Table 2. The parameters for fitting CDFs shown in Figs. 2 and 3 (S&P500 Index in the US stock market) with R or R′ ranging from “Minimum” to “Maximum”.
CDF | Minimum | Maximum | α | Std. Dev. | r 2 |
Fig. 2(a) : R | 1 | 100 | 2.28 | 0.01 | 0.99 |
Fig. 2(b) : R′ | 1 | 100 | 2.05 | 0.01 | 0.99 |
Fig. 3(a): Rfor Δt = 1 | 2 | 62 | 1.41 | 0.01 | 0.99 |
Fig. 3(a): Rfor Δt = 10 | 2 | 28 | 3.28 | 0.02 | 0.99 |
Fig. 3(a): Rfor Δt = 50 | 2 | 50 | 2.52 | 0.01 | 0.99 |
Fig. 3(a): Rfor Δt = 100 | 2 | 62 | 1.86 | 0.01 | 0.99 |
Fig. 3(b): R′for Δt = 1 | 3 | 58 | 1.39 | 0.01 | 0.99 |
Fig. 3(b): R′for Δt = 10 | 3 | 27 | 3.15 | 0.03 | 0.99 |
Fig. 3(b): R′for Δt = 50 | 3 | 53 | 2.52 | 0.01 | 0.99 |
Fig. 3(b): R′for Δt = 100 | 3 | 58 | 1.87 | 0.01 | 0.99 |
α is the exponent (scaling parameter); “Std. Dev.” is the standard deviation for α, indicating the fitting error; and r 2 is the regression coefficient that represents the degree of fitting with the power law: the perfect fitting corresponds to r 2 = 1 [30].