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Whether hiding from predators, or avoiding battlefield casualties, camou-

flage is widely employed to prevent detection. Disruptive coloration is a

seemingly well-known camouflage mechanism proposed to function

by breaking up an object’s salient features (for example their character-

istic outline), rendering objects more difficult to recognize. However,

while a wide range of animals are thought to evade detection using

disruptive patterns, there is no direct experimental evidence that dis-

ruptive coloration impairs recognition. Using humans searching for

computer-generated moth targets, we demonstrate that the number of

edge-intersecting patches on a target reduces the likelihood of it being

detected, even at the expense of reduced background matching. Crucially,

eye-tracking data show that targets with more edge-intersecting patches

were looked at for longer periods prior to attack, and passed-over more

frequently during search tasks. We therefore show directly that edge

patches enhance survivorship by impairing recognition, confirming that

disruptive coloration is a distinct camouflage strategy, not simply an

artefact of background matching.
1. Introduction
Camouflage is a ubiquitous phenomenon in nature, with natural selection

favouring animals that can avoid being seen and recognized by predators

[1–3]. The most intuitive forms of camouflage are based on blending in with

the background (background matching) and on mimicking an irrelevant

object in the environment (masquerade). However, camouflage is also thought

to be achieved in a wide range of species via disruptive coloration. Disruptive

coloration functions by obscuring outlines and creating false boundaries,

thereby preventing recognition of an animal’s salient features [1–4]. While

the concept of disruptive coloration has been standard textbook material for

over a century [1,2], with applications ranging from military uniforms and

equipment to art [5], empirical verification of the functional mechanism under-

lying disruptive coloration has remained elusive for two main reasons. First,

disruptive coloration invariably occurs in conjunction with background match-

ing, so disentangling their individual contributions to camouflage is therefore

challenging [6–8]. Second, disruptive coloration is best defined in terms of its

function (impairing recognition) rather than its appearance [7,8]. Consequently,

despite repeated suggestions that animals from anteaters to zebra are disrupti-

vely coloured, one cannot, based on appearance alone, state that an animal’s

body pattern is disruptive. Cuthill et al. [9] provided the first field demon-

stration that artificial prey targets with contrastingly patterned edges (‘edge’

targets) had a greater survivorship under bird predation than control targets

without edge-intersecting patches. Similar results were subsequently reported
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with human subjects visually hunting for artificial moth

targets displayed on computer screens [10], wild birds fora-

ging in aviaries [11], and wild birds foraging in their natural

habitats [12–16]. Unfortunately, however, there is no exper-

imental evidence to confirm that the enhanced survivorship

afforded by such markings was attained through impaired

object recognition [17]. Put simply, results showing that

edge-intersecting patches enhance survivorship are necessary,

but not sufficient. For disruptive coloration to work in the

manner prescribed, then object recognition must be impaired,

otherwise the theory fails [17].
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Figure 1. Detection probability of moth targets as a function of edge properties.
(a) Examples of moth targets with low and high survival over all trials. Targets
with a high number of edge-intersecting patches tended to have (b) higher
mean survival, and (c) higher mean search time (of those targets discovered).
Each data point represents a target, with individual mean survivorship and
search time calculated over 48 independent subject trials. Lines represent
fitted least-squares regression, estimated from the fits of general linear
models in table 1.
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2. Material and methods
Using eye-tracking technology, we test, for the first time to our

knowledge, whether edge-intersecting patches on objects impair

their recognition and thereby enhance their survivorship. Eye-track-

ing is widely used in psychophysics [18] and is particularly well

suited to distinguish failure of object recognition from a failure to

locate a hidden target ([19,20]; see the electronic supplementary

material, figure S1). The eye movements of individual subjects

were quantified during each search task using a FACELAB eye tracker

(Seeing Machine, Canberra, Australia) which recorded foveal (line of

sight) eye positions at a frequency of 60 Hz. Raw eye movement data

included both small-scale concentrated eye movements (during a

bout of visual fixation) and large-scale eye movements (during sac-

cades). As the amount of visual information is limited when the eye

moves fast during a saccade, a velocity-based threshold (see the elec-

tronic supplementary material, ‘Tracking of eye movements’) was

used to identify and exclude saccades data prior to analysis. Analy-

sis of this filtered eye-tracking data allowed us to quantify three

inter-related measures of object recognition, namely: (i) inspection
time (the total time that each subject’s spent foveating within 1.58
of the target), (ii) number of passes (independent bouts during

which foveal vision moved from outside to inside the 1.58 zone

around the target, equivalent to the number of independent fixations

within the target area; see the electronic supplementary material,

figures S2 and S3), and (iii) final inspection time (the time spent foveat-

ing within 1.58 of the target, in the bout immediately prior to

attacking). If disruptive coloration hinders recognition of a target

through breaking up a target’s outline, then targets with more dis-

ruptive colour patterns should be inspected for longer periods and

incur more frequent independent passes from the searcher. More-

over, variation in the above measures should explain some of the

observed variation in target survival and total search time.

We monitored the eye movements of 48 human subjects

hunting for 63 artificial, bi-coloured triangular moth targets

with different coloration patterns placed on tree-trunk back-

grounds. The trees and moths were displayed on a computer

screen using a VISUAL BASIC 8 GUI, which also recorded (i) if tar-

gets were discovered, and (ii) total visual search time (in ms) of

the subjects for the discovered targets. When a subject recog-

nized the target, he/she immediately rotated the mouse wheel

to stop the timer and then moved the cursor over the target

and clicked on it to verify that the target had been correctly

located. For each of the 63 moth targets, we quantified three of

its inter-related coloration properties (see the electronic supple-

mentary material, figure S4 for a gallery illustrating variation),

namely, uniformity (the overall heterogeneity of markings, with

low values representing highly mottled appearance), the pro-
portion of dark area in the bicoloured targets and the number of
edge-intersecting patches (the number of groups of five or more

continuous dark pixels that touch the targets outline, used as

our measure of putative ‘disruptive’ coloration, as more edge

patches contribute to the break-up of target’s outline (sensu
[21,22]); see the electronic supplementary material, figure S5).
3. Results
Overall, our 63 moth targets differed in their survivorship

(i.e. the proportion of each target that went undiscovered

over all presentations; see figure 1a for examples of high and

low survivorship targets; x2
62 ¼ 90:1, p , 0.05; range ¼

0–18%) and mean search time for those found (i.e. total time

taken to discover each target type; F62,2544 ¼ 5.05, p , 0.001;

means per target 2–10 s). If edge-intersecting patches

disrupt object recognition, then we would expect that the survi-

vorship and mean search time of targets should increase

with increasing number of edge-intersecting patches, while

controlling for other overall aspects of target appearance (in

this case, uniformity and proportion of dark area). As predic-

ted, as the number of edge patches increased, so did average

survivorship of the target (F1,59¼ 4.25, p ¼ 0.044; table 1 and

figure 1b), as well as the mean search time for those discovered

(F1,59¼ 8.36, p ¼ 0.005; table 1 and figure 1c), over and above

the effects of target’s uniformity and darkness.

Targets with more edge-intersecting patches were more

difficult to recognize by human subjects. All three recognition
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Figure 2. As the number of edge-intersecting patches increase, the recog-
nition of moth targets becomes harder. When visually hunted by human
subjects, moth targets with more edge-intersecting patches tend to have
(a) a higher mean inspection time, (b) a higher mean final inspection
time, and (c) a higher mean number of passes. Lines represent fitted
least-squares regression, estimated from the fits of general linear models
in table 1.
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metrics, namely total inspection time (F1,59¼ 18.83, p , 0.001;

figure 2a), final inspection time (F1,59¼ 9.34, p ¼ 0.003;

figure 2b) and the number of passes (F1,59¼ 7.03, p ¼ 0.010;

figure 2c) increased as the number of edge-intersecting patches

increased, while controlling for other aspects of the targets’

appearance. Targets with more edge-intersecting patches were

harder to recognize, despite those targets with a high number

of edge patches being less representative of their background
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(see the electronic supplementary material, figures S6–S8). The

number of edge-intersecting patches was not the only target

characteristic to affect recognition. Of our background match-

ing metrics, uniformity also affected the number of passes,

while target darkness had no effect on any recognition metric

(table 1). Lastly, we note that inspection time itself is a significant

contributor to total search time (F1,57¼ 4.52, p ¼ 0.022; see the

electronic supplementary material, figure S9 and table S4),

while the number of edge patches interact with inspection

time to affect overall search time (F1,57¼ 10.41, p , 0.001; see

the electronic supplementary material, table S4).
BiolLett
9:20130501
4. Discussion
Target types with a high number of edge patches survived

better and took longer to be discovered, even when they

were less representative of the backgrounds ([23]; see the

electronic supplementary material, figure S7); therefore,

the observed effect of number of edge-intersecting patches

could not have arisen as a consequence of targets with a

higher number of edge patches being better background

matchers. Of the two measures of overall target coloration

pattern, lower uniformity (a more mottled appearance) was

associated with significantly increased survival and search

time, whereas proportion of dark area was not (table 1).

Our central finding, that edge-intersecting patches increase

survival and search time, remained valid when a more

detailed model was fitted to encompass individual trials,

with human subject as a random factor (see the electronic

supplementary material, tables S2 and S3). Our endpoints

are precisely what one would expect if disruption mediates

the contribution of object recognition to overall detectability.

Intriguingly, inspection time represents a relatively small frac-

tion of total search time, and yet small changes to inspection

time have a large effect on total search time (see the electronic
supplementary material, figure S9). This outcome may have

arisen as a consequence of subjects being reluctant to return

to an area that they had previously searched [24]. Alternatively

or in addition, the low proportion of inspection time to total

search time could miss out other processes that allow object

recognition, as our measures exclude the role of subjects’

peripheral vision (see the electronic supplementary material).

Collectively, our results provide, to our knowledge, the first

direct evidence that a target’s edge patterning hinders object rec-

ognition, supporting the view that disruptive coloration can be

regarded as a form of camouflage that is functionally distinct

[7,8] from background matching. While previous studies have

demonstrated that targets with edge markings have higher sur-

vivorship [9–16], these unmanipulated disruptive treatments

could conceivably have been more representative of the back-

grounds on which they are presented. We have overcome this

limitation not only by statistically controlling for obvious

forms of background matching but also by showing that objects

with a high number of edge patches, less representative of their

backgrounds, tend to survive at higher rates because they are

more difficult to recognize. Only through accounting for how

disruption functions can we understand precisely why so

many animal species have evolved high-contrast body markings

[25] and evaluate what has been dubbed ‘the most important set

of principles relating to concealment’ [2].
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