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Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth,
proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration,
and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and
several nutrients. Akt is present in three isoforms: Akt1, Akt2, andAkt3, whichmay be alternatively named PKB𝛼, PKB𝛽, and PKB𝛾,
respectively.TheAkt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct.
Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological
diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and
sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or
radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal
consequences in patients.

1. Introduction

Akt serine/threonine protein kinases are also termed PKB
and constitute fundamental intracellular signaling systems
for the regulation of an ample assortment of cellular andphys-
iological activities, such as cell growth, proliferation, protec-
tion from apoptosis, modulation of DNA damage response
and genome stability, motility, angiogenesis, and metabolism
[1–7].These Akt-mediated cellular functions are regulated by
various types of external stimuli, which derive from the inter-
action of growth factors, hormones, cytokines, and nutrients
with specific cellular receptors [1–7]. Some of the main hor-
mones and growth factors that have the ability to stim-
ulate the Akt axis comprise epidermal growth factor
(EGF), insulin, insulin-like growth factor-I (IGF-I), vascular
endothelial growth factor (VEGF), and nerve growth factor
(NGF) [1–6]. Basically, the interaction between the external
factors and the Akt axis occurs via ligand-cellular receptor

binding, which, in turn, results in the transient Akt phos-
phorylation, with consequent temporary activation of theAkt
intracellular signaling system. Overall, the Akt stimulation
mediated by growth factors regulates cell cycle transition
from G1/S to G2/M phase [1–7]. In addition, the Akt-related
pathway comes into play in the orchestration of the DNA
damage response and cellular genome stability [7]. Intracel-
lular upstream effectors that activate the Akt-related pathway
include phosphatidylinositol 3-kinase (PI3K) [8–10], LKB1
[11], and phosphatase and tensin homologue deleted on chro-
mosome ten (PTEN) [12], whereas downstream regulators
consist of mammalian target of rapamycin (mTOR) [13–15],
eukaryotic initiation factor 4E (eIF4E) [16, 17], and tuberous
sclerosis complex 2 (TSC2) [18–21]. Genetic analysis revealed
that cellular protooncogenes encode Akt, eIF4E and the PI3K
p85a regulatory subunit and p110 catalytic domain [1–10, 16,
17]. Instead, tumor suppressor genes encode TSC2, PTEN,
and LKB1 [11, 12, 18–21].

http://dx.doi.org/10.1155/2013/317186


2 Scientifica

Thr Ser

Akt

PH KD HM

Pleckstrin
homology domain

Catalytic kinase
domain

C-terminal regulatory
hydrophobic region

Figure 1: This figure illustrates the basic structure that is common
among the three Akt isoforms (Akt1, Akt2, and Akt3). Each Akt
isoform has three subdivisions: the Pleckstrin homology domain
(PH), the catalytic kinase domain, and the C-terminal regulatory
hydrophobic region (HM). In addition, the Akt activating threonine
(Thr) and serine (Ser) residues are indicated in the figure. The
coordinates of these two amino acid residues vary slightly among
the three Akt isoforms and are listed in Table 1.The phosphorylation
of these threonine and serine residues induces the activation of the
Akt signaling system.

TheAkt protein kinase family is present in three isoforms:
Akt1, Akt2, and Akt3, which are also termed PKB𝛼, PKB𝛽,
and PKB𝛾, respectively [1–5]. The three Akt isoforms belong
to the class of AGC kinases [1–5].Moreover, they are encoded
on three distinct chromosomes, share a considerable homol-
ogy, and contain three common structures: the N-terminal
pleckstrin homology domain (PH), the catalytic kinase
domain (KD), and the C-terminal regulatory hydrophobic
region (Figure 1) [1–5]. The catalytic and regulatory domains
are both critical for the biological actions mediated by Akt
protein kinases and exhibit the maximum degree of homol-
ogy among the three Akt isoforms [22, 23]. The PH domain
binds lipid substrates, such as phosphatidylinositol (3,4)
diphosphate (PIP2) and phosphatidylinositol (3,4,5) triphos-
phate (PIP3). The ATP binding site is situated approximately
in the middle of the catalytic kinase domain, which has a
substantial degree of homology with the other components of
the AGC kinases family, such as p70 S6 kinase (S6K) and p90
ribosomal S6 kinase (RSK), protein kinase A (PKA) and pro-
tein kinase B (PKB). The hydrophobic regulatory moiety is a
typical feature of the AGC kinases family [1–6, 22, 23].
The concomitant phosphorylation of threonine and serine
residues is essential to optimize the kinase activity of the three
Akt isoforms [1–5]. These threonine and serine residues are
positioned in marginally different locations in Akt1, Akt2,
andAkt3 (Table 1). For instance, themost essential regulatory
amino acid residues are threonine 308 and serine 473 in Akt1,
whereas the amino acid residues are threonine 309 and serine
474 in Akt2. In the case of Akt3, the regulatory amino acid
residues are threonine 305 and serine 472 [1–5].

Normally, Akt1 andAkt2 are ubiquitously present in every
tissue, while Akt3 expression is more circumscribed in terms
of tissue distribution and exhibits a predominant expression
in the central nervous system, heart, testis, kidneys, lungs,
and skeletal muscles [24–26].

Table 1: Coordinates of the Akt activating threonine (Thr) and
serine (Ser) residues among the three Akt isoforms.

Akt isoform Position of Akt
activatingThr residue

Position of Akt
activating Ser residue

Akt1 308 473
Akt2 309 474
Akt3 305 472

In recent years, a variety of studies conducted in Akt
isoform-specific knockout mice unequivocally demonstrated
that the biological functions of the three Akt isoforms are
for the most part dissimilar from one another [2, 27–31]. For
example, Akt1 is essential for cell survival, as Akt1-null cells
are more susceptible to apoptosis than Akt1-positive cells and
Akt1 knockout mice are substantially smaller than wild-type
littermates [32, 33]. Instead, Akt2 has a more prevalent role
in the regulation of glucose homeostasis, as Akt2 knockout
mice exhibit higher incidence of a type-2 diabetes-like illness
and primary cell cultures derived from these animals show
evident ineffective glucose consumption [34, 35]. Akt3 has a
more predominant purpose in postnatal brain development,
as Akt3 knockout mice exhibit a median 25% reduction in
brain weight and size, even though no major anatomical
deformitieswere reported in this study, besides a considerable
decrease of white matter fiber connections in the corpus
callosum [36]. Another report demonstrated that Akt2 has
the ability to enhance the resistance of rod photoreceptor
cells to apoptotic injuries that may be caused by light-related
stress, whereas the other two Akt isoforms lack this property
[28].These findings were observed in knockout mice models,
which also showed that light-induced cell stress specifically
activates Akt2 [28]. Intriguingly, Akt1 is essential to enhance
cell survival for the majority of cells, except for light-
induced cell stress in rod photoreceptor cells, which explicitly
necessitate the activation of Akt2.

On these grounds, the threeAkt isoforms exhibit differen-
tial biological characteristics and kinase activities, which are
in function of the cellular context. In addition, a defective and
less active Akt-related pathway does not provide an efficient
protection from apoptotic injuries, whichmay become a con-
tributing factor in the pathogenesis and/or clinical progres-
sion of several human maladies, such as neurodegenerative
diseases [37–41], illnesses of the cardiovascular system [42–
45], and type-2 diabetes [33, 34, 46]. Conversely, the over-
expression and/or constitutive enhanced activity of the Akt-
related pathway were observed in a wide variety of human
tumors [1, 2, 22, 23, 30, 47–55].This paper discusses the impli-
cations of deregulations in the Akt signaling system that were
reported in different types of cancer.

2. Aberrant Akt-Related Pathways
in Carcinogenesis and Progression
of the Disease

Carcinogenesis is a multistep process that depends on certain
environmental factors and involves a series of genetic and epi-
geneticmutations, which, in turn,may result in the activation
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of cellular oncogenes and/or silencing of tumor suppressor
genes [6, 56–72]. One of the hallmarks of the establishment
andmaintenance of a transformed cell phenotype is the over-
expression and/or constitutive enhanced activity of the Akt-
related pathway, as clearly indicated by several lines of investi-
gation [1–5, 73–77]. As alreadymentioned, the Akt intracellu-
lar signaling system is a main performer for the preservation
of the overall control of cellular biology [1–6]. This control
necessitates a steady equilibrium between the activities of
cellular tumor suppressor factors and protooncogenes within
the Akt pathway [1–18]. If for some reason the balance should
fail, the role of the Akt axis-associated protooncogenes tends
to prevail and, consequently, cause the constitutive enhanced
activation and/or overexpression of Akt-related factors,
which may contribute to the establishment and/or mainte-
nance of a malignant cell phenotype [1, 2, 22, 23, 30, 47–
53, 73–77]. For example, a defective PTEN expression is very
likely associated with an enhanced activity of the Akt axis,
which is recurrently reported in many types of tumors [54,
61].

As anticipated, physiological levels of Akt activity take
part in the regulation of DNA damage response and cellular
genome stability [7]. However, constitutive enhanced levels
of Akt activity may obstruct both ATR/Chk1 signaling and
homologous recombination repair (HRR), either by direct
phosphorylation of Chk1 and/or DNA topoisomerase 2-
binding protein 1 (TopBP1) or via prevention of assembly to
the sites of DNAdamage of double-strand break (DSB) resec-
tion factors, such as breast cancer susceptibility gene 1 (Brca1),
replication protein A (RPA), and Rad51 [7, 78–80].Thus, high
levels of Akt activity may result in genome instability among
malignant cells because of the loss of checkpoints and/or
impairment of HRR functions [7].

The protooncogene TCL1 boosts the stimulation of the
Akt axis activity through binding to the Akt PH domain [22].
Under normal physiological conditions, TCL1 expression is
confined to cell populations of the immune system, during
the early stages of development [22]. The increment of TCL1
expression levels in somatic cells is correlated with aberrant
Akt kinase activity, as reported in different types of hemato-
logical malignancies and seminoma [22, 55]. Moreover, TCL1
mediates Akt nuclear translocation [81]. The biological func-
tions of nuclear Akt are currently under investigation [81, 82].
It has been proposed that the presence of Akt in the nucleus is
instrumental in inhibiting apoptosis, by blocking the caspase-
activated deoxyribonuclease [83].

An early study showed that Akt2 overexpression trans-
formedmouse fibroblastNIH/3T3 cells [84], whereas another
report indicated that Akt2 overexpression increased substan-
tially metastatic features and invasion both in human breast
cancer and human ovarian cell lines [85]. Conversely, Akt1
and Akt3 overexpression failed to reproduce the effects that
were observed for Akt2 overexpression in the previously
mentioned human tumor cell lines [85]. This is a further evi-
dence that accounts for the nonredundancy of the three Akt
isoforms.

Some studies showed an involvement of aberrant
PI3K/Akt3 activity in human melanoma [50, 86]. For

instance, 70% of biopsies derived from patients with mela-
noma exhibited abnormal activities in the PI3K/Akt3-related
signaling system [50]. A subsequent report showed that an
enhanced PI3K/Akt3 pathway activity is one of the main
contributors in the genesis of melanoma [86]. Moreover,
several other studies supported the implication of the dereg-
ulated PI3K/Akt pathway in the development and/or clinical
progression of melanoma [87–91].

Elevated Akt1 expression levels were observed in human
cancers of the gastric system [92], thyroid [23], and breast
[93]. Similarly, estrogen receptor-negative breast cancer and
androgen-independent prostate cancer lines exhibited a
remarkable overexpression of Akt3 mRNA [94]. In this
respect, several other reports showed the involvement of the
hyperactive Akt signaling system in human tumors of the
breast [67, 95–101] and prostate [61, 102–106]. Furthermore,
increased levels of Akt2 expression were reported among
the following human tumors: gliomas [107, 108], colorectal
cancer [109], hepatocellular carcinoma [110], ovarian tumors
[26], and pancreatic malignancies [111, 112].

In addition to enhanced levels of Akt expression, a num-
ber ofAkt activatingmutationswere reported in various types
of human cancers. For instance, a transforming point muta-
tion that changes a single glutamic acid to lysine at amino acid
residue 17 (E17K) within the PH domain confers a continuous
state of activation in Akt1 [113]. This somatic point mutation
was identified in human breast, ovarian, and colorectal
tumors [113]. Intriguingly, the E17K point mutation was
absent in Akt2 and Akt3 in the previously mentioned tumors
[113], although an analogous point mutation in the Akt3 PH
domain was found in human melanoma [114].

In most cases, point mutations that cause the constitutive
activation of the Akt axis involve the genetic modification
of the PI3K p110 catalytic subunit (PI3KCA) [115–123]. Such
PI3KCAmutations were observed in a wide variety of human
malignancies [121, 123]. Some of such human malignancies
include cancers of the breast [115, 116, 119], gastric system
[117], colorectal tract [120], oral cavity [118], and thyroid [122].

A deregulated Akt activity is among the main factors that
are implicated in the establishment of a malignant phenotype
and/or progression of the clinical course of the disease [1–
6, 22, 23, 47–53]. On these grounds, the Akt-related pathway
may be considered a suitable target for cancer therapy [52,
55, 57, 79, 124–126]. However, the inhibition of the Akt axis is
one of the requirements for enhanced cell motility [127–132].
In fact, the Akt signaling system suppresses the activity of the
nuclear factor of activated T cells (NFAT) [127–131], which is a
transcription factor that increases both cell motility and inva-
sion in different kinds of malignancies [127–135]. Most likely,
the Akt-induced inhibition of NFAT activity occurs through
the Akt-mediated stimulation of the E3 ubiquitin-protein lig-
aseMdm2,which, in turn, promotes the degradation ofNFAT
[132].Thus, the pharmacological inhibition of the Akt-related
pathway in cancer therapy might unexpectedly become a
contributing factor for the dissemination of cancer metas-
tases [132]. Indeed, this is a very important aspect that should
be taken under consideration in the planning of various
therapeutic strategies for the treatment of malignancies in
patients.
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3. Abnormal Akt-Related Pathways in
Resistance to Cancer Therapy

Undoubtedly, the development of malignant cells with
enhanced resistance to chemo- and/or radiotherapy is one of
the most pressing issues for the field of oncology [62, 136–
146]. The onset of cancer cell variants with increased resis-
tance to therapy may cause the relapse of the illness, which is
often associated with fatal consequences in patients [62, 136–
146]. In this respect, an abundant number of reports per-
suasively confirmed that a deregulated Akt pathway is a key
element for the generation of tumor cells with increased resis-
tance to chemo- and/or radiotherapy [7, 136, 141, 143, 147–
160]. For instance, the Akt-related pathway is one of the main
factors that may intervene in the development of increased
resistance to cis-diamminedichloroplatinum (II) therapy
[141, 158, 159]. The anticancer compound cis-diamminedi-
chloroplatinum (II) is more commonly known either as
cisplatin or CDDP [141, 158, 159, 161] and has been utilized for
the treatment of several types of solid tumors, such as ovarian,
testicular, head and neck, lung, colorectal, and bladder can-
cers [141, 160–164]. Cisplatin-mediated suppression of tumor
growth occurs through various types of mechanisms [141].
The best-characterized and also predominant mechanism
of cisplatin anticancer action consists of producing lesions
within the cancer cell genome [141, 165–167], which are fol-
lowed by the intervention of the DNA damage response sys-
tem and mitochondrial apoptosis [141, 168, 169]. Specifically,
the Akt-related pathway confers resistance to malignant cells
against cisplatin treatment through a so-called off-target
resistancemechanism, whichmay be induced by intracellular
signaling systems that are not directly affected by cisplatin
and come into play in the attempt to counterbalance the
cisplatin-derived lethal effects in target cells (Figure 2) [141,
170, 171]. Generally, the Akt-mediated off-target resistance to
cisplatin takes place in two stages. Initially, the PI3K/Akt sig-
naling system is maintained at a baseline activity [141]. At this
stage, there is an increase of cyclin-dependent kinase
inhibitor 1A (CDKN1A) expression levels within the cell
nucleus [171]. CDKN1A is also termed either p21Cip1 or
p21Waf1 [171]. During this period, the cisplatin-injuredmalig-
nant cell may take advantage of a temporary CDKN1A-
induced cell cycle arrest to try to repair the damaged
genomic DNA [141, 171]. In a second stage, however, survived
malignant cells must resume the proliferation program [141].
This occurs through a subsequent increment of PI3K/Akt
activity, which, in turn, is responsible for the nuclear rejection
of CDKN1A [141, 171, 172]. Once CDKN1A is outside the
cell nucleus, it can no longer impose a cell cycle arrest and,
therefore, malignant cells recommence to proliferate [141].
A hyperactive PI3K/Akt signaling system is one of the con-
tributing factors that are also responsible for the development
of cancer cells with increased resistance to a broad spectrum
of chemotherapeutics [136–194] and radiotherapy [143–150,
155–157]. Some of the anticancer drugs that become clinically
ineffective comprise paclitaxel [171, 173–180], doxorubicin
[180–182], gefitinib [152, 183–187], imatinib [186, 188–192],
and flavopiridol [193, 194]. The clinical and/or preclinical
studies on the Akt pathway-mediated enhanced resistance
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Figure 2: Basic off-targetmechanism of Akt-inducedmalignant cell
survival in response to cisplatin treatment.

to chemo- and/or radiotherapy were conducted on several
types of human hematological tumors [195–198] and human
epithelial malignancies [143, 147–160]. The latters included
cancers of the brain, breast, ovaries, testicles, bladder, pros-
tate, lung, colorectal tract, pancreas, and head and neck [143,
147–160].

In recent years, a number of PI3K/Akt/mTOR inhibitors
have been developed for the treatment of different types of
tumors [199–201]. Some PI3K/Akt/mTOR inhibitors com-
prise rapamycin, sirolimus, metformin, everolimus, and tem-
sirolimus [199–201]. Although the PI3K/Akt/mTOR axis is
a promising target for the treatment of cancer, random-
ized phase III clinical trials reported suboptimal beneficial
therapeutic effects in patients [199–201]. Exceedingly high
levels of toxicity were unfortunately observed in various
clinical trials [199–201].Moreover, the effects of the inhibition
of the PI3K/Akt/mTOR pathway can be circumvented in
cancer cells through the Raf/MEK/ERK signaling system
[200], which may protect malignant cells from drug-induced
proapoptotic injuries and, therefore, produce chemoresistant
cancer cells variants [200].

In addition, the field of oncology is currently addressing
the function of rare subpopulation of cancer cells with stem
cell-like properties, or cancer stem cells, in the process
of carcinogenesis, spreading of metastasis, regeneration of
the tumor mass, and development of malignant cells with
enhanced resistance to chemo and/or radiotherapy [152, 202–
211]. Such rare subpopulations of malignant cells with stem
cell-like properties express the surface marker CD133 (or
Prominin-1), which renders possible their identification in
neoplastic tissues [202, 203, 212–221]. The efficient detection
ofCD133 expression inmalignant tissuesmight assume a con-
siderable prognostic importance [214]. According to the so-
called cancer stem cell hypothesis, only specialized subsets of
malignant cells with stem cell-like features have the ability to
originate and maintain a malignancy [202–211]. Moreover,
cancer stem cells are more resistant to toxic agents and
radiations than other tumor cells [154, 202–211]. Therefore,
anticancer therapeutics eliminatemost of themalignant cells,
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but some cancer stem cells might be able to survive and,
eventually, they reconstitute the tumor mass with cancer cell
populations that are more resistant to chemo- and/or radio-
therapy [154, 202–221]. Of course, the Akt-related pathway
plays a strategic role also in the biology of cancer stem cells, as
convincingly demonstrated by several reports [154, 210, 222–
226]. Indeed, the inhibition of the canonical Akt-related cell
survival pathway constitutes a highly critical target for cancer
therapy.

A study has recently shown that flavopiridol triggered a
considerable Akt-Ser473 phosphorylation in human glioblas-
toma T98G cell line [194]. In contrast, as expected, flavopiri-
dol treatment caused a reduction of Akt-Ser473 phosphory-
lation in human glioblastoma U87MG cell line and in human
prostate cancer PC3 cell line [194]. As already discussed,
Akt-Ser473 phosphorylation is a characteristic of the Akt-
related pathway activation, which, in turn, may protect cells
from apoptotic injuries [1–5]. Flavopiridol is a pan-inhibitor
of cyclin-dependent kinases and has been used in several
clinical trials for the treatment of patients with various kinds
of malignancies, albeit with modest therapeutic efficacy [57,
227–230]. The use of flavopiridol is supposed to impair the
cellular signaling systems for protection from apoptosis and
survival [57, 227–230]. However, the previously mentioned
study on human glioblastoma T98G cell line indicates that
flavopiridol might paradoxically play a relevant role in the
production of tumor cell variants with enhanced resistance
to chemotherapy, through increased activation of the Akt-
related pathway [57, 194]. For this reason, various anticancer
drugs should be screened to assess whether or not they may
incidentally induce the increment of Akt-Ser473 phosphory-
lation in different types of human tumor cells [194].

Interestingly, it was also reported that a deregulated Akt
axis has the ability to confer radioresistance tomalignant cells
by orchestrating DNA repair through nonhomologous end
joining (NHH) [7]. In this regard, a group of investigators
observed a substantial 𝛾-radiation-induced increment of
Akt-Ser473 phosphorylation in a variety of human glioblas-
toma cell lines, such as U87MG, MO59J, and LN-18 [231].

Investigations are currently underway to determine
the mechanisms of flavopiridol and/or 𝛾-radiation-induced
enhancement of Akt-Ser473 phosphorylation in human
glioblastoma cell lines. In fact, a better understanding of these
mechanismsmay lead to the identification of novel therapeu-
tic targets, which can be eventually suppressed with new drug
formulations, in order to prevent the constitution of cancer
cell variants that are more resilient to chemo- and/or radio-
therapy.

4. Conclusion

Undeniably, a deregulatedAkt pathway is an important factor
in the establishment and/or maintenance of a malignant
cell phenotype. Moreover, a constitutively activated Akt
axis is involved in the generation of tumor cell variants
with enhanced resistance to chemotherapeutic agents and/or
radiotherapy.

On one hand, an abnormal Akt-related pathway is a very
promising target to implement therapeutic approaches for the

treatment of different types of cancer. On the other hand,
the repression of the deregulated Akt signaling system, per
se, does not seem to be sufficient for an effective therapy
and may pose a number of collateral issues. For instance,
a drug-induced inhibition of the Akt activity in malignant
cells may unexpectedly contribute to the formation and/or
dissemination of cancer metastases [127–132]. Another quite
unforeseen side effect of the Akt pharmacological targeting is
related to the flavopiridol-induced increment of Akt-Ser473
phosphorylation in human T98G glioblastoma cell line
[194]. In addition, an increased Akt-Ser473 phosphorylation
was observed following 𝛾-irradiation of a panel of human
glioblastoma cell lines [231]. All of these findings, taken
together, suggest the pursuit of combinational therapeutic
approaches for the treatment of different types of cancer
[232–238], in order to prevent as much as possible treatment-
related side effects that may paradoxically contribute to the
spreading of metastases and/or to the generation of cancer
cell variants with higher resistance to therapeutic interven-
tions.
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[137] V. Merino, N. V. Jiménez-Torres, andM.Merino-Sanjuán, “Rel-
evance of multidrug resistance proteins on the clinical efficacy
of cancer therapy,” Current Drug Delivery, vol. 1, no. 3, pp. 203–
212, 2004.
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[189] F. U. Wöhrle, S. Halbach, K. Aumann et al., “Gab2 signaling in
chronic myeloid leukemia cells confers resistance to multiple
Bcr-Abl inhibitors,” Leukemia, vol. 27, no. 1, pp. 118–129, 2013.

[190] A. Puissant, M. Dufies, N. Fenouille et al., “Imatinib triggers
mesenchymal-like conversion of CML cells associated with
increased aggressiveness,” Journal of Molecular Cell Biology, vol.
4, no. 4, pp. 207–220, 2012.

[191] E. J. Kim and M. M. Zalupski, “Systemic therapy for advanced
gastrointestinal stromal tumors: beyond imatinib,” Journal of
Surgical Oncology, vol. 104, no. 8, pp. 901–906, 2011.

[192] J. M. Brandwein, D. W. Hedley, S. Chow et al., “A phase I/II
study of imatinib plus reinduction therapy for c-kit-positive
relapsed/refractory acute myeloid leukemia: inhibition of Akt
activation correlateswith complete response,”Leukemia, vol. 25,
no. 6, pp. 945–952, 2011.

[193] L. A. Gomez, A. de las Pozas, and C. Perez-Stable, “Sequential
combination of flavopiridol and docetaxel reduces the levels of
X-linked inhibitor of apoptosis and AKT proteins and stimu-
lates apoptosis in human LNCaP prostate cancer cells,”Molecu-
lar Cancer Therapeutics, vol. 5, no. 5, pp. 1216–1226, 2006.

[194] V. Caracciolo, G. Laurenti, G. Romano et al., “Flavopiridol
induces phosphorylation of AKT in a human glioblastoma cell
line, in contrast to siRNA-mediated silencing of Cdk9: implica-
tions for drug design and development,”Cell Cycle, vol. 11, no. 6,
pp. 1202–1216, 2012.

[195] O. Frolova, I. Samudio, J. M. Benito et al., “Regulation of HIF-1𝛼
signaling and chemoresistance in acute lymphocytic leukemia
under hypoxic conditions of the bone marrow microenviron-
ment,” Cancer Biology & Therapy, vol. 13, no. 10, pp. 858–870,
2012.
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