evolve from reducing
to oxidizing, with variations being on the order of ∼1,000 ppm.
Our results show that the carbide, formed via the interaction

of carbonate with carbon-free iron, is significantly depleted in
the heavy-carbon isotope relative to the carbonate source. It is
logical that the residual carbonate is enriched with 13C. Thus,
experimental data showed that nitrogen-poor diamonds grew in
the reduced 13C-depleted part of capsule, whereas nitrogen-rich
diamonds occurred in the oxidized 13C-enriched part of capsule.
This general tendency of a simultaneous decrease of 13C value
and N abundance in diamonds fits well the “limit sector” cor-
relation of N abundance and 13C values in natural diamonds
worldwide (57). One of the possible reasons of such observed
interrelations of nitrogen and 13C concentrations in natural
diamonds can be a segregation of carbonate melt to form a di-
aper and its subsequent migration (38, 58) that can lead to the
formation of contrasting domains of carbon isotopes in the
Earth’s low mantle. Taking into account the average magnitude
of the fractionation of 6.5‰ and the nitrogen behavior (see
above), the redox interaction can be considered as one of the
mechanisms responsible for the complex compositional hetero-
geneity of natural diamonds (59–64).
Most of subducted carbonates have compositions of the

MgCO3-CaCO3 series. Based on our results with such carbonate
systems, we conclude that inclusions of Ca-rich carbonates, espe-
cially in association with magnesiowustite and other mantle min-
erals, are likely the products of the mechanism deduced from
our experimentation.

Materials and Methods
Experiments were performed at pressures of 7.5 and 6.5 GPa, at temperatures
of 1,000–1,650 °C and 1,350–1,600 °C, respectively, and with durations from
8 to 60 h, using a split-sphere multianvil apparatus (65). Details on the P-T
calibration and accuracy of the measurements are given in ref. 66. Pt cap-
sules of relatively large volume (6 and 10 mm in diameter at 7.5 and 6.5 GPa,
respectively, 3.5–4.0 mm long) were used to enable a detailed study of the
effects associated with the redox front propagation. The starting materials
were mixtures of natural magnesite and dolomite, with bulk composition
of (Mg0.9Ca0.1)CO3, powdered Fe0 (99.999%), and presynthesized Fe3C. A
pellet of pressed iron or cohenite was placed into a carbonate container,
which was then loaded into Pt capsules. This sandwich-type assembly of
the reagents provided an fO2 gradient over the samples and prevented the
reaction between the metallic iron and Pt (Fig. S1). After runs, samples
from different parts of capsules were studied using X-ray and electron
microprobe analyses, optical and scanning electron microscopy, and Raman
and infrared spectroscopy. Phase identification of run products was per-
formed by X-ray diffraction (a DRON-3 diffractometer) and Raman spec-
troscopy. Raman spectra were measured using a Horiba J.Y. LabRAM HR800
spectrometer, with an Ar-ion laser (514 nm). An investigation of phase
relations and measurements of energy dispersive spectra (EDS) of various
phases were performed using a Tescan MIRA3 LMU SEM. The morphology of
microdiamond crystals was studied using a Tescan MIRA3 LMU SEM and

Fig. 5. SEM micrographs of crystallized diamonds and their typical infrared
spectra: (A) diamond crystal from the metal-carbon melt (N 1566, 6.5 GPa,
1,550 °C); (B) diamond crystal from carbonate melt (N 1521, 7.5 GPa, 1,650 °C);
(C ) typical infrared absorption spectra of diamond crystals from (1) metal-
carbon melt and (2 and 3) carbonate melt. The spectra have been vertically
displaced for clarify.

20412 | www.pnas.org/cgi/doi/10.1073/pnas.1313340110 Palyanov et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1313340110/-/DCSupplemental/pnas.201313340SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1313340110


an Olympus BX51 optical microscope. Infrared absorption spectra of
diamonds were measured using a Bruker Vertex 70 FTIR spectrometer
fitted with a Hyperion 2000 IR microscope. The isotopic analysis of car-
bon was performed using an isotope-ratio MAT-Delta mass spectrome-
ter. Chemical compositions of synthetic phases were investigated using
a Cameca Camebax-Micro microprobe. For electron microprobe analysis,
polished sections of the samples were prepared. Mineral phases were
analyzed with a focused electron beam of 1 μm diameter. Compositions

of the quenched melt were defined using a defocused beam of 20–30 μm
in diameter.
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