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A long-standing problem in molecular biology is the determination
of a complete functional conformational landscape of proteins. This
includes not only proteins’ native structures, but also all their respec-
tive functional states, including functionally important intermedi-
ates. Here, we reveal a signature of functionally important states in
several protein families, using direct coupling analysis, which detects
residue pair coevolution of protein sequence composition. This sig-
nature is exploited in a protein structure-based model to uncover
conformational diversity, including hidden functional configurations.
We uncovered, with high resolution (mean ∼1.9 Å rmsd for nonapo
structures), different functional structural states for medium to
large proteins (200–450 aa) belonging to several distinct families.
The combination of direct coupling analysis and the structure-based
model also predicts several intermediates or hidden states that are of
functional importance. This enhanced sampling is broadly applica-
ble and has direct implications in protein structure determination
and the design of ligands or drugs to trap intermediate states.

conformational plasticity | covariation | statistical inference |
molecular dynamics

As demonstrated by Anfinsen in 1973 (1) for small and
intermediate-size proteins, amino acid sequences contain

all of the necessary information to determine their native structure
and function. In principle, a complete physical understanding of
all molecular interactions should be sufficient to uncover not
only the proteins’ native structures, but also all their respective
functional states, including functionally important intermediates.
This landscape is required for a complete knowledge of functional
mechanisms and therefore it has implications for drug discovery.
Advances in computational approaches have been promising in
sampling such conformational intermediates (2, 3). However, in
general, computational methods are limited by uncertainties
in protein models as well as insufficient computational resources
to achieve proper sampling. Experimental techniques such as
crystallography or NMR spectroscopy have been successful in
identifying functional protein structures but only for a fraction of
the complete set of known protein sequences (4, 5). Additionally,
the determination of functionally important intermediate states
using such methods has been challenging due to their transient
nature. One idea to confront this challenge is to search for clues
in genomic data (6–10). Functional states under conformational
selection should leave a trace in the evolutionary history of pro-
teins. Recent results inspired by this hypothesis have led to the
development of the powerful “direct coupling analysis” (DCA),
which was able to predict a large number of direct structural
contacts between residues from sequences alone (11). Other
useful methods have been developed to define coupling among
residue pairs (12, 13). Others have also looked into correlated
electrostatic mutations to study the evolution of protein topology
toward minimized interaction frustration (14). Integrating the
DCA-predicted contacts into coarse-grained physical models of
proteins such as structure-based models (SBMs) (15–19) led to
predictions on protein–protein interactions (20–22) as well as
tools to aid the prediction of native structures (19, 23–25). The

idea of using predicted contacts to estimate native structures was
also explored by other methodologies (26, 27). Here, we show
that DCA predicts important structural interactions related not
only to the native state but also to distinct functional conformational
states of a protein, including intermediates. We develop a hybrid
computational method to recover such important conformations,
which derives the SBM energy function from a single experi-
mental structure and incorporates DCA residue contacts into
the energy function (Materials and Methods). We show that this
model samples well beyond a single native structure to reveal
conformational diversity, including hidden functional configura-
tions, in proteins. We refer to this methodology as SBM+DCA.

Results
Conformational Diversity Is Embedded in Evolutionary Information.
In this study, we provide evidence that accurate information about
conformational diversity can be extracted from evolutionarily
related protein sequences. We focus on proteins that experience
large conformational changes upon ligand binding (Table S1) (28,
29). Fig. 1 illustrates our first example, the L-leucine binding pro-
tein [Protein Data Bank (PDB) IDs 1usg and 1usi], which experi-
ences large conformational changes upon binding to L-leucine
(30). Fig. 1C displays a structural comparison between the ligand
bound and unbound states. The residue–residue contact maps for
open and closed conformations have very distinct signatures, as
highlighted in Fig. 1A. This protein belongs to the domain family
“periplasmic binding protein 6” (Pfam ID: PF13458). Applying
DCA to 7,363 sequences in this domain, we obtained a large
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number of high-ranking pairings predicted to be physical contacts
(69% true positives in the top 500 predictions). Interestingly, the
predicted contacts belong to both open and closed conformations;
compare highlighted regions in Fig. 1B. We use such predicted
couplings in combination with a structure-based model (SBM+
DCA) to study the conformational dynamics of the L-leucine
binding protein. Using only structure parameters taken from the
open-state topology (residue contacts and distances and dihedral
angles and bond distances), the DCA-predicted contacts led the
model to identify an ensemble of closed conformations in addi-
tion to the open state (Fig. 1D). We used the gromos clustering
algorithm (31) to obtain representative structures (cluster cent-
roids) in the ensemble. Both centroids are within 2-Å rmsd accuracy
to the experimental structures (Movie S1). For comparison, re-
placing those DCA contacts by the same number of random con-
tacts led to fluctuations only around the open conformation (Fig.
S1). A dual-basin SBM (32) is also able to recover both the open
and the closed conformations. However, it requires, for both bound
and unbound conformations, the complete knowledge of the con-
tacts and their experimentally determined distances (Fig. S2).

Multiple States with Functionally Important Intermediates Are Found
by SBM+DCA Methodology.We next studied the glutamate receptor
(GluR2), which belongs to the family of “bacterial extracellular

solute-binding proteins” (PF00497). Armstrong and Gouaux (33)
provided structural evidence suggesting that GluR2 uses an agonist-
induced domain closure mechanism to gate the transmembrane
channel and that its activation is dependent on the degree of
domain closure.
We analyzed the 20,059 protein sequences in this family using

DCA, and the predicted contacts are again used to study the
dynamics of the structure. The 2D rmsd frequency distribution in
Fig. 2A illustrates how DCA-predicted couplings can be used to
sample the conformational space of the open and closed states to
an accuracy of 1 Å. However, the conformational space is more
complex in this case. Fig. 2B shows the rmsd measures of the top
three clusters from the SBM trajectory. One cluster centroid
(6%) has an rmsd of 1.1 Å with respect to the closed glutamate-
bound state (PDB ID: 1ftm); a second cluster centroid (10%) has
an accuracy of 0.9 Å with respect to the apo state (PDB ID:
1fto). Interestingly, the centroid of the most populated cluster
(82%) is far away from both the open and the closed state.
However, this centroid structure is only 0.8 Å apart from a Kainate-
bound structure of the receptor (PDB ID 1fw0). Kainate was
shown to be a partial agonist that induced an intermediate semi-
closed state in the glutamate receptor (33). Fig. 2C compares the
cluster centroids with the experimentally determined structures
and shows the sequential closure of the domains. As a control, we
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Fig. 1. A hybrid SBM+DCA model of the L-leucine binding protein is able to uncover its two-state (apo/holo) conformational landscape. A compares the
native open and closed contact maps and B compares a DCA contact map with the native closed state. In A, comparing the native contact map of the open
conformation (PDB ID 1usg; lower triangular map) and the closed conformation (PDB ID 1usi; upper triangular map) shows a clear set of contacts (shaded box)
that are exclusive to the closed state. In B a predicted contact map using highly ranked DCA residue pairs (lower triangular map) shows a very accurate
reconstruction of the complete map that includes the extra contacts in the closed conformation (upper triangular map). (C) Structural comparison between
the apo and the holo states of the L-leucine binding protein, showing domain closure. (D) Integrating a SBM of the open-state topology with DCA contacts
produces a distinct bimodal landscape, as opposed to the single-basin distribution observed when we use the same number of extra contacts but randomly
distributed.
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show that a dual-basin SBM can sample a similar conformational
space but it requires the complete knowledge of open and closed
structures (Fig. S3). These results suggest that coevolutionary
information can sample multiple functionally relevant states with
high accuracy. We analyzed another protein of the same family,
glutamine binding protein (GBP) (PDB IDs 1ggg and 1wdn)
(34). We predict an intermediate state (Fig. S4), for which there
is only indirect experimental evidence of its existence (35). We
propose that this intermediate state for the GBP can be trapped
experimentally by designing an appropriate ligand, in the same
manner that kainate was used to crystallize the intermediate
for GluR2.
We next examined sugar-binding proteins that also experience

large conformational changes. The D-Ribose binding protein is
a protein of the “family of periplasmic protein binding domains”
(PF13407) with more than 8,000 members. Fig. 3A shows a
comparison between the open (PDB ID: 1urp) and closed (PDB
ID: 2dri) residue contact maps (upper triangular map) as well
as the contacts obtained via DCA (lower triangular map). We
identified contacts common for both open and closed structures
but also some unique to the closed state (red dashed boxes). We
also found a series of contacts (black dashed box) that belong to
neither the open nor the closed state. These couplings gave rise
to a conformational landscape that includes a very distinct third
state (Fig. 3B). For comparison, a dual-basin model of the open

and closed conformations combined with the same number of
random extra contacts did not yield the intermediate-state basin
(Fig. S5), but instead a broadening is observed compared with
the dual-basin landscape (Fig. S6). This finding suggests that this
third state is a feature uniquely captured by the extra DCA
couplings. Fig. 3B shows a closed-state ensemble with a tighter
domain closure with respect to the experimental closed state but
conserving the same topological features (rmsd open >5 Å). We
attribute this to the difference between the ligand-bound and the
ligand-free closed states (3). We model the presence of the li-
gand by using the exact experimental contact distances for only a
few contacts (landscape in Fig. 3C). Now we observe the ligand-
bound closed ensemble instead of the ligand-free state present in
Fig. 3B, while still accessing the intermediate state. Fig. 3D shows
the contact maps of the cluster centroids from the distributions
observed in Fig. 3B. The open-state cluster centroid has an rmsd
of 2.2 Å whereas the closed-state cluster has an rmsd of 2.6 Å. The
intermediate-state cluster centroid has a twisted semiclosed state
that is equidistant to the open and closed conformations and has
unique contacts that are also present in the DCA estimated map
(compare black dashed boxes in Fig. 3 A and D). A comparison
between the three cluster centroids is available in Movie S2.
Using umbrella sampling molecular dynamics simulations,
Ravindranathan et al. provided computational evidence supporting
the existence of such a twisted state (3). Such an intermediate state

RMSD closed (Å)

R
M

S
D

 o
pe

n 
(Å

)

 0.5  1.0  1.5 2.0  2.5  3.0

 0.5

1.0

 1.5

2.0

 2.5

3.0

0

0.12

0.24

0.36

0.48

0.60

0.73

0.85

0.97

Open state (PDB:1fto)
Cluster centroid (0.9Å)

Kainate bound (PDB:1fw0)
Cluster centroid (0.8Å)

Glutamate bound (PDB:1ftm)
Cluster centroid (1.1Å)

A B

C

Antagonist Partial Agonist   Agonist
domain closure

19.1Å 15.6Å 
11.4Å 

Cl
us

te
r c

en
tr

oi
ds

  

    Crystal  structures 
            RMSD (Å) 
open
(1fto)

kainate 
bound
(1fw0)

glutamate
  bound
  (1ftm)

  open
  (10%)

  inter-
mediate
  (82%)

 closed
  (6%)

   0.9    1.5    2.3

   1.5    0.8    1.26

   2.7    1.6    1.1

Fig. 2. The glutamate receptor has a ligand-dependent domain closure. (A) The conformational landscape observed after combining an open-state topology
with coevolutionary restraints obtained from the family of bacterial extracellular solute-binding proteins (PF00497). The landscape includes conformations
with an rmsd of less than 2 Å from the crystal structures of open and closed states. An intermediate state is also present that is between the closed and the
open conformations. (B) After using the gromos clustering algorithm (31) for the molecular dynamics trajectory, the top three cluster centroids cover 98% of
the conformations. The centroid of the most populated cluster is in fact structurally very similar to the kainite-bound structure of the glutamate receptor
(rmsd 0.8 Å). Kainate is a partial agonist that brings the protein to a semiclosed state. (C) Structural comparison between the centroids and experimental
structures of antagonist (open; PDB ID 1fto), partial agonist (semiclosed; PDB ID 1fw0), and agonist (closed; PDB ID 1ftm) states. The predictions for these
three states have an ∼1-Å rmsd with respect to the crystal structures.
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seems to be functionally relevant because it has been hypothesized
to facilitate ribose transfer in the permease complex—a partially
closed conformation with a more weakly bound ribose might help
in providing an easier release of ribose into the membrane-bound
permease (3).
A similar twisted intermediate state was suggested for the

D-Glucose binding protein, another member of the same family,
based on experimental studies using disulfite-trapping and fluo-
rescence spectroscopy (36, 37). Very recently, accelerated molec-
ular dynamics were used to suggest the existence of a semiclosed
state for the Maltose binding protein, a member of a closely
related family (38, 39). Our SBM+DCA-based model predicts
another twisted intermediate for the D-Allose binding protein
(PDB IDs 1gud and 1rpj) of the same family (Fig. S7). The ex-
istence of such a semiclosed twisted state seems to be a general
feature of the sugar-bound periplasmic proteins.
We have investigated additional systems using this methodology

with consistent results. For example, in the case of the 5-enol-
pyruvylshikimate-3-phosphate (EPSP) synthase (PDB IDs 1rf5
and 1rf4), we have also found a hidden intermediate state (Fig.
S8). Experimental evidence supporting this claim exists in the
form of an ortholog (PDB ID 3roi) with similar topological fea-
tures. The structure of this ortholog suggests that the state we
found may be of functional relevance for EPSP. As a matter of
negative control, we have also studied the case of the D class
β-lactamase (PDB ID 1h8y) that is a member of a largely popu-
lated family of transpeptidases (PF00905). This protein is known
to have only one state. When adding the same amount of DCA

pairs to the open-state topology, we did not observe any spurious
additional state (Fig. S9).

Discussion
In this study, we combined physical models of proteins, for
instance SBM, with coevolutionary constraints obtained using
direct coupling analysis. Our results provide support that in-
formation about conformational plasticity can be retrieved
from a collection of evolutionary related protein sequences.
This is a consequence of the fact that diverse states (inter-
mediates/closed), which are of functional importance, are
selected by evolution, because DCA captures evolutionarily
significant residue–residue correlations, regardless of whether
the interaction stabilizes the final or intermediate state. To
clearly observe these types of transitions, the conformational
states need to have unique subsets of contacts. Subtle confor-
mational changes where only contact distances are changed, e.g.,
conformation differences between ATP and ADP binding in the
active site, are harder to capture by SBM+DCA. Nonetheless,
this enhanced sampling of the functional conformational space
of proteins might have broader implications in protein structure
determination as well as in the design of ligands that can trap
intermediate states. Such ligands could be used to crystallize
states that were previously difficult to access and also be used
in the process of rational drug design. Our observations and
theoretical framework are general enough to be applied to many
protein families with enough sequence information, in principle
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even for those families without any experimental structural state
available.

Materials and Methods
Directly Coupled Residue Pairs. We use DCA to estimate directly coupled
coevolving residue–residue physical contacts. DCA models the joint proba-
bility distribution of amino acid sequences with an exponential function that
depends on single-site amino acid frequencies and pairwise interactions. An
approximation of pairwise energies is calculated by inverting the connected
correlation matrix computed from multiple sequence alignments. These
pairwise terms are used to compute probabilities of “direct couplings”
among amino acid pairs. When applying DCA to a set of sequences of
a given family [e.g., Pfam domains (40)], then residue pairs that show the
largest amount of direct coupling or direct information (DI) tend to be
a proxy of residue–residue contacts in the 3D fold of a protein that is part of
such family. For more details about DCA and an evaluation of its perfor-
mance using a mean field formulation, refer to Morcos et al. (11). For each
of the families analyzed, we used the top ranked pairs based on the DI
metric. We used a pseudocount value of λ=Meff . The value of Meff in turn
was computed using a correction of sampling bias for proteins with se-
quence identity of 80%. The number of Meff is shown as “effective se-
quences” in Table S1. The number of DCA contacts used was proportional to
the total number of native contacts in the open state of a protein, using
shadow contact maps. For all of the systems studied, the number of DCA
contacts used was 1.75 times the number of native contacts. The results are
robust for a range of 1.5–2 times the number native shadow contacts. We
used a cutoff value for shadow contacts of 6 Å + 1 Å atom “shadowing”
radius; this is the standard value used in the smog web server (16).

Single-Basin SBM.We built our single-basin SBM from a single native structure
(open state of the binding protein) by placing a single bead of unit mass for
each amino acid at the location of the Cα atom (10, 11). The energy function
used for the SBM is given as

HSBM

�n
r→i
o�

=HO
b +HO

nb: [1]

Here, the superscript O refers to the open state and HO
b represents the local

bonded component of the Hamiltonian,
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The first term in HO
b ensures that the bond distance ri,i+1 between the

neighboring residues i and i + 1 is constrained harmonically with respect
to its native bond distance r0ðOÞ

i,i+1 by a spring constant Kr = 20ðkJ=mol:�A
2Þ.

The second term constrains the angle θi among the residues i, i + 1, and i + 2
with respect to its native value θ0ðOÞ

i by a harmonic spring constant
Kθ = 20ðkJ   =  mol:rad2Þ. The third term represents the dihedral angle poten-
tial with Kð1Þ

ϕ = 2Kð3Þ
ϕ that describes the rotation of the backbone involving

successive residues from i to i + 3. The native values r0ðOÞ
i,i+1 , θ

0ðOÞ
i , and ϕ0ðOÞ

i are
taken from the open conformation crystal structure. The value of Kð1Þ

ϕ is
chosen carefully to ensure better sampling of the conformational space
while ensuring sufficient stabilization of the open state. The nonlocal part of
the Hamiltonian, HO

nb is given by

HO
nb =
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The 6–12 Lennard–Jones (LJ) potential is used in HO
nb to describe the inter-

actions that stabilize the nonbonded native contacts. Native contact pairs
(i and j) are obtained using the shadow contact map that is implemented in
SMOG (16). If i and j residues are in contact in the native state, ΔO

ij = 1;
otherwise ΔO

ij =0. Native contact pair distance r0ðOÞ
ij is obtained from open-

state structure. Nonnative pairs with ΔO
ij = 0 are under repulsive potential

with a distance parameter σ = 4 Å. The strength of repulsive potential «r is

1 kJ/mol. However, the value of «O is chosen carefully to ensure better
sampling of the conformational space and sufficient stabilization of the
open state. These parameters are sampled until we observe the existence of
new basins with a sufficiently large population.

Dual-Basin Structure-Based Model. As the name suggests, the dual-basin
structure-based model (dSBM) is built using two experimental structures of a
single protein, namely open and ligand-bound closed states. The energy
function used for this model is given as

HdSBM

�n
r→i
o�

=HO
b +HdSBM

nb : [4]

Here, HO
b represents the local part of the Hamiltonian as in the single SBM.

HdSBM
nb describes the nonlocal part of the dual-SBM Hamiltonian and has

the form

HdSBM
nb =

XN−4
i =1

XN
j= i+ 4

"
«O

  
r0ðOÞ
ij

rij

!12
− 2

 
r0ðOÞ
ij

rij

!6!
ΔO

ij + «C

  
r0ðCÞij

rij

!12

− 2

�
r0ðCÞij

rij

!6�
ΔCu

ij +  «r

�
σ

rij

�12�
1−
�
ΔO

ij ∨ ΔCu
ij

��
i
:

[5]

The first term in the summation is same as the first term in HO
nb and derived

from open structure. The second term is derived from the closed-state
structure and ΔCu

ij = 1 if residues i and j are in contact in closed state but not
in open state. For these unique closed-state contacts, we also use the native
contact distances r0ðCÞij derived from the closed-state crystal structure. The
last term accounts for the repulsion between the nonbonded pairs that are
not in contact either in open state or in closed state and the logic or oper-
ator ∨ is used for that purpose. Here, the values for «O and «C are chosen
carefully to sample both the states.

SBM+DCA Model. For our hybrid SBM+DCA model, we combine the Hamil-
tonian of the open state and supplement with DCA-predicted contact pairs.
The energy function for this hybrid method is given by

Hhybrid

�n
r→i
o�

=HO
b +Hhybrid

nb : [6]

Here, HO
b represents the local part of the Hamiltonian as in the single SBM

and derived from open-state crystal structure. Hhybrid
nb has the form

Hhybrid
nb =

XN−4
i =1

XN
j= i+ 4

"
«O

  
r0ðOÞ
ij

rij

!12
− 2

 
r0ðOÞ
ij

rij

!6!
ΔO

ij + «DCA

��
σDCA

rij

�12

− 2

�
σDCA

rij

�6�
ΔDCAu

ij + «r

�
σ

rij

�12�
1−
�
ΔO

ij ∨ ΔDCAu
ij

��
i
:

[7]

The first term in the summation is the same as the first term in HO
nb and

derived from open structure. The second term is derived from the DCA pair
and ΔDCAu

ij = 1 if the residue pair i and j appear as a top-ranked DCA contact
but not in open state. For these unique DCA contacts, we use the native
contact distance σDCA = 8 Å and LJ well-depth «DCA = 0:7 kJ ·mol−1. The last
term accounts for the repulsion between the nonbonded pairs that are not
in contact either in open state or in DCA pairs and the logic or operator ∨
is used for that purpose. Here, the value of «O is chosen carefully to sample
the phase space efficiently. The values for «O and Kð1Þ

ϕ range between 0.4
and 0.6.

ACKNOWLEDGMENTS. This work was supported by the Center for Theoret-
ical Biological Physics sponsored by the Welch Foundation Grant C-1792, by
the National Science Foundation (NSF) (Grant PHY-1308264), and by Grant
NSF-MCB-1214457. J.N.O. is a CPRIT Scholar in Cancer Research sponsored by
the Cancer Prevention and Research Institute of Texas.

1. Anfinsen CB (1973) Principles that govern folding of protein chains. Science 18(4096):

223–230.
2. Kim MK, Chirikjian GS, Jernigan RL (2002) Elastic models of conformational transitions

in macromolecules. J Mol Graph Model 21(2):151–160.

3. Ravindranathan KP, Gallicchio E, Levy RM (2005) Conformational equilibria and free

energy profiles for the allosteric transition of the ribose-binding protein. J Mol Biol

353(1):196–210.
4. Berman HM, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242.

Morcos et al. PNAS | December 17, 2013 | vol. 110 | no. 51 | 20537

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315625110/-/DCSupplemental/pnas.201315625SI.pdf?targetid=nameddest=ST1


5. UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein
Resource (UniProt). Nucleic Acids Res 40(Database issue):D71–D75.

6. de Juan D, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat
Rev Genet 14(4):249–261.

7. Göbel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and residue
contacts in proteins. Proteins 18(4):309–317.

8. Park S, Kono H, Wang W, Boder ET, Saven JG (2005) Progress in the development and
application of computational methods for probabilistic protein design. Comput Chem
Eng 29(3):407–421.

9. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic
connectivity in protein families. Science 286(5438):295–299.

10. Halabi N, Rivoire O, Leibler S, Ranganathan R (2009) Protein sectors: Evolutionary
units of three-dimensional structure. Cell 138(4):774–786.

11. Morcos F, et al. (2011) Direct-coupling analysis of residue coevolution captures native
contacts across many protein families. Proc Natl Acad Sci USA 108(49):E1293–E1301.

12. Taylor WR, Sadowski MI (2011) Structural constraints on the covariance matrix de-
rived from multiple aligned protein sequences. PLoS ONE 6(12):e28265.

13. Jones DT, Buchan DW, Cozzetto D, Pontil M (2012) PSICOV: Precise structural contact
prediction using sparse inverse covariance estimation on large multiple sequence
alignments. Bioinformatics 28(2):184–190.

14. Haq O, Andrec M, Morozov AV, Levy RM (2012) Correlated electrostatic mutations
provide a reservoir of stability in HIV protease. PLoS Comput Biol 8(9):e1002675.

15. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: What
determines the structural details of the transition state ensemble and “en-route”
intermediates for protein folding? An investigation for small globular proteins. J Mol
Biol 298(5):937–953.

16. Noel JK, Whitford PC, Sanbonmatsu KY, Onuchic JN (2010) SMOG@ctbp: Simplified
deployment of structure-based models in GROMACS. Nucleic Acids Res 38(Web Server
issue):W657-W661.

17. Oklejas V, Zong C, Papoian GA, Wolynes PG (2010) Protein structure prediction: Do
hydrogen bonding and water-mediated interactions suffice? Methods 52(1):84–90.

18. Davtyan A, et al. (2012) AWSEM-MD: Protein structure prediction using coarse-
grained physical potentials and bioinformatically based local structure biasing. J Phys
Chem B 116(29):8494–8503.

19. Sułkowska JI, Morcos F, Weigt M, Hwa T, Onuchic JN (2012) Genomics-aided structure
prediction. Proc Natl Acad Sci USA 109(26):10340–10345.

20. Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009) Identification of direct res-
idue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci
USA 106(1):67–72.

21. Schug A, et al. (2010) Computational modeling of phosphotransfer complexes in two-
component signaling. Methods Enzymol 471:43–58.

22. Dago AE, et al. (2012) Structural basis of histidine kinase autophosphorylation de-
duced by integrating genomics, molecular dynamics, and mutagenesis. Proc Natl Acad
Sci USA 109(26):E1733–E1742.

23. Marks DS, et al. (2011) Protein 3D structure computed from evolutionary sequence
variation. PLoS ONE 6(12):e28766.

24. Hopf TA, et al. (2012) Three-dimensional structures of membrane proteins from ge-
nomic sequencing. Cell 149(7):1607–1621.

25. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science
338(6110):1042–1046.

26. Nugent T, Jones DT (2012) Accurate de novo structure prediction of large trans-
membrane protein domains using fragment-assembly and correlated mutation
analysis. Proc Natl Acad Sci USA 109(24):E1540–E1547.

27. Taylor WR, Jones DT, Sadowski MI (2012) Protein topology from predicted residue
contacts. Protein Sci 21(2):299–305.

28. Brylinski M, Skolnick J (2008) What is the relationship between the global structures
of apo and holo proteins? Proteins 70(2):363–377.

29. Seeliger D, de Groot BL (2010) Conformational transitions upon ligand binding: Holo-
structure prediction from apo conformations. PLoS Comput Biol 6(1):e1000634.

30. Magnusson U, Salopek-Sondi B, Luck LA, Mowbray SL (2004) X-ray structures of the
leucine-binding protein illustrate conformational changes and the basis of ligand
specificity. J Biol Chem 279(10):8747–8752.

31. Daura X, et al. (1999) Peptide folding: When simulation meets experiment. Angew
Chem Int Ed 38(1):236–240.

32. Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Multiple-basin energy
landscapes for large-amplitude conformational motions of proteins: Structure-based
molecular dynamics simulations. Proc Natl Acad Sci USA 103(32):11844–11849.

33. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an
AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding
core. Neuron 28(1):165–181.

34. Hsiao CD, Sun YJ, Rose J, Wang BC (1996) The crystal structure of glutamine-binding
protein from Escherichia coli. J Mol Biol 262(2):225–242.

35. Hsiao CD, et al. (1994) Crystals of glutamine-binding protein in various conforma-
tional states. J Mol Biol 240(1):87–91.

36. Careaga CL, Sutherland J, Sabeti J, Falke JJ (1995) Large amplitude twisting motions
of an interdomain hinge: A disulfide trapping study of the galactose-glucose binding
protein. Biochemistry 34(9):3048–3055.

37. Messina TC, Talaga DS (2007) Protein free energy landscapes remodeled by ligand
binding. Biophys J 93(2):579–585.

38. Bucher D, Grant BJ, Markwick PR, McCammon JA (2011) Accessing a hidden confor-
mation of the maltose binding protein using accelerated molecular dynamics. PLoS
Comput Biol 7(4):e1002034.

39. Bucher D, Grant BJ, McCammon JA (2011) Induced fit or conformational selection?
The role of the semi-closed state in the maltose binding protein. Biochemistry 50(48):
10530–10539.

40. Finn RD, et al. (2010) The Pfam protein families database. Nucleic Acids Res
38(Database issue):D211–D222.

20538 | www.pnas.org/cgi/doi/10.1073/pnas.1315625110 Morcos et al.

www.pnas.org/cgi/doi/10.1073/pnas.1315625110

