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Abstract

Copper-catalyzed coupling of imines, vinylstannanes or alkynes and o-bromoaroyl chlorides
followed by Pd(0)-catalyzed annulations afforded indenoisoquinolines. Protocols requiring
minimal purifications were developed, providing new methods for the construction of
combinatorial libraries.

The prevalance of N-heterocycles among established pharmaceutical agents1 continues to
inspire the development of new synthetic methods. We have been exploring a protocol based
on an assembly of α-N-substituted amides followed by various intramolecular cyclizations,2

opening up access to combinatorial libraries of hexahydro-1H-isoindolones (Figure 1).3

Herein, we describe a powerful novel combination of the Cu(I)-catalyzed three-component
coupling and an intramolecular Pd(0)-catalyzed 1,2-bisarylation of an olefin or an alkyne in
amides IV and V to deliver substituted indenoisoquinolines VI and VII (Figures 1 and 2).
The protocol allows a rapid increase in molecular complexity in only two steps.

Structurally related indenoisoquinolines have been shown to possess potent biological
activities.4 Our protocol provides a more efficient alternative to the established preparations
of indenoisoquinolines, particularly those substituted at the angular position or the benzylic
carbon in the indene ring.5 The method reported herein opens up a modular access to
indenoisoquinolines, and is well amenable to automation.

Initial studies were focused on extending the scope of the known Cu(I)-catalyzed coupling6

to o-bromoaroyl chlorides III as well as to 1,1-disubstituted vinylstannanes II (Figure 2).
We were able to decrease the molar excess of stannane 3a,7 from 2.0 equiv to 1.5 equiv8 and
realize the coupling to imine 1a and aroyl chloride 2a providing amide 4a in good yields
(Scheme 1). An increase in the CuCl catalyst load improved the yield of amide 4a from 67%
(with 10 mol % CuCl) and to 82% (with 20 mol % CuCl, Scheme 1).9 Next, the Pd-
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catalyzed cyclization of amide 4 a was explored, anticipating that an intramolecular Heck
reaction would afford intermediate VIII poised for electrophilic arylation to yield
dihydroindeno[1,2-c]isoquinolines VI (Figure 2).10 The treatment of amide 4a with
Pd(OAc)2 (5 %) and NaOAc (1 equiv) afforded the indenoisoquinoline 5a in a 93% yield as
a single diastereomer (Scheme 1).11

Aiming to establish a protocol amenable to automated synthesis, we sought to eliminate
chromatographic purification of amide 4a. The addition of solid KF and small quantities of
water, followed by filtration was employed to remove tin residues from the reaction
mixtures. The resulting crude amide 4a was treated with Pd(OAc)2 catalyst under conditions
reported in Scheme 1 to afford indenoisoquinoline 5a in 75% yield over two steps (entry 1,
Table 1, Method A). A brief survey revealed that sodium acetate was the optimum base for
the Pd-catalyzed cyclization.10 The replacement of NaOAc with Na2CO3/n-Bu4NCl
applying modified Jeffery's conditions12 (compare Methods A and B, entries 1, 3 and 4,
Table 1) resulted in a decrease in the reaction yields, particularly severe for the
electronically deactivated imines 1c (R2 = H) and 1d (R2 = Cl) (entries 3 and 4, Method B,
Table 1). Overall, the optimized sequential protocol afforded the corresponding
indenoisoquinolines 5a-5e in 38-75% yields over two steps (entries 1-5, Table 1, Method
A). The lower yields of the electronically deactivated chloro and ester-substituted
indenoisoquinolines 5d-e are in agreement with the proposed involvement of electrophilic
palladation in the key step, although the less facile iminolysis of the acyl chlorides may also
be a contributing factor. The 3,4-disubstituted imines 1f and 1g afforded single regioisomers
of heterocycles 5f (77%) and 5g (71%) arising from palladation at the least hindered
position in the aromatic ring (entries 6 and 7, Table 1). A contiguous 1,2,3,4,5-substitution
pattern was achieved in an activated imine yielding indenoisoquinoline 5h in 64% yield
(entry 8, Table 1). Efficient preparation of indenoisoquinolines 5 i and 5 j demonstrated the
compatibility of the method with heteroatoms other than oxygen (entries 9 and 10, Table 1).

To expand the reaction scope, imines 1a and 1b were coupled to substituted aroyl chlorides
2b-c and vinylstannanes 3a and 3b-c13 bearing aliphatic (Me) and aromatic (Ph)
substituents. Indenoisoquinolines 5k-o were obtained in good yields (59-76%) over two
steps (Table 2). Heterocycles 5k-o were isolated as single diastereomers following
chromatography and trituration of the crude products. The relative stereochemistry in
heterocycles 5 (R4 = COOEt and Ph, Tables 1 and 2) was assigned based on analogy with
indenoisoquinolines 5j and 5n, the structure of which was elucidated via single crystal X-ray
crystallographic analyses. The relative stereochemistry in products 5 m and 5 o (R4 = Me)
was assigned via spectroscopic methods.14

To access a distinct substitution pattern in the indenoisoquinolines, propargyl amide 7 a was
prepared from imine 1a, aroyl chloride 2a and alkyne 6a in a good yield (54%) using
conditions reported by Arndtsen15 (Scheme 2). We envisioned that Pd-catalyzed
intramolecular bisfunctionalization of the alkyne16 would proceed via intermediate IX to
afford indenoisoquinolines VII (Figure 2). Conceivably, a 1,3-shift of the allylic hydrogen
in the intermediate I X would provide an organopalladium intermediate poised for the
terminal electrophilic palladation.
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Indeed, the treatment of amide 7a with Pd(OAc)2 catalyst and Na2CO3/n-Bu4NCl additive
mixture for a prolonged time period (36 h at 120 °C in DMF) afforded the corresponding
indenoisoquinoline 8a in an excellent yield (91%) (Scheme 2). Ultimately, the isolation of
amide 7a was avoided, limiting the purification of the crude reaction mixtures to the
removal of excess alkyne via filtration through a short plug of silica. The resulting crude
product was directly subjected to Pd-catalysis, affording indenoisoquinoline 8a in a good
yield (66%) over two steps (entry 1, Table 2). This protocol was then applied to the coupling
of imines 1a, 1b and 1j with aroyl chloride 2a and aryl acetylenes 6a-6c to provide
indenoisoquinolines 8a-e in good yields (51-68%) over two steps (Table 2). Single crystal
X-ray crystallographic studies on heterocycle 8c unequivocally established the structure,
including the position of the double bond within the isoquinoline ring.17

The new synthetic protocol described here rapidly and efficiently assembles
indenoisoquinolines with distinct substitution patterns from three simple building blocks.
The modular strategy is particularly well suited for the construction of combinatorial
libraries of indenoisoquinolines.
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Figure 1.
The general strategy
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Figure 2.
Strategy toward indenoisoquinolines
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Scheme 1.
Protocol utilizing an isolated amide
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Scheme 2.
Protocol utilizing an isolated propargyl amide
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Table 3

Indenoisoquinolines with a benzylic substituent

entry R1 R2 (aryl) prdt
b

yield
c
 (%)

1 OMe C6H5- 8a 66

2 Me C6H5- 8b 51

3 thiophene-2-yl C6H5- 8c 68

4 OMe p-CH3C6H4- 8d 63

5 OMe p-FC6H4- 8e 57

aReaction conditions: (i) CuCl (20%), i-PrEt2N (1.5 equiv) MeCN, rt. 1 h, imine : acyl chloride : alkyne = 1.0 : 1.2 : 1.5 (mol); (ii) treatment with

aqueous KF, filtration, evaporation; (iii) Pd(OAc)2 (5%), Na2CO3(1.0 equiv), n-Bu4NCl (1.0 equiv), DMF, 120 °C, 36 h.

b
Single diastereomer was isolated.

c
Isolated yield of heterocycles 8 calculated per imine as the limiting reagent.
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