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Bacterial populations growing in a changing world must adjust their
proteome composition in response to alterations in the environment.
Rapid proteome responses to growth medium changes are expected
to increase the average growth rate and fitness value of these
populations. Little is knownabout thedynamics of proteome change,
e.g., whether bacteria use optimal strategies of gene expression
for rapid proteome adjustments and if there are lower bounds to
the time of proteome adaptation in response to growth medium
changes. To begin answering these types of questions, we modeled
growing bacteria as stoichiometrically coupled networks of meta-
bolic pathways. These are balanced during steady-state growth in
a constant environment but are initially unbalanced after rapid
medium shifts due to a shortage of enzymes required at higher
concentrations in the new environment. We identified an optimal
strategy for rapid proteome adjustment in the absence of protein
degradation and found a lower bound to the time of proteome
adaptation after medium shifts. This minimal time is determined by
the ratio between the Kullback–Leibler distance from the pre- to
the postshift proteome and the postshift steady-state growth rate.
The dynamics of optimally controlled proteome adaptation has
a simple analytical solution. We used detailed numerical modeling
to demonstrate that realistic bacterial control systems can emulate
this optimal strategy for rapid proteome adaptation. Our results may
provide a conceptual link between the physiology and population
genetics of growing bacteria.
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A challenging problem in bacterial physiology is to understand
how bacteria adapt to changes in nutritional supply to grow

rapidly in different environments (1). More than 50 y ago, the
remarkable observation was made that the cell mass and in-
tracellular composition of protein, RNA, and DNA appeared to
be determined by the steady-state growth rate of bacterial pop-
ulation rather than by the nutritional composition of the growth
medium (2). The work of Schaechter et al. (2) and subsequent
seminal works on DNA replication (e.g., ref. 3) led to the con-
cept of growth rate-dependent control of physiological parame-
ters (4), later shown to be an approximation (1, 5). These early
observations along with later determinations of the varying
components of bacterial cells growing in changing environments
(e.g., ref. 5) have contributed greatly to today’s quantitative
bacterial physiology (ref. 6 and references therein).
The linear relation between growth rate andRNA content found

by Schaechter et al. (2) implies that the growth rate is a linear
function of the ribosome content of growing bacteria (4, 5). To this
first “growth law” have recently been added complementary growth
laws (6), suggesting partitioning of the bacterial proteome in three
functionally distinct sectors: (i) ribosomal proteins and auxiliary
translation factors, (ii) enzymes for nutrient uptake and metabo-
lism, and (iii) a fixed fraction independent of growth condition (6).
Bacterial cells continually import nutrients from the environ-

ment and convert them to intracellular metabolites, including
biomass precursors like amino acids and nucleotides. The trans-
formation of nutrients to intracellular metabolites is carried out in
a large network of enzyme-catalyzed reactions (7) with rates de-
termined by the abundance of enzyme molecules and the concen-
trations of their substrates and products. Formation of biomass

requires rates of supply of its precursors at fixed molar ratios (7)
implying stoichiometric coupling of the reaction flows in the met-
abolic network of the cell (8).
During the last decade, quantitative bacteriology has benefited

greatly from successful reconstruction of metabolic networks at
the genome scale based on whole genome sequences and bio-
chemical and enzymatic data (9). Computational modeling of such
networks has been used to predict phenotypic responses to envi-
ronmental changes (9, 10). Descriptions of proteome dynamics are
mainly based on coarse-grained models (7, 11–13) and these types
of approaches have recently culminated in an in silico model of
the whole Glycoplasma genitalium cell (14). Eventually, such
modeling efforts may be extended to reproduce important aspects
of the adaptation dynamics of bacterial cells (15).
Ehrenberg and Kurland (16) emphasized the Darwinian aspect

of bacterial growth by formulating criteria for optimal proteome
composition to achieve maximal growth rate and, thus, fitness value
of bacterial populations thriving in different environments. Among
these criteria is the demand for stoichiometrically balanced meta-
bolic pathways, the choice of an optimal rather than maximal
accuracy of tRNA selection in genetic code translation, and strong
selection pressure to maximize the ratio between kinetic efficiency
and peptide investment in all enzymes of the bacterial cell.
The starting point of the present work is the notion that there

is strong selection pressure not only for rapid steady-state growth
rate of bacteria but also for rapid adaptation of the bacterial
proteome to environmental change. This notion leads to two
major questions: First, what would be the optimal gene-expres-
sion strategy for minimal adaptation time after an environmental
shift? Second, can such an optimal gene-expression strategy be
emulated by the control systems of real bacteria?
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To answer these and related questions, we model bacterial
metabolism as a large network of stoichiometrically coupled
flows (8, 17) in which the set of currently rate-limiting compo-
nents determines the varying growth rate during bacterial ad-
aptation to an environmental shift. Applying control theory (18,
19), we demonstrate that the time of adaptation for an initially
unbalanced proteome to a new environment is minimized when
all intracellular protein synthesis is devoted to expression of the
rate-limiting components of the proteome. This optimal strategy
leads to simple, analytical expressions for proteome dynamics
during adaptation, and the minimal proteome adjustment time is
given by the Kullback–Leibler distance (20) from the pre- to the
postshift proteome divided by the postadaptation growth rate.
We use detailed numerical modeling of the repressor-controlled
metabolic pathways for amino acid synthesis (8, 17) to demon-
strate that realistic bacterial control systems can indeed emulate
the on–off optimal strategy for rapid proteome adaptation to
environmental shifts, provided that the feedback loops have
sufficiently high sensitivity amplification (21).
At the end of this report, we discuss extensions of the present

theory to include fitness maximization of populations growing in
a perpetually changing world and putative roles of protein deg-
radation for swift proteome adaptation.

Results
We consider a bacterial population that grows in a preshift en-
vironment with steady-state rate ~μ. At time 0 the environment
changes abruptly (1, 5) and the growth rate initially adopts the
postshift value μ(0). At this point the cell population starts
adapting to the new growth medium: its proteome composition
changes and the growth rate gradually increases toward its
steady-state value, μ̂, as determined by the quality of the postshift
medium (1, 5). To quantify the speed of adaptation, we define
a proteome adaptation time, τa, from the integral

τa =
Z∞
0

�
1− μðtÞ=μ̂�dt: [1]

Its meaning follows from the observation that the long-term bio-
mass increase in the postshift medium will be a factor of e−μ̂ · τa
smaller than if the bacterial population had been fully adapted
with growth rate, μ̂, immediately after the environmental shift.
For bacteria living in a changing world, long adaptation times
therefore lead to reduced fitness value, suggesting strong selec-
tion pressure for small τa -values. What then would be the opti-
mal gene-expression strategy for fast proteome reorganization
that minimizes the time of adaptation to the new environment?
This question is addressed in the next section, where we develop
a quantitative model for proteome reorganization in response to
environmental change.

Proteome Rearrangement by Selective Gene Expression and Dilution.
To model proteome response to medium change, we partition the
bacterial proteome in enzyme blocks, Ei, so that each block in the
network of metabolic pathways contains sets of coregulated
enzymes and their auxiliary protein factors (8). In the absence of
protein degradation, the time derivative, d½Ei�=dt, of the concen-
tration, ½Ei�, of a block, Ei, is determined by the rate of its synthesis
by ribosomes and its dilution by volume increase (16). The rate of
synthesis of a block depends on the fraction, ui, of ribosomes de-
voted to its production, the total ribosome concentration, ½Er�= ½R�,
the average speed, v, of peptide elongation on ribosomes and the
number, Ni, of amino acid residues in the block (8). The enzyme-
block concentration, ½Ei�, is diluted by volume growth with the
current growth rate, μðtÞ. The proteome block dynamics can now be
described by a set of ordinary, nonlinear, differential equations:

d½Ei�=dt= ui · v · ½Er�=Ni − μ · ½Ei�: [2]

When the proteome density, ρ0, defined as the total number of
amino acid residues per cell volume, is constant, the current growth
rate, μðtÞ, is given by the total rate of amino acid residue incorpo-
ration into peptide chains (v · ½R�≡ v · ½Er�) normalized to ρ0 (1, 16):

μ= v · ½R�=ρ0; [3]

where

ρ0 =Nr½R�+
X

Ni½Ei�: [4]

We now replace the enzyme-block concentrations, ½Ei�, by their
corresponding block-mass fractions in the proteome, xi (22):

xi =Ni½Ei�=ρ0: [5]

Using the relation between the growth rate, μ, and the protein syn-
thesis (Eq. 3) and replacing the enzyme-block concentrations, ½Ei�,
by the mass fractions, xi, we can rewrite Eq. 2 in the simple form:

dxi=dt= μ · ðui − xiÞ: [6]

Up to this point, our description of proteome dynamics has been
general. We now take advantage of the observation that bacterial
metabolism can be approximated as a large network of stoichio-
metrically coupled flows (8, 17). In this flow model, the growth rate
of an adapting cell is determined by the set of rate-limiting enzyme
blocks, identified as those with minimal and equal ratios between
their current, xiðtÞ, and final, x̂i, mass fractions (see SI section
Growth Rate and Proteome Composition for details). In this approx-
imation, the current growth rate is given as

μðtÞ= μ̂ · min
i

�
xiðtÞ=x̂i

�
= μ̂ · min

i
ðqiðtÞÞ: [7]

Here μ̂ is the postadaptation growth rate and the ratio

qiðtÞ= xiðtÞ=x̂i = ½EiðtÞ�
.�

Êi
�

[8]

is a current mass fraction normalized to its postadaptation value.
The main assumption in the derivation of Eq. 7 is that currently
rate-limiting enzyme blocks (with minimal q value) operate at their
maximal postadaptation speed also during adaptation (SI
section Growth Rate and Proteome Composition). In contrast,
the enzyme (or ribosome) blocks present in excess operate at
varying and submaximal rates as determined by the rate-lim-
iting flows. For example, if the ribosome block has excess
capacity for protein synthesis in relation to the rate of amino acid
synthesis, the peptide elongation rate, v, is determined by the rate-
limiting supply of amino acid and not the maximal postadaptation
rate of the ribosome.
With the growth rate expressed as in Eq. 7, the adaptation time

τa in Eq. 1 becomes:

τa =
Z∞
0

�
1− min

i
ðqiðtÞÞ

�
dt: [9]

This relation shows that in the framework of the flow model, the
adaptation time is determined by the adaptation dynamics of the
proteome components with the minimal q value. Using Eqs. 6
and 7, we obtain an equation system for dynamics of qi values as

dqi=dt= μ̂ · min
j

�
qj
�
·
�
ui=x̂i − qi

�
; [10]

with the initial conditions qið0Þ=~xi=x̂i, where ~xi = xið0Þ repre-
sents the preshift proteome mass fractions (see Table S1 for
the list of the variables used in equations).
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The description of the dynamics of proteome adaptation by Eq.
10 is complete when the gene-expression components, ui, are
known as, for example, functions of the current qi values. In our
search for a strategy that minimizes τa in Eq. 9, we derive in the
section On–Off-Controlled Proteome Adaptation an analytical
solution to Eq. 10 in the case when all gene expression is directed
to the synthesis of the rate-limiting enzyme blocks.

On–Off-Controlled Proteome Adaptation.According to Eq. 7, the set
of proteome components with the smallest qiðtÞ value determines
the current growth rate, μðtÞ. Directing all protein synthetic activity
to this rate-limiting set would therefore lead to a rapid increase
in the growth rate and thus to rapid adaptation. Such a gene-
expression strategy could be viewed as being caused by the action
of feedback loops ascribing ui values of gene expression in response
to the current set of qi values of the proteome. According to such
a strategy and assuming that enzyme block 1 has the smallest qi
value, q1ð0Þ, at time 0, all protein synthesis is directed to block 1,
meaning that u1 = 1 and ui = 0 when i≠ 1 in Eq. 10. Now, only q1
increases by block 1 synthesis, whereas all other qi values decrease
by dilution. At a later time, t1, the increasing q1ðtÞ value becomes
equal to the decreasing, next-smallest qiðtÞ value, say q2ðtÞ, at which
point these two enzyme blocks are equally rate limiting: q1 = q2.
Then, all protein synthesis is partitioned to blocks 1 and 2 in such
a way that q1 remains equal to q2, i.e., with u1 = x̂1=ðx̂1 + x̂2Þ and
u2 = x̂2=ðx̂1 + x̂2Þ. At a time t2, q1 and q2 become equal to q3ðtÞ of
the third-most rate-limiting block. Then, all protein synthesis is
partitioned to blocks 1, 2, and 3 in such a way that they remain
equally rate limiting until their qi values become equal to the fourth
smallest qi value, and so on (see Fig. S1 for a graphic illustration of
this strategy). With continuation of this procedure, more and more
cell components become equally rate limiting and protein synthesis
becomes more and more distributed among the enzyme blocks
until after a finite time, Tadj, proteome adaptation is complete.
From that point, the cells grow with the postadaptation rate μ̂, all
mass fractions have their postadaptation values x̂i, and all qi values
are equal to 1. By this strategy, proteome rearrangement is gov-
erned by on–off control, i.e., all available protein synthesis is di-
rected toward a subset of growth-limiting enzyme blocks (their
synthesis is fully on), whereas the mass fractions of all other protein
blocks decrease by dilution (their synthesis is fully off). In this case
there is an analytical solution to Eq. 10 (illustrated in Fig. S2) and
the adaptation time, τa, is given by (see SI section Adaptation Time
in the On-Off Strategy)

τa =
1
μ̂

Xn
i= 1

x̂i ln
�
~xi=x̂i

�
: [11]

It follows from Eq. 11 that τa is fully determined by the post-
adaptation growth rate, μ̂, and the Kullback–Leibler distance
(20),

Pn
i= 1 x̂i lnð~xi=x̂iÞ, from the preshift (~xi) to the postshift (x̂i)

proteome with the block-mass fractions interpreted as probabil-
ities of finding the different blocks in the proteome (Discussion).
It is seen that the adaptation time τa is dominated by terms with
large postshift mass fractions, x̂i, and small ratios between pre-
and postshift mass fractions, ~xi=x̂i. When the proteome contains a
maintenance component with mass fraction x̂p that remains un-
altered throughout the adaptation period (6), Eq. 11 remains
valid, provided that μ̂ is replaced by μ̂ · ð1− x̂pÞ (Eq. S2.27).
With the ~xi=x̂i ratios numbered according to magnitude

(~xi+1=x̂i+1 ≥ ~xi=x̂i) the time, Ti, at which the synthesis of block i is
turned on is given by (SI section Adaptation Time in the On-Off
Strategy):

Ti =
1
μ̂

Xi
k= 1

x̂k ln
��
~xi=x̂i

���
~xk=x̂k

��
: [12]

The on–off strategy leads to a fully adapted postshift proteome
at a finite time, Tadj =Tn, given by:

Tadj =
1
μ̂

Xn
i= 1

x̂i ln
��
~xn=x̂n

���
~xi=x̂i

��
= τa +

1
μ̂
ln
�
max

i

�
~xi=x̂i

��
: [13]

At this point it is clear that the on–off adaptation strategy con-
fers analytically tractable proteome dynamics (SI section Adap-
tation Time in the On-Off Strategy) and simple expressions for the
adaptation time, τa, in Eq. 11 and the adjustment time, Tadj, in
Eq. 13. However, the question if the on–off strategy minimizes
these times remains unanswered. In the section On–Off Control
Minimizes the Proteome Adaptation Time we use control theory
(18, 23) to show that, indeed, the on–off strategy minimizes both
τa and Tadj, although another strategy conferring equally small
adjustment and adaptation times may exist. Readers less inter-
ested in the formal proof of optimality of the on–off strategy may
skip this section.

On–Off Control Minimizes the Proteome Adaptation Time. To prove
that the adaptation time, τa, and adjustment time, Tadj, are
minimized by the on–off strategy, we take advantage of control
theoretical results regarding optimal value functions (23). An
optimal value function, V ðt; q/1Þ, is defined as an integral over
a function f ðq/; u/Þ:

V
�
t; q/1

�
= min

u→ð · Þ

Z∞
t

ds · f
�
q/ðsÞ; u/ðsÞ�: [14]

This integral is minimized by the choice of an optimal strategy
vector, u/ð · Þ with components ui. In our special case, the inte-
grand in Eq. 14 is given by f ðq/; u/Þ= ð1− min

j
fqjgÞ. The compo-

nents, qi, of the vector q/ obey the differential equation
dqi=dt= giðq/; u/Þ with the initial condition qið0Þ= x̂i=~xi = zi. Fur-
thermore, giðq/; u/Þ= μ̂ · min

j
ðqjÞ · ðui=x̂i − qiÞ according to Eq. 10.

As neither f ð · Þ nor gið · Þ depend explicitly on the time, t, it
follows that also V ðt; z/Þ in Eq. 14 lacks explicit time dependence
and is fully determined by the initial condition q/1 = z/ (18), so
that we can write V ðt; q/1Þ = W ð z/Þ= τað z/Þ where τa is defined
by Eq. 11. In a time-independent case such as this, W ð z/Þ is an
optimal value function only if it satisfies the time-independent
Hamilton–Jacobi–Bellman (HJB) equation (18)

min
u/

(
f
�
z/; u/

�
+
Xn
i= 1

gi
�
z/; u/

�
·
∂
∂zi

W
�
z/
�)

= 0: [15]

When the adaptation time in Eq. 11, considered as an optimal
value function

W
�
z/
�
= τa

�
z/
�
= −

1
μ̂

Xn
i= 1

x̂i lnðziÞ; [16]

is inserted in Eq. 15, we should obtain

min
u/

(
1− min

j

�
zj
�
− min

j

�
zj
�
·
Xn
i= 1

�
ui=x̂i − zi

�
·
∂
∂zi

Xn
i= 1

x̂i lnðziÞ
)
= 0:

[17]

Eq. 17 can be simplified to (see SI section Proof of the Optimality
of the On–Off Strategy)

max
u/

(
min

j

�
zj
�
·
Xn
i= 1

ðui=ziÞ
)
= 1: [18]

Because the sum of the gene-expression fractions ui is 1, the left
side of Eq. 18 is maximal and equal to 1 only when ui = 0 for all
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zi > min
j
ðzjÞ. From this follows that the HJB Eq. 17 is 0 with

W ð z/Þ from Eq. 16 and u/determined by the on–off strategy. This
proves that the on–off strategy minimizes the integral in Eq. 9
and, thus, that there is no smaller adaptation time than τa given
by Eq. 11. A similar proof can be used to show that also the
proteome adjustment time, Tadj, in Eq. 13 is minimized by the
on–off adaptation strategy.

Repressor-Based Control of Adaptation. In this section we in-
vestigate if realistic control systems for bacterial gene expression
can emulate the on–off strategy during adaptation and confer
adaptation times close to those resulting from the ideal on–off
control of gene expression. For this, the cells would have to di-
rect most of their protein synthetic activity to production of the
currently rate-limiting set of enzymes. We note already at this
point that any rate-limiting metabolic flow in the cell can, in
principle, be identified by a high concentration of its substrate or
low concentration of its product metabolite. Accordingly, when
substrate or product metabolites are used as signal molecules for
repressor- or activator-controlled transcription, gene expression
is expected to be partitioned roughly according to the pre-
scriptions of optimal on–off control. To provide a quantitative
basis for this intuitive reasoning, we perform detailed numerical
modeling of the adaptation behavior of well characterized con-
trol systems of the metabolic pathways for amino acid production
and consumption in protein synthesis (8, 17) (Fig. S3). The
amino acid biosynthetic genes are controlled by repressors, ri-
bosome-dependent attenuation of transcription or both, as in the
trp operon case (see ref. 8 and references therein). The sensitivity
of repressor control increases with the increasing number of
subunits per repressor (8, 24), and intracellular synthesis of
amino acids is product inhibited (25–27). Here, we focus on
repressor control, but note that the attenuation mechanism
has similar properties (see ref. 8 and references therein). Pre-
vious numerical modeling of the amino acid synthetic pathways
(8, 17) is here extended to include feedback control of ribosome
synthesis, making the description of the dynamics of the trans-
lation part of the bacterial proteome complete (see Fig. S3 and
Methods for details).
To simulate the adaptation behavior of a bacterial population,

we assume that it first grows exponentially in an amino acid-
supplemented medium. Here, the concentration of the ribosome
block is high, but the concentrations of amino acid-synthesizing
enzyme blocks are low. Adaptation of the proteome after a rapid
shift to an amino acid lacking medium is simulated numerically
in the cases of repressor control or is derived analytically from
the ideal on–off strategy. In the case of monomeric repressor
control, the expression components of the amino acid synthetic
enzymes, uiðtÞ, and the growth rate, μðtÞ, are shown in Fig. 1B
and the endpoint-normalized mass fractions, qiðtÞ= xiðtÞ=x̂i, of
the amino acid synthetic and ribosome blocks are shown in Fig.
1A. In the case of ideal on–off control, the parameters uiðtÞ, and
μðtÞ are shown in Fig. 1D and the qiðtÞ dynamics in Fig. 1C. In
both cases, adaptation starts at the same preshift proteome
composition ~xi and ends at the same postshift proteome com-
position x̂i and growth rate μ̂. The adaptation time, τa, is 669 s in
the monomeric repressor case and 589 s in the on–off control case
as calculated from Eq. 11. Monomeric repressor control confers,
in other words, a 14% slower adaptation than ideal on–off control.
The time evolution of the proteome (compare Fig. 1 A and C)
and the growth rate (compare Fig. 1 B and D) appear similar
in the momeric repressor and on–off cases, but the gene-expression
components, uiðtÞ, differ. In the case of on–off control, the uiðtÞ
components evolve in a regular manner, remaining constant in
time intervals where the set of rate-limiting enzyme blocks is
unaltered (Fig. 1D). In the repressor case, in contrast, the uiðtÞ
components display large-amplitude oscillations over time (com-
pare Fig. 1 B and D).
In Fig. 2, we show similar scenarios as in Fig. 1 but with tet-

rameric repressors, promoting significantly higher sensitivity of
regulation than their monomeric counterparts (8, 24). In the

tetrameric repressor case, the adaptation time is 557 s and only
about 1% longer than the adaptation time of 554 s in the corre-
sponding ideal on-off case. Apart from a small, oscillatory ripple,
growth rate and proteome evolution are almost identical in the
tetrameric repressor and on–off regulated cases. At the same time,
the oscillations in the ui components are even more pronounced
in the tetrameric than in the monomeric repressor case (compare
Figs. 1B and 2B). In the case of dimeric repressors, the dynamics
of the qiðtÞ and uiðtÞ components is much more similar to that of
tetrameric than monomeric repressors (Fig. S4). The proteome
adaptation time (τa = 580 s) is, as in the tetrameric repressor
case, about 1% longer in the dimeric repressor case than that in
the ideal on–off case (τa = 575 s).

Discussion
In this work, we have modeled proteome reorganization after
environmental shifts by considering the bacterium as a network
of stoichiometrically coupled metabolic flows (8, 17). The net-
work is balanced during steady-state growth in the pre- and
postshift states but unbalanced during adaptation due to short-
age of enzymes required at higher concentrations in the postshift
environment. We define a proteome adaptation time, τa (Eq. 1),
and use control theory (18, 19) to demonstrate that τa is mini-
mized when all available ribosomal activity is devoted to synthesis
of the set of currently rate-limiting proteome components. This on–
off strategy allows for analytical solutions to the proteome dynamics
(section Adaptation Time in the On-Off Strategy in Supporting In-
formation), a simple expression for the finite time, Tadj, at which
proteome adjustment is complete (Eq. 13) and a remarkably simple
sum of terms for the minimal proteome adaptation time (Eq. 11).
We note that the sum in Eq. 11 for minimal τa can be inter-

preted as the Kullback–Leibler distance (20) between the dis-
tributions of the preshift (~xi) and postshift (x̂i) mass fractions
taken as probabilities to find component i in the proteome.
Accordingly, the minimal shift time is obtained by dividing the
Kullback–Leibler distance by the postadaptation growth rate μ̂,
suggesting that the Kullback–Leibler distance may be a natural
measure of divergence between proteome compositions under
different growth conditions.
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Fig. 1. Comparison of adaptation dynamics of the cell proteome when gene
expression is regulated bymonomeric repressors (A and B) or by on–off control
(C and D). A and C show proteome adaptation as the dynamics of the end-
point normalized mass fractions qi(t) of enzyme and ribosome blocks. “Prot”
refers to a maintenance proteome component, the mass fraction of which
remains constant during adaptation. The dynamics of the ui parameters for
repressor control is shown in B and for on–off control in D.
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The main hypothesis of the present work is that real bacterial
populations emulate the on–off strategy of gene expression to
confer rapid proteome adaptation to environmental changes.
Eventually this hypothesis must be settled by quantitative moni-
toring of proteome dynamics, e.g., by mass spectrometry (28) or
ribosomal profiling through deep sequencing (29). Here, we have
probed this hypothesis and some of its underlying assumptions
by comparing its predictions with results from detailed numeric
modeling of intracellular protein synthesis (section Repressor-Based
Control of Adaptation). This approach serves a twofold purpose.
First, it tests the realism of the flow model for proteome dynamics
(Eq. 10) in which the presence of metabolite intermediates is
implicit by comparing its predictions with those from a much
more detailed model in which the presence of such metabolites
(amino acids and aminoacyl-tRNAs) is explicit. Second, it reveals
the extent to which repressor systems of a cell can emulate the on–
off gene-expression strategy, rigorously proven here to be op-
timal for rapid proteome adaptation within the framework of
the flow model.
In the case of monomeric repressors with their relatively low

sensitivity to amino acid concentration (8, 24), the time of adap-
tation in response to a down-shift in medium quality is 14% longer
than that predicted by Eq. 11 for on–off strategy of gene expres-
sion. However, in the case of dimeric or tetrameric repressors,
with their relatively high sensitivity to amino acid concentration (8,
24), the adaptation time is only about 1% longer than that pre-
dicted by the optimal on–off strategy. In the case of tetrameric
repressor control, gene expression displays apparently chaotic
behavior with high frequency oscillations of large amplitude (Fig.
2B) in sharp contrast to the case of optimal on–off strategy where
gene expression is regular (Fig. 2D). Despite this and apart from
high-frequency ripples of small amplitude, the proteome dy-
namics (Fig. 2A) under repressor control is very similar to that
obtained for the flow model (Fig. 2C). These results suggest that
predictions of proteome dynamics and adaptation times based on
the optimal on–off strategy may give excellent approximations for
the proteome dynamics of real adapting cells despite large oscil-
lations in their gene expression (Fig. 2B). The origin of these
oscillations can be traced to the extreme sensitivity of amino acid
pools to small deviations from perfect flow balancing between
several, rate-limiting amino acid synthetic pathways (17). Be-
cause, however, the deviations from perfect flow balance are very
small (17), the oscillations in protein synthesis are small and the
repressor-regulated gene expression faithfully reproduces the

proteome dynamics and growth rate during the adaptation phase.
Moreover, the application of a numeric filter (sliding time av-
erage over a 4-min window) to suppress the rapid oscillations in
gene expression in Fig. 2B reveals that the averaged levels of gene
expression under repressor control are very similar to those pre-
scribed by the ideal on–off strategy (Fig. S5). This means that
in a coarse-grained sense repressor regulation may indeed emulate
the optimal on–off strategy.
Our modeling results also suggest that optimal regulation for

rapid proteome adaptation may critically depend on the sensi-
tivity of the metabolite sensing control systems. Rapid proteome
adaptation is conferred much more efficiently by dimeric and
tetrameric than by monomeric repressors. This is in line with the
observation that most bacterial repressors and activators exist
as dimers, which when promoter bound may further oligomerise
(30, 31), or as free tetramers (32) and even hexamers (33).
According to Eq. 11, the minimal proteome adaptation time,

τa, is sensitive to large ratios, x̂i=~xi, between post- and preshift
mass fractions of proteome components. In cases when the post-
shift mass fraction, x̂i, is much larger than its preshift counterpart,
~xi, the adaptation time would be significantly reduced if preshift ~xi
were kept at a level above its stoichiometric balance point. At
the same time, this would necessarily lead to a reduced growth
rate in the preshift state by the burden of redundant protein
mass. For bacteria living in a perpetually changing world, fitness
maximization requires maximization of a growth rate that is av-
eraged over the times spent in different habitats and during
adaptation periods. An optimal strategy would be to balance the
growth rate loss due to redundant proteins in one habitat to the
gain in the rapidity of adaptation as conditions change (34).
Indeed, the experimental finding that the ribosome concentra-
tion supersedes what is required for balanced growth in very
poor media may be one example of such a strategy (see ref. 1 and
references therein). Eventually, when the condition improves the
adaptation to rapid growth is much faster than from a preshift
population with much lower concentration of ribosomes. There
may also be significant phenotypic diversity in the proteome
composition of an isogenic bacterial population due to stochastic
fluctuations in protein copy numbers (see ref. 35 and references
therein). Cells with preshift proteome compositions close to their
ideal postshift values will then adapt much faster than the total
population as described by Eq. 11. Putting the present theory in
population-genetic context may make it possible to quantitatively
predict the optimal levels of redundant proteins or an optimal
level of phenotypic diversity (36) in populations thriving under
perpetually changing conditions.
The adaptation time in Eq. 11 has been derived without taking

intracellular protein degradation into account. It is, however, clear
that protein degradation may contribute favorably to proteome
adaptation, not the least in the case of a down-shift from an amino
acid-proficient to an amino acid-deficient medium (Figs. 1 and 2).
Here, specific degradation of non–rate-limiting enzymes could
provide a source of amino acids for the synthesis of rate-limiting
enzymes, thereby speeding up adaptation. It is, however, not clear
how such selective protein degradation would be controlled. Also,
in the case of uniform protein degradation, the adaptation time
limit given by Eq. 11 can be transcended. In this relatively simple
case, proteome dynamics obeys a slightly modified version of Eq. 10,
and a similar on–off strategy for control of enzyme-block expression
as in the present case appears to minimize the adaptation time.
One important role of theory in physics has been to consider

the performance limits of physical systems, with Carnot’s limit
cycles for the steam engine as an early example. Expression (11)
for the minimal possible adaptation time and the corresponding
analytical solution to equation system (10) provide a principally
similar tool to gauge the performance of cell regulatory circuits
during bacterial adaptation. Therefore, similar limit approaches
may, indeed, become increasingly important in the theoretical
biology of the future.
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Fig. 2. The same as in Fig. 1, but with the adaptation dynamics of the
proteome regulated by tetrameric repressors (A and B) compared with
regulation by ideal on–off control (C and D).
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Methods
We use a detailed model for cell adaptation based on the control systems for
amino acid synthetic operons (8, 17). This model, depicted in Fig. S3, is na-
turally partitioned into three modules: (i) synthesis of intracellular protein
components, (ii) synthesis of amino acids and aminoacylation of tRNAs, and
(iii) feedback control of the synthesis of intracellular proteome components.

i) The dynamics of the concentrations of the enzyme and ribosome blocks
is described by Eqs. 2–5. To calculate the growth rate μ= v · ½R�=ρ0, we
assumed that the ribosomes have an average peptide elongation rate
v, determined by the concentrations, ½T3i �, of ternary complexes com-
posed of aminoacyl-tRNAs (AA-tRNAs), elongation factor Tu (EF-Tu), and
GTP (8):

v = kcat

, 
1+

Xm
i =1

fiKT3i=½T3i �
!
= kcat

, 
1+

Xm
i =1

fiKT3i=
�
AA‐tRNAi

�!
: [19]

Here, kcat is the maximal peptide-elongation speed of the ribosomes, fi is
the fraction of amino acid i in the proteome, KT3i is the Km value for the
interaction of a ternary complex with the ribosome. We assume that the
concentration of EF-Tu in the cell is high enough to cover all AA-tRNAs, so
that the concentrations of ½AA� tRNAi � and ½T3i � are equal, explaining the
second equality in Eq. 19.

ii) Each enzyme block, Ei, synthesizes an amino acid, AAi, with the rate JAAi .
This amino acid is attached to its cognate tRNA(s) by an aminoacyl-tRNA
synthetase (RS) operating at the rate JRSi ; AA-tRNAi is then consumed in
protein synthesis with the rate fiJr = fiv½R�. For a detailed description of
the equations governing the dynamics of the AAi and AA-tRNAi pools, see
section Detailed Model for Cell Adaptation in Supporting Information.

iii) The fraction, ui , of ribosomes devoted to the synthesis of enzyme block Ei
is determined by the concentration of the mRNA transcribed from the Ei-
encoding operon. To simplify, we assume that each mRNA concentration
is proportional to its rate of synthesis, Qi . Here, we only consider repres-
sor-regulated amino acid-producing operons, and assume (8) that each Qi

value is determined by the fraction of repressor-free operator. The latter
depends on the current AAi concentration. Concerning control of ribo-
some synthesis, our model mimics the ppGpp-based feedback control of
ribosomal RNA synthesis (8, 17). For details on the Qi calculation, see
section Detailed Model for Cell Adaptation in Supporting Information.
The value of Qm+1 for maintenance proteins (6) is chosen so as to ensure
a constant fraction up of ribosomes devoted to its synthesis. With the Qi

values proportional to the concentrations of the corresponding mRNAs,
ui fractions of the ribosomes translating these mRNAs are given by

ui =Qi

,Xm+1

i =1

Qi =Qi

, 
Qm+1 +

Xm
i= 1

Qi

!
=
�
1−up

�
·Qi

,Xm
i =1

Qi : [20]

The value of uP was set to 0.266 in our model calculations. Thus, the Qi

values completely determine the ui parameters making the description of
proteome dynamics by Eq. 2 complete.
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