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Polarization distance: a framework for
modelling object detection by
polarization vision systems

Martin J. How and N. Justin Marshall

Sensory Neuroscience Group, Queensland Brain Institute, University of Queensland, Queensland, Australia

The discrimination of polarized light is widespread in the natural world. Its

use for specific, large-field tasks, such as navigation and the detection of

water bodies, has been well documented. Some species of cephalopod and

crustacean have polarization receptors distributed across the whole visual

field and are thought to use polarized light cues for object detection. Both

object-based polarization vision systems and large field detectors rely, at

least initially, on an orthogonal, two-channel receptor organization. This

may increase to three-directional analysis at subsequent interneuronal levels.

In object-based and some of the large-field tasks, the dominant e-vector detec-

tion axes are often aligned (through eye, head and body stabilization

mechanisms) horizontally and vertically relative to the outside world. We

develop Bernard and Wehner’s 1977 model of polarization receptor dynamics

to apply it to the detection and discrimination of polarized objects against

differently polarized backgrounds. We propose a measure of ‘polarization

distance’ (roughly analogous to ‘colour distance’) for estimating the discrimin-

ability of objects in polarized light, and conclude that horizontal/vertical

arrays are optimally designed for detecting differences in the degree, and

not the e-vector axis, of polarized light under natural conditions.
1. Introduction
Imagine trying to find an apple in a tree with leaves that constantly change

colour as they flutter in the wind. This analogy illustrates a terrestrial problem

in the polarized light realm. Objects such as waxy leaves or insect cuticle may

reflect or internally produce polarized light. Unlike most colour information,

polarization often changes substantially with the orientation of an object.

Both e-vector axis and degree of reflected polarized light can be affected by

an object’s position and orientation relative to the sun and the viewer. This rela-

tive lack of information constancy may be why object-based polarization vision

seems to be comparatively rare on land, where objects tend to be swamped by

high levels of background ‘polarization pollution’ [1]. It also helps to explain

some of the visual adaptations in terrestrial animals that deliberately destroy

or minimize polarization sensitivity [2]. In aquatic environments, however,

animals do use this modality, sometimes with very high acuity, for detecting

objects around them [3–6].

The absence of air underwater creates a fundamental optical difference

between terrestrial and aquatic environments. Objects underwater have far

lower levels of reflected polarized light owing to the low refractive index differ-

ence between water and the object’s surface. Instead of a jumble of e-vector

information, the underwater world is either low-polarization (when reefs,

algae and other objects form the background) or dominated by a constant,

mostly horizontal linearly polarized background (from particle scatter in the

water column) [7,8]. Here, object-based polarization vision can, in theory, be

used to great effect to increase the contrast between objects and the homoge-

neously polarized or unpolarized background. In the cephalopods and some

crustaceans, this modality has been exploited for communication, with the

development of polarized body patterns [9–11].

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.1632&domain=pdf&date_stamp=2013-12-18
mailto:m.how@uq.edu.au
http://dx.doi.org/10.1098/rspb.2013.1632
http://dx.doi.org/10.1098/rspb.2013.1632
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


object

(a)

(b)

(c)

(d)

Qo

P1o

+ +

+ –

– –

P2ob e-vector axis

o b

degree

0 0.5 1.0

0 0.5 1.0

0 0.5 1.0

polarization distance

PD =
|P1o–P1b|
2(ln10)

P1b

Ro1
R1

ln(Ro1)

ln(Ro1/Ro2) ln(Rb1/Rb2)

ln(R1/R2)

ln(Ro2)

ln(R2)

ln(R1)ln(Rb1) ln(Rb2)

Rb1

Ro2

R2
Rb2

Qb

background

Figure 1. Schematic of the two-channel polarization model. (a) Polarized light from an object and the background are detected by two receptors in different parts
of the eye. Each receptor is composed of two sets of orthogonally oriented receptor cells, vertical (red) and horizontal (blue). Receptor activity is modulated by
changes in e-vector axis and degree of polarized light (graphs right). (b) Signals from each set of receptor cells are passed via an opponent system to interneurons,
which show inhibitory/excitatory responses. (c) Polarization distance is calculated as a normalized measure of relative P1 interneuron activity (d ).
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Our division between worlds above and below water is to

some extent exaggerated: there are insect species, butterflies

for example, that appear to use polarization for communi-

cation [12]. Interestingly, these signals are given by forest

shade dwellers, a terrestrial situation with minimized specu-

lar reflection from leaves and other shiny surfaces [13]. Also

both the polarized pattern in the sky and reflections from

water surfaces provide reliable sources of polarization infor-

mation on land, cues that are known to be used by a

variety of animals for several different tasks [1]. However,

the general differences, we note, are frequently overlooked

and this paper is an exploration of the polarization potential

of both aquatic and terrestrial environments, bearing in mind

that, as ever in biology, there are exceptions to some of the

suggested ‘rules’.

For example, object-based polarization vision can be

useful in terrestrial environments that provide relatively con-

stant gradients of polarized light, such as forest shade as

just noted. Alternatively, open intertidal mudflats are also,

visually, relatively simple, consisting of a flat, highly reflec-

tive (and therefore horizontally polarized) ground surface

topped with a constant celestial polarization field [14]. It is

unsurprising, therefore, to find that intertidal invertebrates
have some of the most sensitive polarization vision systems

found to date [5].

These object-based polarization vision systems differ

from those found in many invertebrates that restrict their

effort to certain, usually upward-directed (dorsal rim, DR)

areas of the visual field. The task for the DR is to mediate

specific behavioural actions such as navigation, orientation

or habitat location relative to the celestial polarization sky

patterns [1,15,16]. Such systems have been investigated

extensively (reviewed by [2]), and so we focus our attention

on the relatively poorly understood problem of polarized

object detection.

To detect objects against a background, the light sensitive

part of the eye must be able to register a contrast in bright-

ness, colour and/or polarization. The underlying cellular

dynamics of the photoreceptors and their neural connections

are key elements in understanding how this contrast is per-

ceived. Most vision systems are thought to employ neural

opponency mechanisms to compare the activity of different

photoreceptors [15,17], and subsequently the activity of

different parts of the visual field. For colour discrimination

tasks, a useful framework for predicting which colour differ-

ences are detectable is to calculate a measure of ‘colour
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distance’ based on the light environment, the spectral sensi-

tivities of the various colour receptors and the spectral

properties of viewed objects [18]. Inspired by such colour

vision models, and by the earlier work of Bernard &

Wehner [19] on the parallels between colour and polarization

vision systems, we present a framework for predicting the

visual contrast available for object detection in polarization

scenes. We calculate a measure of ‘polarization distance’

that can be used to predict just-notable-differences (JNDs)

between polarized objects and their backgrounds. This is

done for two-channel polarization systems that are in some

ways equivalent to dichromatic colour vision (potential

applications to three channel systems are explored in the

electronic supplementary material). In other ways, there are

fundamental differences between colour and polarization

models (for example, the axial nature of the e-vector of

light), and we explore those differences further here.
2. Two-channel polarization vision
To illustrate the concept of polarization distance, we present a

model of the simplest and probably the most common mechan-

ism for object-based polarization vision systems, a two-channel

orthogonal photoreceptor set (oriented perpendicularly to

each other and to the direction of incoming light) connected

by a single type of first-order opponent interneuron. This can

either be thought of in terms of single photoreceptors that

carry orthogonal detectors, arrays of photoreceptors (e.g. the

cephalopods [20]) or even whole eyes (e.g. spiders [21]) that

possess orthogonal sensitivities between them. Most of those

animals known to use polarized light for object-based tasks,

notably crustaceans, cephalopods and insects, but probably
also some vertebrates, are thought to use such a system.

Indeed, both crustaceans and cephalopods appear to go to

great lengths of anatomical organization to retain a purely

two-channel orthogonal system, at least to the level of the

first interneuron [20,22,23]. What lies beyond the initial proces-

sing of polarization information is known relatively well for

some insects [24–26] and for the crayfish [27]. For the model,

and for the remainder of the paper, we will assume that the

object and background differ only in their linear degree and/

or e-vector axis of polarization, with brightness and hue

remaining constant. Such visual systems are not expected to

be sensitive to circularly polarized light so ellipticity was

ignored in the model. However, the principles can easily be

extended to incorporate this if necessary (e.g. for stomatopod

crustaceans [28]). Bernard & Wehner [19] examined the simi-

larities between the three variables in colour vision; intensity,

hue and saturation, and the three variables in polarization;

intensity, e-vector axis and degree. That approach is expanded

upon in this analysis. All simulations were run in MATLAB [29],

code available on request.

First, we consider the sensitivity characteristics of the

orthogonal photoreceptor array (figure 1a). In this case, recep-

tor R1 is sensitive to vertically polarized light, and receptor R2

to horizontally polarized light. Because of the axial nature of

the absorption characteristics of microvilli (the membranes

bearing the dichroic visual pigment [30]), the sensitivity of

these receptors (R) can be modelled by Bernard & Wehner’s

[19] cosine function (figure 1a, right),

Rð�; dÞ ¼ 1þ
dðSp � 1Þ

Sp þ 1

� �
cosð2�� 2�maxÞ

� �
; ð2:1Þ

where Ø is the e-vector axis, Ømax is the receptor orientation for

maximal sensitivity, d is the degree of polarization of incoming

light and Sp is the level of effective polarization sensitivity of

each photoreceptor.

The signals from these two receptors are then carried to

the first level of processing by nerve axons with a receptor

potential approximated by the natural log of receptor activity

(figure 1b). Vertical and horizontal inputs then combine

through opponent connections to the first level interneuron

P1 (figure 1c). Interneuron P1 therefore has the following

activity profile:

P1 ¼ ln
R1

R2

� �
; ð2:2Þ

where R1 and R2 are equivalent to R for each receptor orientation.

To compare the contrast between an object and the back-

ground, the activity of two P1 interneurons, one viewing the

object (P1obj) and one viewing the background (P1bgd), need

to be compared. Our measure of polarization distance (PD)

models the difference between these two interneurons as a

further level of opponency

PDðo; bÞ ¼
jP1obj � P1bgdj

2ðln10Þ ; ð2:3Þ

in which the absolute difference in interneuron activity (P1)

from the object (obj) and background (bgd) is normalized to a

standard value from a system with high polarization sensitivity

(in this case Sp ¼ 10, i.e. is normalized to 2(ln10); figure 1d),

The highest contrast available to a two-channel system

occurs when the object and background are fully linearly

polarized with orthogonal e-vector axes matching the orien-

tations of the two receptors. So an object that is vertically
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polarized, viewed against a horizontally polarized back-

ground, yields a polarization distance close to 1 (figure 2a).

As the difference in e-vector axis or degree of polarization

decreases, so too does the polarization distance value

(figure 2b,d).

Bernard & Wehner [19] noted that two-channel polariz-

ation systems are vulnerable to a number of null points and

confounds for various e-vector axes and degree conditions.

For example, fully polarized light with e-vector axes at

2458 or 458 are indistinguishable from each other or from

unpolarized light of the same intensity. Our measure of

polarization distance captures these null points, with diagon-

ally orthogonal object and background polarized cues

registering a polarization distance of 0 (figure 2c).

Using the model, we can predict how polarization distance

varies across a range of different polarized object and back-

ground conditions. For example, changing object e-vector

axis when viewed against a horizontally polarized background

produces a simple single peak relationship in polarization dis-

tance, with maxima when the object is orthogonal to the

background and minima when the object matches the back-

ground (figure 3a, solid line). This relationship changes when

background e-vector is different from the axes of the receptor
array. For example, for a background of 308, a bimodal relation-

ship occurs with maxima at 908 as well as a secondary peak

around 08. Minima are now located at 308 (matching the back-

ground) and at 2308 (figure 3a, dashed line). So an object with

an e-vector of 2308 is essentially indistinguishable (has a polar-

ization distance of 0) from a background of 308. Similarly, an

object of 2458 would blend in to a background of 458, despite

an e-vector difference of 908 (figure 3a, dotted line). This sym-

metrical insensitivity across the receptor axes of sensitivity was

noted by Bernard & Wehner [19] and is a well-known theoreti-

cal property of two-channel polarization vision systems. Note

that, because e-vector is an axial measurement, 08, 21808 and

1808 are equivalent, as are 2908 and 908.
Polarization contrast vision is also affected by the

sensitivity (Sp) of the animal’s visual system. In our case,

we have used Sp ¼ 10 as a normalization factor for calculat-

ing polarization distance. So an animal with Sp ¼ 10 has a

maximal polarization distance of 1 when viewing a fully

polarized vertically orthogonal object on a horizontally polar-

ized background (figure 3b, solid line). As Sp becomes

weaker (Sp ¼ 5 and 2), so too does the contrast between

polarized object and background (figure 3b, dashed and

dotted lines). Changes in object and/or background degree
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of polarization also produce predictable changes in polariz-

ation contrast. As object degree of polarization increases,

polarization distance also increases in a roughly linear

manner (figure 3c).

Finally, the clear degeneracy between the degree and

e-vector of polarized light, from the perspective of a two-chan-

nel polarization vision system, is illustrated in figure 3d. In this

case, objects are viewed against a fixed 308, 50% polarized

background (figure 3d, star). Contour lines indicate combi-

nations of object e-vector angle and degree that produce the

same polarization distance. For example, the PD ¼ 0 contour

line indicates all polarized objects that are indistinguisha-

ble from the background. So a fully polarized object with

an e-vector of 388 (figure 3d, square) produces a contrast

of zero in the animal’s visual system as a 308, 50% polarized

background, and so on.

A number of additional considerations for the design

of the two-channel model are explored in the electronic

supplementary material, S1.
3. Modelling discrimination thresholds
Just as for colour vision, measuring and modelling discrimi-

nation thresholds in the polarization realm is important for

understanding the capabilities and limitations of object-

based vision systems. These thresholds can be estimated

either by modelling noise levels in the receptor and neuron

photo-transduction cascade [18], or by measuring the capa-

bilities of particular vision systems in associative learning

[3,4,31,32] or innate response [5,6,22,33] experiments. Pre-

vious behavioural studies have tended to produce a single

measure of difference in e-vector axis as an estimate of the

capability of a given polarization vision system [3,5]. How-

ever, as we have discussed above, sensitivity to different

e-vector axes varies according to absolute e-vector axis and
degree of polarization. Polarization distance can therefore

be a useful tool to predict how discriminable various polar-

ized objects appear against a given background, and so can

predict how JNDs should vary across different polarization

conditions. JNDs are behavioural measures, again usually

associated with colour, but are now also becoming possible

to assign to polarization vision [3,5,6,34].

Once a discrimination threshold (and therefore JND) has

been estimated, polarization distance can be used to model

how this threshold should vary across different object/

background polarization conditions for a suggested visual pro-

cessing system. For example, in a previous experiment, we

measured the discrimination threshold for the fiddler crab as a

difference in e-vector angle of 3.28 [5]. The exact liquid crystal

display polarization properties of the background were:

e-vector¼ 32.08; linear degree ¼ 0.95; and of the just-notable

looming object: e-vector¼ 29.88; linear degree¼ 0.93. This

equates to an orthogonal two-channel polarization distance

measure of 0.022 (derived from equations (2.1)–(2.3), assuming

Sp ¼ 10). We can then predict the discrimination curve for a

range of example backgrounds over all possible object polariz-

ation states (figure 4). In these graphs, those objects falling

within the grey areas have e-vector and linear degree of polariz-

ation properties that render them indistinguishable from the

example background (represented by a star in each panel).

Given that the model allows us to estimate polarization

JNDs for any linear polarization condition, we can now go on

to make inferences about what type of signals are best designed

for stimulating a given visual system in a given environment.

For example, using our fiddler crab JND polarization distance

of 0.022, we can solve the previous equations to find JNDs for

all linear polarization conditions. Figure 5 presents e-vector

and degree acuity maps, in which the black contours represent

the JND value for e-vector (a) or degree (b), with all other

parameters remaining the same between the background and

the object. For the fiddler crab’s orthogonal receptor system,

e-vector acuity is the strongest around background e-vectors

of –458 and 458. By contrast, the animal is most sensitive to

differences in the degree of polarized light around 08 and 908,
matching the axes of the underlying receptor system. The

ground-level environment of the fiddler crab (against which it

needs to discriminate conspecifics) tends to be dominated by

horizontal, or near horizontal polarized light reflected from

the mudflat (figure 5a,b—grey shaded contours and figure

5c—mudflat polarimetry). This corresponds to the area of maxi-

mum acuity for degree of polarized light, but minimum acuity

for e-vector axis of polarized light. One explanation for this

could be that the horizontal/vertical receptor array is primarily

a sensor tuned to detect the differences in the degree of polar-

ized light in a horizontally polarized world, rather than being

designed to discriminate small differences in e-vector axis.
4. Polarimetry
Image polarimetry is the process of reconstructing the polariz-

ation properties of visual scenes from a series of images taken

through a range of different polarization filters. The differential

contrast between these images can be used to calculate the

Stokes parameters [35], and hence the e-vector axis and

degree of polarized light at each location in the scene (e.g.

figure 6a). To fully represent the linear polarization properties



e-vector acuity map

natural polarized light environment of fiddler crab

original e-vector
180 1.0

0.8

0.6

0.4

0.2

0

135

90

45

0

degree

e-vector
–90 –45 0

4°

0.05

0.
1

0.
1

0.1

0.15
0.20

0.25

0.
15

0.
15

0.
20

0.
20

0.
25

0.05

0.05

5°

10°

15°

20°25°30°

10
°

15
°

20
°

25°

30°

4°

5°

45 90

1.0
(a)

(c)

(b)

0.8

0.6

0.4

0.2

0

degree acuity map

de
gr

ee

e-vector
–90 –45 0 45 90

Figure 5. Polarization acuity maps for the fiddler crab Uca vomeris. Black contour lines indicate the JND value for object e-vector (a) and degree (b) for all back-
ground linear polarization conditions. For (a) object degree is 1, and for (b) object e-vector axis is 908. Note that the clustering of vertical contour lines in
(b) indicates a steep decline in acuity towards the +458 region. Shaded contours indicate the distribution of polarized light in the natural environment of
the fiddler crab. These mudflat contours lie in the low e-vector acuity region in (a) and the high degree acuity region in (b). (c) Image polarimetry of a mudflat
scene viewed in the direction of the sun (at around 458 above the horizon), from which the shaded contours in (a,b) are calculated. Note that in (c,d) all values less
than 5% polarized have been assigned the colour black.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20131632

6

of a scene, a minimum of three photographs are required, taken

through linear polarizers angled at 08, 458 and 908.
To better understand the information available to an

orthogonal two-channel polarization vision system, we can

adapt polarimetry techniques to use our measure of polariz-

ation distance. To do this, two images of a scene are required,

each one taken through a linear polarization filter parallel to

the modelled receptor orientation. In our example (figure 6b),

the tail of a stomatopod (Odontodactylus latirostris) has been

photographed through a horizontal and vertical polaroid

filter. The green channel is extracted from the image (as this

most closely represents the spectral sensitivity of a broad

spectrum polarization receptor) and each pixel value is con-

verted to an estimate of receptor activity R for a given

polarization sensitivity Sp as follows:

R1 ¼ H �
Sp

Sp þ 1
þ V � 1

Sp þ 1
;

R2 ¼ H � 1

Sp þ 1
þ V �

Sp

Sp þ 1
;

ð4:1Þ

where H and V are the original horizontal and vertically

polarized images. In this example, we used an Sp of 10.

These estimates of receptor activity are then inserted into

our polarization distance equation (figure 6b, centre). Note

that a measure of polarization distance by necessity compares
two regions of an image, so in this example, the stomatopod

tail is compared with a background region below (figure 6b,

dotted rectangle). The uropods of this species are highly lin-

early polarized and so stand out as dark regions in the

polarimetry image (figure 6b, right). The final image therefore

approximates the contrast available in the early stages of

visual processing for an animal (such as a cuttlefish) with

an orthogonal two-channel polarization vision system.
5. Conclusion
The use of polarization vision by some animals for detecting

objects in the environment has opened the need for biologically

meaningful measures of discrimination. We extended upon

previous models of polarization-sensitive photoreceptors and

interneurons to develop the concept of polarization distance,

a measure roughly analogous to colour distance. By applying

this model to orthogonal two-channel polarization vision

systems we conclude that the degree of polarized light is

likely to be more useful and reliable than the e-vector axis,

which relies on the geometry of objects and source of illumina-

tion. We suggest that, for a constantly horizontally polarized

environment such as underwater or on two-dimensional

mudflats, a two-channel system with polarization sensitivity

oriented horizontally and vertically is optimally designed for
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polarization distance (grey) relative to the unpolarized background (white).
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detecting objects differing in their degree, and not the e-vector

of polarized light. Furthermore, careful eye alignment, as

observed in fiddler crabs and cuttlefish, suggests (among

other tasks) the strong importance of maintaining a horizon-

tal/vertical receptor alignment with the external world.

In such visual systems, the polarization distance framework

allows researchers to identify null points of discrimination

and generate testable predictions for polarization sensitivity

to controlled stimuli. Finally, the possibility of three or

more channel polarization vision systems should not be
discounted, but even stomatopods appear to use multiple

two-channel systems rather than three (see the electronic sup-

plementary material, S2 for an extended discussion of three

channel systems).
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