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Abstract
Despite its critical role in supplying naïve T cells to the circulation, the thymus is particularly
sensitive to immune injury, such as that caused by cytoreductive chemo- or radiation therapy,
shock, infection and graft versus host disease (GVHD). Crucially, insufficient thymic recovery has
been directly correlated with increased risk of opportunistic infections and poor clinical outcomes
in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Prolonged
immune deficiency is particularly pronounced in older patients whose thymi are already
significantly impaired due to age-related thymic involution. Previous preclinical studies have
revealed several strategies that can enhance thymic function and immune reconstitution after
transplant, including sex steroid ablation (SSA), growth factors (growth hormone, GH,
keratinocyte growth factor, KGF, insulin-like growth factor 1, IGF-1, interleukin-7, IL-7) and ex
vivo generated precursor T cells (preT). In addition, recent studies have shown that other
approaches, such as interleukein-22 (IL-22) and nutritional changes, may represent additional
candidates to enhance thymic regeneration. In this review we provide updates on these strategies
and comment on their potential to be translated into clinical therapies.

Introduction
Allogeneic hematopoietic stem cell transplant (allo-HSCT) is a well-established therapy
with curative potential for a variety of malignant and non-malignant diseases. Post-
transplant immune deficiency can lead to opportunistic infections and malignant relapse that
are major contributors to post-transplant morbidity and mortality. Delayed immune
reconstitution, and in particular the slow recovery in the development of newly generated T
cells, contributes towards poor patient outcome, not only in recipients of allo-HSCT, but
also in other clinical settings of immune depletion, notably cancer chemotherapy, chronic
infection, and radiation injury (1). Furthermore, an inverse relationship between a transplant
recipient’s age and their capacity to generate T lymphocytes (especially CD4+ T cells) has
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been found, further complicating the use of allo-HSCT (2, 3). In fact, compared to children,
de novo development of naive T cells in the thymus takes considerably longer in the adult
and generates a more limited TCR repertoire leading to susceptibility to opportunistic
infections (4). This aspect is of particular clinical importance given the number of allo-
HSCT being performed in aged patients (≥50 years) has been increasing over the past two
decades and projections predict further increases in this population (5). Although age-related
decline of immune function is a multifactorial condition, one of the key players in this
process is the progressive decline in thymic function (known as thymic involution) that
begins as early as puberty. Therefore, developing strategies to regenerate thymic function
and peripheral immune reconstitution represent an important clinical challenge with the
capacity to improve outcome in immunocompromised patients. The central purpose of this
review is to provide updates on promising regenerative strategies that have the potential to
be translated into clinical therapies.

The importance of thymic regeneration
The thymus is the principal lymphoid organ responsible for generating and supplying naïve
T cells, and a broad TCR repertoire, to the periphery. The process of T cell development is
tightly regulated by the bidirectional crosstalk between thymic stromal cells and developing
thymocytes (6). Thymic epithelial cells (TECs), endothelial cells, fibroblasts, and dendritic
cells within the thymic stroma play a critical role to guide the differentiation of bone marrow
(BM)-derived T cell progenitors through distinct developmental steps that ultimately lead to
the formation of mature CD4+ or CD8+ T cells expressing an MHC-restricted, antigen-
specific TCR.

Although the thymus is critically important for the supply of new T cells, it is particularly
sensitive to endogenous and exogenous insults such as infection, shock, sex steroids,
cytoreductive chemo- or radiation therapy and graft-versus-host disease (GVHD). While the
thymus has a remarkable capacity for endogenous regeneration, this capacity declines
considerably with age. However, while this process of age-related thymic involution does
not represent a significant clinical problem in a healthy individual, reduced thymic function
is detrimental when active recovery of thymopoiesis is required to sustain immune
competence after clinically induced immune depletion. Insufficient recovery in
thymopoiesis has been directly linked to opportunistic infections and an adverse clinical
outcome in recipients of allo-HSCT (7).

Previous preclinical studies have proposed several strategies that can protect and restore
thymic function as well as boost the immune reconstitution after allo-HSCT. Sex steroid
ablation (SSA), growth hormone (GH), growth factors (keratinocyte growth factor, KGF,
and insulin-like growth factor 1, IGF-1), interleukin-7 (IL-7) and precursor T cells (preT),
have all shown positive effects in enhancing thymic regeneration after injury (Figure 1).

Keratinocyte growth factor
The murine and human fibroblast growth factor (FGF) family consists of at least 23
structurally related growth factors. FGF7 (also known as KGF) is a protein of 194 amino
acids and with a hypothetical molecular weight of 22kDa (8). KGF is mainly expressed by
non-hematopoietic stromal cells and induces the proliferation and repair of epithelial cells
after injury (8). Within the thymus, KGF is expressed mainly by fibroblasts and
mesenchymal cells, but is also expressed by thymocytes after the double negative (DN)
stage. Although mice deficient for KGF have intact thymic architecture and thymopoiesis,
suggesting redundancy in the steady-state function of KGF, thymic recovery after immune
injury is significantly delayed in KGF−/− mice (9).
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In addition to this endogenous role in thymic function, exogenous administration of results
in a two-fold increase in thymic cellularity in young mice and a four-fold increase in aged
mice (9). Importantly, KGF administrati enhance thymopoiesis and peripheral T cell
reconstitution after syngeneic and allogeneic HSCT (10), and in models of allogeneic
umbilical cord blood transplantation (11). KGF enhances thymopoiesis by promoting the
proliferation of TECs and protecting them from damage caused by radiation, chemotherapy
or GVHD (12). Interestingly, in a non-human primate model, KGF improves thymic
architecture and T cell recovery after CD34+ peripheral blood progenitor transplant (13).

KGF is a FDA-approved drug for the prevention of mucositis in patients receiving high dose
chemotherapy before HSCT. A recent retrospective study with 251 patients showed that
KGF does not increase transplant toxicity and it is safe for allo-HSCT recipients (14).
However, additional prospective studies are required to clarify the potential of KGF as a
thymopoietic factor in the setting of HSCT.

Interleukin-7
Interleukin 7 (IL-7) is a lymphopoietic cytokine that has been studied for its role in
endogenous lymphocyte development in the thymus and BM, as well as its role in the
function of mature T cells. IL-7 is primarily produced by non-hematopoietic stromal cells in
the thymus and BM, while the IL-7 receptor (IL-7R) is expressed by several cell populations
of developing lymphocytes, such as double negative (DN), CD4+ and CD8+ thymocytes,
common lymphoid progenitors, innate lymphoid cells, pro- and pre-B cells and some
dendritic cells (15). The outcome of IL-7 signaling appears to be in inhibiting apoptosis and
in promoting differentiation (15).

Due to its role in directly promoting lymphocyte development, the potential of IL-7 for
exogenous modulation of the immune system has been extensively studied in several mouse
models. Pharmacological treatment of mice with recombinant IL-7 increases T cell
reconstitution after syngeneic and allogeneic HSCT through increasing the proliferation of
lymphocytes and lymphoid precursors, in addition to the homeostatic proliferation of mature
circulating T cells (16). IL-7−/− mice exhibit a profound reduction in thymic size with few T
cell produced and a total lack of T cells as IL-7 is indispensable for the recombination of
chain of the TCR (17). In humans, a defect in IL-7 signaling leads to a severe combined
immunodeficiency (SCID)(18).

Clinical trials have been performed to test the safety and efficacy of IL-7 as an immune
boosting treatment. Previous studies have reported that both a non-glycosylated (CYT 99
007, Cytheris) and a glycosylated (CYT107, Cytheris) form of human IL-7 promotes a
sustained dose dependent expansion of peripheral CD3+, CD4+ and CD8+ T cells and
increases TCR repertoire diversity (19, 20). Although neither study could definitively show
benefits in thymopoiesis, unlike the non-glycosylated form, the fully glycosylated IL-7 did
not show signs of anti-IL-7 auto-antibody production. Further studies are required to achieve
a better understanding of the therapeutic effect of IL-7 treatment in HSCT recipients.

Sex steroid ablation
In addition to their role in sexual dimorphism, sex steroids also play a critical role in
regulating the immune system. It is well documented that the progressive decline in thymic
size and function during life is in part correlated with an increase in sex steroids (21).
Consistent with this, administration of androgens or estrogens induces thymic involution in
young mice and their ablation promotes its regeneration (21). Perhaps unsurprisingly, the
effects of sex steroids are not restricted exclusively to the thymus, and their ablation also
enhances B cell lymphopoiesis (22). Goldberg and colleagues demonstrated that using the
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LHRH-agonist Lupron as a model of reversible chemical SSA, recipients of allogeneic
HSCT showed accelerated engraftment post-HSCT, enhanced T cell reconstitution and
increased T cell function (23). Clinical trials using the LHRH-agonist goserelin, showed
increased CD4+ T-cell regeneration, enhanced TCR repertoire, and improved T cell function
in auto- and allo-HSCT recipients (24). Even though the beneficial effects on immune
reconstitution are not fully understood, SSA continues to be an attractive clinical therapy to
restore immunocompetence in immunocompromised patients.

Ghrelin, GH, IGF-1
GH is a peptide hormone that is produced primarily by the anterior pituitary gland and GH
receptor expression is present in the thymus and BM on both hematopoietic and non-
hematopoietic compartments (25). Exogenous administration of GH in mice increases
thymic cellularity after HSCT, protects BM from radiation injury, delays thymic involution
and positively regulates T cell migration (26). Studies have also shown that GH
administration in HIV-infected patients increases thymic cellularity and peripheral immune
response (27). Ghrelin and IGF-1 are believed to be involved in the GH pathway, where
ghrelin promotes secretion of GH, and IGF-1 is one of the main mediators of the effects of
GH (25). Clinical trials are ongoing to determine whether GH administration to patients
undergoing allogeneic stem cell transplant will enhance immune reconstitution and protect
from post-transplant complications.

Emerging strategies
T cell progenitors

In humans, the development of thymic-derived T cells can take from months to years and
this process is even longer in aged recipients and patients affected by post-transplant
complications such as GVHD. Therefore, strategies that can enhance the formation of
thymic-derived T cells have the potential to reduce the period of post-transplant
lymphopenia. Previous studies have demonstrated that a large number of precursor T (preT)
cells can be generated using an ex vivo culture system with forced expression of Notch
ligands Delta-like (DLL) 1 or 4, key mediators of T cell commitment and differentiation (28,
29). The adoptive transfer of preT cells, with T cell depleted BM or purified LSK into
lethally irradiated recipients increases thymic cellularity, improves T cell chimerism and
enhances peripheral T and NK reconstitution (30). Adoptive cell therapy with preT cells in
HSCT recipients can also enhance regeneration of the thymic stroma, through the restoration
of the bidirectional thymic cross-talk (30). In addition, preT cells may be used “off the
shelf” across MHC barriers, since they were educated and selected in the recipients (31).
Importantly, preT cells have also the potential to be genetically engineered with viral or
tumor specificity (32).

Caloric restriction
Caloric restriction (CR) has been known for some time to have beneficial effects on animal
lifespan and longevity. There is also increasing evidence that nutritional changes can have
important implications in regulating immune responses (33). Several reports have
demonstrated that CR enhances thymopoiesis and prevents mice from age-related thymic
involution through the restoration of the TCR repertoire diversity and the increase in the
proportion of naïve to memory T cells in the periphery (34). In contrast, high-fat diet-fed
mice show premature thymic involution, increased thymocyte apoptosis, and accelerated
age-related reduction in T-cell receptor excision circles (TRECs) and TCR diversity (35).
These effects are not only restricted to the thymus, with CR also impacting BM
lymphopoiesis (36).
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Although CR has shown promising results as a new strategy to enhance immune function,
many questions concerning its applicability still remain. Several groups have reported that
CR can actually compromise the recovery and clearance of some infections, in part by
impairing NK maturation and function. Therefore, the identification of specific therapeutic
targets underlying the mechanism of CR could represent a better approach to enhance
immune reconstitution in immunocompromised patients. Several putative targets have
emerged including sirtuin (silent mating type information regulation 2 homologue) protein
family, which increases after CR treatment and mediates some of the beneficial effects
associated with low caloric intake (37). SIRT1 has been shown to increase in response to CR
in many tissues and SIRT1−/− mice do not display some of the metabolic changed observed
after CR treatment. Therefore, the development of specific SIRT1 activators could mimic
CR effects.

Interleukin-22
Interleukine-22 (IL-22) is an IL-10 family cytokine that is primarily expressed by TH17
cells and innate lymphoid cells (38). IL-22 has been implicated in promoting epithelial
integrity and antimicrobial immunity at mucosal surfaces (39). Recently we have revealed a
framework of endogenous thymic regeneration that is centered on the production of IL-22
(40). In this model, the depletion of CD4+CD8+ double positive thymocytes triggers the
production of IL23 by DCs, which in turn induces the production of IL-22 by thymic ILC.
IL-22 can act directly on TECs, promoting their survival and proliferation, which ultimately
leads to the rejuvenation of thymopoiesis. Importantly, exogenous administration of IL-22
promoted accelerated thymic recovery after sub-lethal irradiation in young mice. These
findings suggest that IL-22 represents a novel therapeutic strategy for immune regeneration.
Currently, clinical trials are on going to evaluate the safety and pharmacokinetic profile of
IL-22 treatment in healthy volunteers.

Combination strategies
Multiple strategies have been proposed to boost thymic recovery in periods of immune
distress, however, although promising in preclinical studies, many of these have failed to
generate compelling clinical evidence as to their effectiveness. Given that the thymus
requires reciprocal cellular communication between the stromal and hematopoietic
compartments for its development and ongoing maintenance, one possible approach to
improve the clinical effectiveness of immune regeneration therapies would be to develop a
combination strategy able to boost both compartments. For example, KGF has been shown
to have synergistic effects when administered with preT (30), SSA (41) and p53 inhibition in
preclinical studies (42). Moreover, a clinical trial is ongoing at MSKCC to address if
combination therapy with KGF and SSA can promote faster immune recovery following
stem cell transplant.

Conclusions
The prerequisite for recovery of robust thymopoiesis to establish effective adaptive
immunity after periods of immune distress is a significant clinical problem. The therapeutic
approaches outlined in this review have the potential to provide a rational basis for novel
clinical strategies that enhance thymic function and immune recovery, not only in patients
undergoing allo-HSCT but also in other situations of immune depletion, such as chronic
infection, radiation exposure and aging.
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Figure 1. Overview of steady-state thymopoiesis in addition to therapeutic strategies currently in
clinical trials to enhance thymic recovery after HSCT
The increase in sex steroids during life is generally thought to progressively impair BM and
thymic lymphopoiesis (1). SSA using a LHRH-Ag (2) (that blocks the upstream signals
stimulating sex steroid production (3)) reverses the age-related decline in BM and thymic
function and promotes their rejuvenation. Similarly, therapeutic administration with GH,
KGF or IL-7 promotes the regeneration of T cell lymphopoiesis (4). The process of
thymopoiesis begins when circulating BM-derived T-lineage progenitors (CTP) seeds the
thymus in the cortico-medullary junction (CMJ) (5) and undergo a series of well-defined
maturation steps. This all occurs under the guidance and close interaction with the thymic
stromal microenvironment; which is comprised of cTEC, mTEC, fibroblasts, macrophages
(Mθ) and DC, and which provide survival, differentiation and homing factors to the
developing thymocytes. Approximately 95% of thymocytes produced daily die during the
process of beta-selection (6), positive selection (7) and negative selection (8) by apoptosis,
which results in the generation of self-restricted and self-tolerant naïve CD4+ and CD8+ T
cells (SP4 and SP8) (8). Several intrathymic factors have been shown to be important for
endogenous T cell regeneration and may have some therapeutic benefit including IL-7, KGF
and IL-22. SCZ (Sub-capsular zone), ILC (Innate lymphoid cells)
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