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Abstract

DAS181 is a novel drug in development for the treatment of influenza as well as human
parainfluenza viruses (hPIV). Previous studies demonstrated that DAS181 inhibited laboratory
strains of hP1V, but no tests were conducted with primary clinical isolates of hPIV. To fill this
gap, we studied six primary isolates including hP1V-2 and hPI1V-3. First tests showed that the
amplification of all viruses in vitro was reproducibly inhibited with DAS181 drug concentrations
ranging between 0.1 and 1 nM. An hPIV-3 primary clinical isolate was then tested in a cotton rat
model for sensitivity to 0.3-1 mg/kg drug treatments. Results showed that virus amplification in
the lower respiratory tract was significantly and reproducibly inhibited by drug. Together,
experiments demonstrated that DAS181 inhibited primary clinical isolates of hPIV in vitro and in
vivo at doses similar to those previously described for inhibition of laboratory hPIV and influenza
virus isolates.

Human parainfluenza viruses (hPIVs) belong to the paramyxovirus family and include
subtypes 1, 2, 3, and 4. These subtypes cause diseases of different severity ranging from
common cold symptoms to serious laryngotracheobronchitis (croup) or bronchiolitis.
Human PI1V-1 infections cause at least 50% of croup cases in the United States with an
estimated 18,000 to 35,000 children younger than 5 years hospitalized each year
(Henrickson, 2003). Hospitalizations with hPIV-3 infections are even more frequent and
tend to associate with lower respiratory tract disease including bronchiolitis and pneumonia
(Weinberg et al., 2009). HP1V-2 and hP1V-4 associate with fewer respiratory tract
infections, but like the others, can cause serious disease in immunocompromised hosts
(Boeckh, 2008;Falsey, 2012;Hall, 2001;Karron & Collins, 2007;Renaud & Englund,
2012;Weigt et al., 2011).

Currently, no standard prophylaxis or therapy exists for prevention or treatment of hPIV.
Several vaccines have been tested, but none have yet reached licensure (Hurwitz et al.,
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1997;Jones et al., 2009;Jones et al., 2012;Karron et al., 2012;Karron & Collins,
2007;Skiadopoulos et al., 1999;Slobod et al., 2004). Ribavarin is used in some cases as
treatment against hPIV in immunocompromised patients, but the results have been variable
(Fuehner et al., 2011;Riner et al., 2009;Ustun et al., 2012), and candidate drugs such as BCX
2798 and BCX 2855 have not yet advanced to clinical testing (Alymova et al.,
2004;Watanabe et al., 2009). The development of better treatment options for the hPIVs is
therefore encouraged.

The host cell receptors for hPIVs are cell surface sialic acids (Ito, 2000). These are a-keto
acids with 9-carbon backbones, usually found at the outermost positions of oligosaccharide
chains attached to glycoproteins and glycolipids. The predominant type of sialic acid is N-
acetylneuraminic acid (Neu5Ac), which is the biosynthetic precursor for most other types.
Two major linkages between Neu5Ac and the penultimate galactose residues of the
carbohydrate side chains are found in nature, NeuSAc a(2,3)-Gal (a2,3-linked sialic acids)
and Neu5Ac a(2,6)-Gal (a2,6-linked sialic acids). The hemagglutinin-neuraminidase (HN)
molecules of hPIVs 1-4 recognize a(2,3)-linked sialic acids, while hP1V-3 is also known to
recognize a(2,6)-linkages (Schauer, 1982;Suzuki et al., 2001). In some cases a second
receptor site is exposed on the HN of hPIV-1 or hPIV-3 that may broaden receptor
recognition (Alymova et al., 2012;Holmgren et al., 1980;Markwell et al., 1986;Markwell &
Paulson, 1980;Mishin et al., 2010). In the cotton rat, often used as an animal model for hPIV
infections, a(2,3)-linked sialic acid is present in the trachea and both «(2,3)- and a(2,6)-
linked sialic acids are present in the lung (Blanco et al., 2013).

Sialidases are a family of exoglycosidases that catalyze the removal of terminal sialic acid
residues from various glycoconjugates, and that can inhibit influenza viruses and hPIVs in
vitro (Ah-Tye et al., 1999;Air & Laver, 1995;Bergelson et al., 1982;Els et al., 1989;Griffin
et al., 1983;Moscona & Peluso, 1991;Moscona & Peluso, 1992;Suzuki et al., 2001;Zhang et
al., 2005). DAS181 is a protein comprising a sialidase fused to a respiratory epithelium-
anchoring domain at the C-terminus. The sialidase domain derives from Actinomyces
viscosus and the anchoring domain derives from human amphiregulin protein and binds
heparin, heparin-like molecules or other glycosaminoglycans (GAGS), thereby securing the
molecule onto epithelial cell surfaces. DAS181 has been used as an inhalant and has shown
promise as either a prophylactic or therapeutic at the early stage of a virus infection. It is
currently in Phase 2 clinical development for the treatment of influenza (Moss et al., 2012).

Characterization of the anti-hPIV activity of DAS181 has been previously accomplished
with one laboratory isolate of each parainfluenza virus subtype (Moscona et al., 2010).
Because these laboratory isolates are extensively passaged in vitro and may be selected for
unique characteristics atypical of the clinical setting, we questioned whether a panel of
primary virusisolatesthat had undergone limited passages would also be sensitive to
drug. To this end, we collected six primary virus isolates (two hPI1V-2 and four hPIV-3
isolates) from St. Jude Children's Research Hospital. Viruses were from pediatric samples
collected from 1994-2009, which were saved for quality assurance purposes. Samples were
completely deidentified prior to use, and the study was considered exempt from institutional
review board (IRB) review. The hemagglutinin-neuraminidase (HN) sequences were
determined for all six viruses and are shown in Figures 1A (hPIV-2) and B (hPIV-3). As
demonstrated, all sequences were different from one another and from the template
laboratory isolates, Greer (hPIV-2) and C243 (hPIV-3).

To determine if DAS181 inhibited hPIV isolates in vitro, virus was added to confluent LLC-
MK?2 cell cultures and incubated for 2 hours, after which plates were washed and replaced
with media containing varying concentrations of DAS181. Plates were incubated for 4-5
additional days and then scored by hemagglutination (HA) assays. As demonstrated in
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Figure 2, all clinical isolates were completely inhibited following incubation with 0.1-1 nM
DAS181. Studies with hPIV-1 were also conducted, but required 5 ug/ml acetylated trypsin
for extracellular cleavage of the hPIV-1 fusion protein (Karron & Collins, 2007). Full virus
inhibition was observed with DAS181, but higher drug concentrations were required for
inhibition of hPIV-1 as compared to hP1V-2 and hP1V-3. The explanation for this result was
unclear, although it is likely that the input of trypsin at high concentration digested and
partially inactivated drug (data not shown).

Evidence that clinical hPIV isolates could be inhibited in vitro prompted in vivo studies.
After a test of viral isolates hPIV-2 8/2/00, hPIV-2 1/1/97 and hPIV-3#14 for amplification
in cotton rats, the isolate that yielded the highest titer on days 3-4 after infection (hPIV-3#8)
was selected for further study. In a preliminary experiment, animals were infected with ~1.5
x 10e6 TCIDgy hPIV-3#8 followed four hours later with drug (0.3-1 mg/kg by the i.n. route,
a concentration that was selected based on previous studies (Moscona et al., 2010)). Repeat
drug doses were on days 1 and 2 and viral measurements were conducted on day 3. As
shown in Figure 3A, there was a significant decrease in virus amplification. The next
experiments assessed the anti-viral activity when 1 mg/kg drug was administered one hour
before virus infection rather than four hours after infection. As shown in Figure 3B,
DAS181-treated animals again showed significant reduction of virus, in this case with
inhibition of virus approaching 2 logs. To determine whether the anti-viral effects of
DAS181 were more evident in the upper or lower respiratory tract tissues (URT or LRT),
experiments were next conducted to assess nasal turbinates and lungs in parallel. Results
revealed that the reduction of hPIV-3 by DAS181 treatments was not statistically significant
in the nasal turbinates, but was reproducibly inhibitory in the lung (Figure 3C).

Of note, we have not asked if drug can be initiated one or two days after viral infection in
cotton rats, although clinical studies are addressing this question. We note that the protection
afforded by drug administered prior to infection appeared to be best. This is consistent with
previous literature, suggesting that prophylaxes associate with the best protective effects
against paramyxoviruses (Groothuis et al., 2011).

Taken together, data add to our understanding of DAS181-mediated inhibition of the hPIVs.
All hPIV-2 and hPIV-3 isolates were susceptible to full inhibition by DAS181 in vitro with
drug doses of 0.1-1 nm. Of interest, this drug range was comparable to that described
previously for inhibition of influenza viruses and laboratory strains of hPIV (Ah-Tye et al.,
1999;Moscona et al., 2010). Our cotton rat model further illustrated that hPIV-3 could be
inhibited by DAS181 in vivo, more so in the lung than in the nasal turbinates. Differences in
locations might have been a simple consequence of drug distribution, as a relatively large
volume of drug applied to sedated animals readily enters the lung (Burke et al., 2011). In
addition, the differing distributions of epithelial cells and sialic acid moieties throughout the
respiratory tract (Rackley & Stripp, 2012) may have influenced drug efficacy. The reduction
of hPIV-3 amplification in lung tissue by DAS181 is a highly desirable attribute, given that
the morbidity and mortality caused by hPI1V-3 is predominantly due to LRT infections. URT
infections with hP1V-3 are generally mild, and the short-term deposition of viral antigen has
the potential to promote durable B and T cell residence in nasal associated lymphoid tissues
(Rudraraju et al., 2011) to protect individuals from disease upon future virus exposure. Of
note, DAS181 may be formulated in variable particle sizes to direct drug deposition either to
URT or LRT tissues as desired.

DAS181 has recently been used to treat four severely ill immunocompromised patients who
became infected with hPIV. Cases included stem cell and lung transplant patients, all of
whom experienced an improved clinical outcome after treatment and two of whom
experienced a reduced viral load (Chen et al., 2011;Drozd et al., 2013;Guzman-Suarez et al.,
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2012). Given that there is no licensed hP1V vaccine and that hPIV-infected patients are
usually treated only with supportive care, DAS181 may provide an important new drug
option for a currently unmet medical need in both adult and pediatric healthcare arenas.
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Figure 1. hPIV-2 and hPIV-3 protein sequences

Sanger sequencing was conducted to identify HN sequences for each primary virus isolate.
Predicted amino acid sequences are aligned to the templates of Greer for hPIV-2 (1A) and
C243 for hPIV-3 (1B). A blank position indicates lack of sequence information. A dot
indicates a match with the template, and a single-letter code indicates an amino acid
substitution.

Methods. Viral RNA was purified using a Qiagen QIAmp Viral RNA Mini Kit (Cat#
52904), and RT-PCR was conducted with virus sequence-specific primers (synthesized by
Integrated DNA Technologies) and a RNA One-step PCR Kit from TaKaRa Bio, Inc. (Cat#
RR024). Sanger sequencing was then performed at the Hartwell Center of St. Jude
Children's Research Hospital using additional virus sequence-specific primers. For analyses,
individual sequences were imported into DNA Lasergene 7 SeqMan software and aligned to
create a consensus contig. Contigs were translated and aligned using CLC Main Workbench
5 software.
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Figure 2. DAS181 inhibited amplification of hPIV primary isolatesin vitro

Serially diluted DAS181 was tested for inhibition of hPIV-2 and hPIV-3 amplification in
vitro.

Methods. To test sensitivity of viruses to DAS181, LLC-MK2 cells were plated in 96-well
tissue culture plates and grown to confluency in MEM, 0.225% NaHCO3, 5% Fetal Bovine
Serum, L-glutamine, and gentamicin at 37°C, 5% CO,. Viruses were diluted in DMEM,
0.1% BSA, L-glutamine, gentamicin to a concentration of 250 TCIDsg per 100 pl. LLC-
MK2 plates were washed with DPBS w/ Mg** and Ca** and 100 pl/well of the diluted virus
were added and incubated for 2 hours at 37°C. After incubation, plates were aspirated,
washed with DPBS, followed by addition of 100 pul DAS181 serially diluted from 1 to 0.001
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nM in DMEM, 0.1% Bovine Serum Albumin. Twelve well replicates were performed for
each virus and each drug dilution. Cultures were incubated for 4-5 days at 37°C after which
wells were scored for hemagglutination (HA) activity. HA assays were conducted at 4
degrees C using turkey red blood cells (RBCs) for hPIV-3 isolates and guinea pig RBCs for
hPIV-2 isolates. Percent inhibition was scored based on reduction in the number of HA-
positive wells in the presence of drug. Control HA assays were set up with DAS181 and
serially diluted hPIV-2 or hP1V-3 stocks, demonstrating that HA assays were not inhibited
by the addition of 0-1 nm drug at 4 degrees C.
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Figure 3. DAS181 inhibits LRT hPIV-3 amplification in vivo in a cotton rat model

(@) In the cotton rat model, DAS181 was tested for inhibition of hPIV-3#8 amplification.
Briefly, cotton rats (Harlan, Inc., Indianapolis Indiana) were infected with ~1.5 x 108
TCIDsg HPIV-3 in 100 pl i.n.. Four hours later, test animals were given a dose of DPBS or
DAS181 at 0.3 or 1.0 mg/kg body weight in a volume of 100 pl by the i.n. route. Two more
doses of drug were given 1 and 2 days after infection. On day 3 following infection, lungs
were harvested and homogenized in 3-5 ml DPBS. For titering, samples were serially diluted
from 107 through 1075 and 200 pul/well were inoculated onto LLC-MK2 monolayers in
replicate wells of 96-well plates. Plates were incubated at 33°C in 5% CO5, for 4 days. 50 pl
supernatant from each well was removed, mixed with 50 pl turkey RBC, and incubated at
4°C for 45 minutes to 1 hour. Wells were scored as positive or negative for
hemagglutination (HA). Virus titers (TCIDsgg) were calculated based on HA data for each
test animal using the Reed-Meunch formula. Each symbol represents the result from an
individual animal. For DAS-181-treated animals, semi-solid and solid dots represent animals
that received 0.3 mg/kg or 1 mg/kg drug, respectively. (b) Experiments were conducted as in
(@), but the first dose of drug was administered one hour prior to infection rather than four
hours after infection. (c) Experiments were conducted as in (b), but with measurements of
viral titers in nasal turbinates as well as lungs. To harvest nasal turbinates soft tissues were
removed from bony structures, suspended in 1 ml DPBS, and screened through a 70 micron
filter.
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