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Electrical Stimulation of Motor Cortex in the Uninjured
Hemisphere after Chronic Unilateral Injury Promotes
Recovery of Skilled Locomotion through Ipsilateral Control
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Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with func-
tional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery
when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion
of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to
walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the
rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved
forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether
recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the
GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats
with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was
reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury
and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be
targeted for brain stimulation in people with large unilateral CST lesions.

Introduction
Hemiparesis attributable to unilateral brain injury is the primary
impairment causing long-term disability in the United States
(Roger et al., 2012). The severity of hemiparesis correlates
strongly with injury to the corticospinal tract (CST; Stinear,
2010). After large CST lesion, primary motor cortex (M1) on the
uninjured side is activated with movement of the impaired hand,
and this activation is critical for the early stage of functional re-
covery (Nishimura et al., 2007). We demonstrated previously
that M1 on the uninjured side can be electrically stimulated to
promote brainstem and spinal axon outgrowth (Brus-Ramer et
al., 2007; Carmel et al., 2013) and functional recovery after acute

injury (Carmel et al., 2010). However, the extent to which the
uninjured M1 can participate in functional recovery after chronic
injury, when the injured M1 usually resumes control of the im-
paired hand or forelimb (Nishimura et al., 2007; Clarkson et al.,
2010), is unknown.

We demonstrated previously that unilateral CST injury alone
and CST stimulation alone each promote sprouting of functional
spinal connections.(Brus-Ramer et al., 2007) Stimulation of the
intact CST after injury produced axon outgrowth and spinal con-
nectivity equivalent to the sum of injury only and stimulation
only. It might be that electrical stimulation stabilizes injury-
induced plasticity with increased activity and therefore would
best be applied soon after injury when injury-induced plasticity is
highest. Alternatively, if the effects of stimulation and injury are
independent, then stimulation would be as effective after chronic
injury as acute injury. We also investigated which circuits medi-
ate the recovery of motor control. We asked whether we could
create ipsilateral control of the impaired forelimb after large CST
lesion, a critical issue in systems neuroscience and restorative
neurology (Jankowska and Edgley, 2006).

We addressed the question of whether electrical stimulation
could improve function after chronic injury by applying epidural
stimulation over M1 in the uninjured hemisphere 8 weeks after
CST lesion on the other side. By 4 weeks after stimulation, rats
with injury and electrical stimulation had significantly fewer er-
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rors in skilled locomotion than those with injury alone. Thus,
activity can be applied late after injury and still promote recovery
of function. To determine whether the stimulated M1 had as-
sumed control over the impaired forelimb, we pharmacologically
inactivated it. In rats with injury and stimulation, but not those
with injury alone, inactivation caused a transient worsening of
function in the forelimb ipsilateral to stimulation. This indicates
that the uninjured and stimulated hemisphere was responsible
for restoring motor control after chronic injury.

Materials and Methods
Figure 1A demonstrates the experimental paradigm and Figure 1B the
timeline. Experiments were conducted on adult female Sprague Dawley
rats (weighing 225–275 g; Charles River). A total of 13 rats were used: 10
for the therapeutic effects of epidural stimulation and three for inactiva-
tion controls. A power analysis with a predicted effect size of 33% relative
reduction in error rate (� � 0.8, � � 0.05) and variance observed in our
previous trial of electrical stimulation (Carmel et al., 2010) determined
that a group size of five rats would be sufficient to detect statistically
significant differences between groups. Surgeries (pyramidal lesion and
electrode implantation) were performed under general anesthesia (90
mg/kg ketamine and 10 mg/kg xylazine via intraperitoneal injection) and
aseptic conditions. All procedures were approved by the institutional
animal care and use committee of City College of the City University of
New York. All experiments comply with National Institutes of Health
guidelines on the care and use of laboratory animals.

Rats were trained and tested to walk on a horizontal ladder (Metz and
Whishaw, 2002; Carmel et al., 2010). We trained rats until they crossed

the ladder with a forelimb error rate 20%. During testing sessions, rats
were run for 10 trials in each direction on the ladder. Rung positions were
changed every five runs during the session to prevent rats from learning
a particular pattern. All trials were video recorded (Canon ZR960), and
scoring performed by a blinded observer. Videos were analyzed frame by
frame, and the placement of the forepaws was measured only during
active walking. Steps with placement of the palm of the forepaw, between
the wrist and the digits, on the rung were scored as good. All other steps
were recorded as errors, and the results were expressed as percentage
errors. Errors were further classified as oversteps, understeps, or misses,
as described previously (Carmel et al., 2010). Baseline error rates were
established with at least two testing sessions within the 5 d before CST
lesion. Testing was performed every 7 d after injury without additional
training between. Each testing session requires �40 s of active ladder
walking; this small amount of activity limits any therapeutic effect of
testing.

After training, we cut one pyramid, transecting the CST from one
hemisphere at the rostral medulla (Brus-Ramer et al., 2007, 2009; Carmel
et al., 2010, 2013). Lesions were examined using Kluver–Barrera staining
(Kluver and Barrera, 1953) or dark-field microscopy of the medulla at the
site of injury and reconstructed (Neurolucida; MicroBrightField; Fig.
1C). In rats whose lesions could not be confirmed by lesion reconstruc-
tion because we could not determine whether there was any spared tissue
of the pyramidal tract, we immunostained the CST below the lesion site
with PKC� to verify loss of CST axons (rabbit anti-PKC�, 1:500; Santa
Cruz Biotechnology; Tan et al., 2012).

Five weeks after CST lesion, we implanted electrodes for stimulation
and a cannula for inactivation. These are incorporated in a single con-
nector (Plastics One; Fig. 1C), which allows stimulation and inactivation
at the same location. This device was implanted over the caudal forelimb
area of motor cortex, 1.5 mm anterior and 2.5 mm lateral to bregma (Fig.
1C), as in our previous studies (Carmel et al., 2010, 2013). Briefly, rats
were anesthetized and head fixed in a stereotactic frame. Through a
craniotomy, parallel stainless steel stimulating electrodes attached to a
connector were placed over the dura mater (Fig. 1C). To confirm place-
ment, we used a constant-current stimulator (A-M Systems) to deliver
trains of stimuli (0.2 ms biphasic pulse, 333 Hz, 45 ms duration) at the
minimal current (i.e., threshold) to provoke a movement, which was
0.9 –1.7 mA. This stimulation produced selective contralateral forelimb
movement, never hindlimb or whisker movements. Beginning 8 weeks
after CST lesion, we used the electrodes to give five randomly selected rats
therapeutic stimulation. Rats were attached via freely swiveling cables to
a constant-current stimulator; five received active stimulation. We used
the same trains of stimuli used for testing of the electrode at motor
threshold every 2 s, 6 h/d, for 10 d as described previously (Carmel et al.,
2010, 2013). Stimulation was performed during the day. At the end of 6 h
of active (injury and stimulation) or sham (injury only) stimulation, rats
were untethered and returned to their home cage. These stimulation
parameters are well tolerated and do not injure the underlying brain
(Carmel et al., 2013). The locomotor performance of the groups was
compared using repeated-measures ANOVA (Kaleidograph).

To determine the locus of control for the gain in function, we devel-
oped the methods to transiently inactivate M1 in the awake rat, as we
have in the cat (Martin and Ghez, 1999). The indwelling cannula for
inactivation was placed as described above. For inactivation, an inner
cannula was inserted through the outer cannula, through dura, and 1.5
mm into cortex. A syringe pump infused 1 �l of muscimol (catalog
#M1523; Sigma) solution over 5 min, and the cannula was removed 5
min later. Rats were tested on the ladder task before and 1 h after inacti-
vation. Two days after inactivation, rats were tested again to ensure that
muscimol had washed out and error rates had returned to preinactiva-
tion values. Saline infusion was used to verify the specificity of muscimol
actions. Effects of inactivation were tested with a paired Student’s t test
(Excel).

Results
First, we tested whether electrical stimulation of M1 in the unin-
jured hemisphere could improve motor function after chronic
CST injury. Unilateral CST lesion (Fig. 1D) completely (n � 4 per

Figure 1. Methods. A, Experimental schema. Eight weeks after CST lesion (X), the M1 in the
uninjured hemisphere is electrically stimulated (STIM). M1 in the uninjured hemisphere was
inactivated at the end of the efficacy trial. B, Experimental timeline. C, Position of stimulating
electrodes and inactivation. Electrode wires were bent into an L shape and run parallel over the
forelimb area of the motor cortex, as shown in the diagram. The anteroposterior position of the
angle of the L-shaped electrodes was in line with bregma, and the lateral positions were 2 and
3.5 mm, respectively. The electrodes extended anterior from bregma to 4 mm anterior to
bregma, which covers the caudal forelimb area of M1. A cannula for inactivation is located at the
center between the stimulating electrodes, as pictured in the photograph. D, Pyramid lesions.
D1, The injury site was examined with myelin-stained cross-sections through the lesion site.
The intact pyramid in outlined; the opposite pyramid is absent. D2, Select lesions were verified
with PKC� staining of the CST below the lesion. The intact CST is outlined; the other half of the
CST is absent.
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group) or nearly completely (n � 1 per group) severed the CST;
in all rats there was little to no extension into the underlying
medulla. Eight weeks after CST lesion, we gave daily epidural M1
electrical stimulation for 10 d in five randomly chosen rats (injury
plus stimulation group) and sham stimulation to the five rats in
the injury-only group. We measured locomotor performance for
4 weeks after the start of electrical stimulation. At the end of this
period, we began inactivation experiments in a subset of rats (n �
3 from each group) to determine whether the stimulated and
ipsilateral M1 gained motor control over the impaired forelimb.
The GABA agonist muscimol was infused through a cannula cen-
tered on the caudal forelimb area of M1 at the site of stimulation
(Fig. 1C).

Figure 2 demonstrates the error rates of the forelimb affected
by CST lesion in rats with injury alone (black) and rats with injury
and epidural stimulation (gray). The error rates of the two groups
did not differ between baseline and just before stimulation, at
week 7 (repeated-measures ANOVA; F(1,8) � 0.54, p � 0.48). The
week before stimulation, the error rates in the rats with injury
only (28.2 � 3.5%) were nearly identical to those of rats with
injury and stimulation (27.8 � 1.8%). We next asked whether the
groups differed after the start of electrical stimulation (weeks
8 –11). The error rates of rats with injury and stimulation steadily
declined after the start of stimulation, and the groups were dif-
ferent from one another over this time (repeated-measures
ANOVA, F(1,4) � 5.8, p � 0.04). At 11 weeks, the error rate was
significantly lower in rats with injury and stimulation (14.4 �
2.6%) than rats with injury only (24.4 � 2.5%; Bonferroni’s post
hoc test, p � 0.03). The error rate of rats with injury and stimu-
lation declined to baseline (12.9 � 1.6%; not different from pre-
injury performance, paired t test, p � 0.19). Thus, epidural M1
electrical stimulation promoted recovery of skilled locomotion in
rats after chronic CST injury.

We next developed the methods to transiently inactivate M1
using the GABA agonist muscimol. We first determined in naive

rats (n � 3) the dose of muscimol that produced substantial
contralateral impairment but no ipsilateral impairment, as mea-
sured by performance on the horizontal ladder task. We started
with 1.0 �g in 1.0 �l of normal saline and gradually decreased the
dose. We found that 0.1 �g in 1.0 �l (0.88 mM) of normal saline
produced a contralateral impairment as large or larger than py-
ramidal tract lesion but no ipsilateral impairment. As shown in
Figure 3A, at baseline and before inactivation, naive rats had error
rates of 17.3 � 0.9% in the contralateral forelimb. During inac-
tivation, the error rates increased to 50.6 � 3.6%; paired t test,
p � 0.02). The ipsilateral forelimb had a baseline error rate of
18.1 � 1.0%, and this did not increase significantly during inac-
tivation (22.0 � 4.7%; paired t test, p � 0.45). After washout of
muscimol, the error rate came back to baseline in the contralat-
eral forelimb (18.7 � 0.5%; paired t test vs baseline, p � 0.53) and
remained unchanged in the ipsilateral forelimb (17.2 � 0.6;
paired t test, p � 0.65). This effect was attributable to pharmaco-
logical inactivation and not to any physical effects of cortical
infusion because saline infusion did not increase the error rate in
either the contralateral (16.6 � 1.6 vs 17.8 � 1.2; p � 0.37) or the
ipsilateral (17.2 � 0.5 vs 14.7 � 0.3, a decrease) forelimb. Thus, in
naive rats, M1 inactivation produced a strong and selective con-
tralateral deficit.

We next tested whether improvement in motor control was
directed by the stimulated M1 ipsilateral to the impaired fore-
limb. Five weeks after initiation of stimulation (Fig. 1B), rats
were subject to pharmacological inactivation of M1. In two rats,
the acrylic implants became loose, and in two other rats, the
cannulae became irreversibly clogged. So three rats from each
group were subjected to inactivation. The inactivations were re-
peated for a total of six inactivations per group. We predicted
that, for rats with injury and stimulation, inactivation of stimu-
lated M1 would cause increases in forelimb errors on the initially
impaired side, i.e., the initial deficit would be reinstated. This was
the case. As shown in Figure 3B, in rats with injury and stimula-
tion, the ipsilateral error rate was 18.3 � 3.1% at the end of the
stimulation period. During muscimol inactivation, this error rate
went to 31.5 � 1.7% (p � 0.01). After washout, the error rates
returned to baseline (19.6 � 2.5%; p � 0.56). In contrast, in rats
with injury only, the ipsilateral error rate did not change during
inactivation (26.2 � 4.4 to 28.3 � 3.5%; p � 0.35). There was also
no change in the subtypes of errors the rats with injury only made
during inactivation, whether oversteps (21.2% before vs 25.2%
during inactivation), understeps (5.0 vs 2.1%), or misses (0 vs
1.1%; all p � 0.05). The difference in effects on the ipsilateral
forelimb in the two groups was not attributable to differences in
the degree of M1 inactivation, because the error rate in the con-
tralateral and unimpaired forelimb increased to similar degrees
(36.5 � 3.2% for rats with injury and stimulation vs 35.8 � 3.0%
for rats with injury only; unpaired t test, p � 0.8). Thus, epidural
stimulation after chronic injury promotes recovery of motor
function by establishing functional control from the stimulated
M1 to the ipsilateral and impaired forelimb.

Discussion
This study had two main findings: (1) electrical stimulation pro-
moted recovery of function after chronic injury; and (2) recovery
was mediated by ipsilateral M1. Primarily because most rodents
recover function within the first few weeks after injury and hu-
mans within the first few months, the capacity for recovery is
presumed to diminish after this time (Murphy and Corbett, 2009;
Krakauer et al., 2012). Although injury-induced plasticity may
wane, the capacity to respond to activity-based treatments per-

Figure 2. M1 electrical stimulation after chronic injury improves promotes recovery of
skilled walking in the impaired forelimb. Rats were trained to cross a horizontal ladder with
irregularly spaced rungs until they achieved a baseline error rate n � 5 per group). Until the
start of stimulation (weeks 1–7), the error rates in the two groups were not different. After the
start of stimulation (weeks 8 –11), the groups differed significantly (repeated-measures
ANOVA, with Bonferroni’s post hoc correction, *p � 0.03).
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sists. The specific targeting of intact motor circuits with electrical
stimulation may allow profound activity-dependent plasticity
even when injury-induced plasticity is low.

The behavioral effects of stimulation were similar to those that
we observed when the same stimulation paradigm was initiated
the day after injury (Carmel et al., 2010). A striking similarity
between the acute and chronic electrical stimulation studies is
that the behavioral improvement did not begin until after the end
of the 10 d stimulation period and became progressively greater.
Our previous anatomical analyses in stimulation after acute in-
jury support the idea that electrical stimulation promotes growth
of CST axon terminations within the cervical spinal cord gray
matter that continue beyond the stimulation period. In different
groups of animals, we measured axon length in the ipsilateral half
of the cervical spinal cord either 1 d after the end of stimulation or
1 month after stimulation. We compared rats with CST lesion
and stimulation and rats with CST lesion only. Whereas 1 d after
the end of stimulation (day 12 after injury) there was a 35%
increase in axon length (Brus-Ramer et al., 2007), 1 month after
the end of stimulation (day 42 after injury) we observed a 460%
increase in axon length (Carmel et al., 2013). Thus, M1 stimula-
tion may spur a growth program in axon terminations that con-
tinues beyond the stimulation period, and this could explain the
delayed behavioral improvement.

The inactivation experiment demonstrates that recovery of
motor control is established by M1 ipsilateral to the impaired
forelimb. Ipsilateral control does not appear to be an important
pathway for control in rats with CST lesion alone because inacti-
vation of M1 did not raise the error rate in that group. Our

finding of a minimal role in ipsilateral
control in nonstimulated animals is not
attributable to an inability to further in-
crease errors during inactivation (i.e., a
ceiling effect) because errors rose to 50%
in naive rats using the same muscimol
dose. The ipsilateral M1 can be targeted
for recovery of function after corticospi-
nal lesion in this study and others (Liu et
al., 2008; Maier et al., 2008; Reitmeir et al.,
2011). This indicates flexibility in the mo-
tor systems that can be targeted for func-
tional benefit. In humans, ipsilateral
control can be established after large, peri-
natal brain injury (Staudt et al., 2002,
2004) or after hemispherectomy in chil-
dren (Jonas et al., 2004). However, in
adults, severe injury to the CST is associ-
ated with poor recovery (Stinear et al.,
2007), and like the rats with injury only,
the uninjured hemisphere does not spon-
taneously assume control of the impaired
hand (Bradnam et al., 2012). However,
electrical stimulation may promote suffi-
cient plasticity in the uninjured hemi-
sphere that the stimulated M1 gains
adaptive ipsilateral control, as it does after
developmental injury.

Electrical stimulation of the motor
cortex is a promising therapeutic ap-
proach for recovery of motor function,
but it must be properly targeted. Follow-
ing promising preclinical studies of epi-
dural stimulation in rodents (Adkins et

al., 2006, 2008), clinical trials were initiated that targeted perile-
sional cortex in the stroke hemisphere. Early stage trials showed
benefit of this approach, but the phase 3 trial did not meet its
primary endpoint; patients receiving physical therapy and M1
stimulation were not different from physical therapy alone (Plow
et al., 2009). A post hoc analysis revealed that, when the stimula-
tion was directed to intact corticospinal circuits in perilesional
cortex, function was restored (Nouri and Cramer, 2011). Thus,
epidural stimulation can restore function, by either targeting the
perilesional cortex that is responsible for endogenous recovery
(Starkey et al., 2012; Zeiler et al., 2013) or creating bilateral con-
trol from the uninjured hemisphere, as shown here. In addition,
spared motor circuits can be strengthened with non-invasive
brain stimulation, such as transcranial magnetic stimulation
(Reis et al., 2008) or transcranial direct current stimulation
(Vines et al., 2008). This study identifies motor cortex in the
uninjured hemisphere as an attractive target for electrical brain
stimulation to promote recovery of motor function after large,
unilateral corticospinal injury.
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