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SUMMARY
Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue archi-

tecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover

that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during

salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via sepa-

rate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b

signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal

progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotro-

phic factors that support gland innervation, whichmaintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+

cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our find-

ings provide a framework to direct regeneration of branched epithelial organs.
INTRODUCTION

During organogenesis, epithelial progenitor cells generate

the branched architecture of the tissue. These progenitors

must increase in number while retaining their progenitor

qualities, in a process known as expansion. Organogenesis

further involves communication between expanding pro-

genitors and other cell types located in the niche or local

microenvironment (Wagers, 2012). Stromal, endothelial,

and neuronal cells provide external cues that control the

number of progenitors and their survival, maintenance,

and differentiation (Kiger et al., 2000; Knox et al., 2010;

Shen et al., 2004). Thus, it is imperative to understand the

mechanisms by which progenitors expand and how they

communicate with other cell types in order to regenerate

or reengineer thebranchedarchitecture of epithelial organs.

KIT (C-KIT, CD117), a receptor tyrosine kinase (RTK), has

been studied extensively in hematopoietic progenitors

(Kent et al., 2008), but less is known about its function in

epithelial progenitors. The ligand for KIT is stem cell factor

(SCF), the gene product of Kitl. KIT signals via numerous

pathways, including phosphatidylinositol 3-kinase (PI3K),

phospholipaseCg (PLCg),mitogen-activatedproteinkinase

(MAPK), and Janus kinase/Signal Transducer and Activator

of Transcription (JAK/STAT) (Lemmon and Schlessinger,

2010), and can transactivate other receptors (Jahn et al.,

2007; Wu et al., 1995). Importantly, KIT-expressing (KIT+)
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progenitors form and regenerate various epithelial organs.

Prostate tissue can be generated from a single KIT+ cell

(Leong et al., 2008), epithelial-specific KIT+ progenitors

functionally regenerate irradiated salivary glands (Lombaert

et al., 2008; Nanduri et al., 2013), and KIT+ cells repair lungs

postthoracotomy (Kajstura et al., 2011). These findings sug-

gest that epithelial KIT+ progenitors somehow lay the foun-

dation for branching organ architecture. Importantly, the

loss of KIT signaling due to a homozygous SNP (Chabot

et al., 1988), KitW/W, is lethal by embryonic day 14 (E14)

due to hematopoietic defects, but the effects of this muta-

tiononepithelialprogenitorsandorganogenesis areunclear.

Severe defects in epithelial organogenesis occur in mice

lacking Fgf10 or its receptor, Fgfr2b, and provide valuable

insight into epithelial progenitor cell biology. Many or-

gans, such as the salivary glands and lungs, do not form

or are hypoplastic (De Moerlooze et al., 2000; Ohuchi

et al., 2000). These phenotypes suggest defects in the

survival, maintenance, and/or expansion of epithelial pro-

genitors. In addition, mutations in fibroblast growth factor

receptor 2 (FGFR2) and KIT occur in many epithelial tu-

mors, and both receptors are being targeted with specific

RTK inhibitors in breast, lung, liver, salivary gland, skin,

renal, gastrointestinal, colorectal, ovarian, and uterine can-

cers (Casaletto andMcClatchey, 2012; Hanahan andWein-

berg, 2011; Lemmon and Schlessinger, 2010; Takeuchi and

Ito, 2011). We thus hypothesized that an interaction
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Figure 1. Kit and Kitl Increase during Branching Morphogenesis, and KIT+ Progenitor Expansion Occurs in Endbuds
(A) qPCR analysis of Kit and Kitl mRNA expression during SMG development. Mean ± SEM, n > 3 biological SMGs at each developmental
stage. Data were normalized to Rps29 and E11.5 SMG.
(B) E14 SMGs. Whole-mount in situ analysis of Kit and Kitl mRNA expression, sections stained with Nuclear Fast Red. Black dashed lines
outline epithelia. Scale bars, 200 mm for whole mounts and 25 mm for sections.
(C) Staining of E13 and E16 SMGs for KIT, ECAD, and basement membrane (Perlecan [PLN]). Images are 1 mm confocal sections. Arrow
indicates endbuds. Scale bars, 20 mm.
(D) FACS analysis (% of cells/SMG) of ECAD+KIT+ cells during development. Data are mean ± SEM, n > 3 biological independent samples at
each developmental stage.
(E) KIT and Ki67 staining of E13 and E16 SMG endbuds. FACS analysis of E13 SMG showing the percentage of proliferating cells (Ki67+) in
KIT� or KIT+ cells. Scale bar, 20 mm; n > 3 biological samples.
See also Figure S1.
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between FGFR2b and KIT signaling could regulate epithe-

lial progenitor expansion during organogenesis.

To investigate this hypothesis, we studied mouse sub-

mandibular glands (SMGs), which develop by reiterative

rounds of distal endbud and proximal duct formation,

and require communication with the neuronal niche

(Knox et al., 2010). We discovered that FGFR2b signaling

upregulates the epithelial KIT pathway so that combined

KIT/FGFR2b signaling, via separate AKT and MAPK path-

ways, amplifies FGFR2b-dependent transcription. The

combined KIT and FGFR2b signaling increases the number

of KIT+FGFR2b+ distal progenitors, but loss of KITsignaling

depletes these progenitors. This KIT/FGFR2b-dependent

mechanism is conserved during adult tissue homeostasis

and in other branching organs.
RESULTS

KIT+ Progenitor Expansion Occurs in Endbuds during

SMG Branching Morphogenesis

We first investigated the developmental expression and

localization of Kit and Kitl mRNA by quantitative PCR
Stem Cell R
(qPCR; Figure 1A), in situ hybridization (Figure 1B), andmi-

croarray during development (Figure S1A available online).

mRNA products of both Kit and Kitlwere detectable during

gland initiation at E11.5, when the initial endbud forms

distal to a primary duct, and expression of both peaked at

�E15 (Figure 1A). From E12 to E15, branching morpho-

genesis occurred with reiterative rounds of distal endbud

expansion and proximal duct formation. Whereas Kit

mRNA was localized to endbuds, Kitl mRNA was found

mainly in the mesenchyme around the endbuds, but was

also detected within endbuds (Figure 1B), as confirmed by

qPCR analysis of isolated E13 endbuds, ducts, and mesen-

chyme (Figure S1B). During branching morphogenesis,

KIT protein was localized to E-cadherin+ (ECAD+) endbud

cells (Figure 1C, E16, arrows), but was not detected in ducts

(KIT�) (Figures 1B and 1C). Fluorescence-activated cell

sorting (FACS) analysis confirmed that during the rapid

branching phase, the number of epithelial KIT+ cells

(ECAD+KIT+) increased from 10% to 20% of total cells in

the intact SMG (Figures 1D and S1C). Furthermore, FACS

analysis and Ki67 staining showed that E13 ECAD+KIT+

cells were highly proliferative (Figure 1E), since �70%

of cycling SMG cells (Ki67+) were KIT+. This highly
eports j Vol. 1 j 604–619 j December 17, 2013 j ª2013 The Authors 605
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proliferative state occurred up to E16 (Figure 1E). By the

time secretory differentiation began after E16, both Kit

and Kitl mRNA expression decreased (Figures 1A and

S1A). KIT+ cells accounted for only �3% of total cells at

postnatal day 1 (P1; Figure 1D), which is comparable to

levels in adult SMGs (Lombaert et al., 2008). Since the

number of KIT+ endbud cells increases during branching

morphogenesis, the data suggest that KIT+ progenitor

expansion occurs in endbuds.

FGFR2b Signaling Upregulates an Autocrine Epithelial

KIT Pathway

FGFR2b signaling is essential for the survival and prolifer-

ation of epithelial endbuds; however, it is unclear whether

it regulates progenitor expansion. Since KITmarks the end-

bud progenitors, we hypothesized that FGFR2b signaling

controls KIT+ progenitor expansion by regulating KIT

function. We tested this by culturing isolated SMG

epithelia for 2 hr with inhibitors of FGFR (SU5402 [SU]),

MAPK (UO126), PI3K (LY29052) and PLCg (U7312), and

FGFR2b ligands and measuring downstream gene expres-

sion. Kitl was rapidly downregulated with SU or UO126

(Figure 2A). In contrast, addition of the FGFR2b ligands

FGF1, FGF7, and FGF10 specifically upregulated Kitl (Fig-

ure 2B), whereas other factors, such as FGF2, FGF8b,

BMP2, BMP4, BMP7, insulin growth factor 2 (IGF2), trans-

forming growth factor b1 (TGFb1), TGFb2, carbachol

(CCh), heparin-binding EGF-like growth factor (HBEGF),

and SCF, did not. In addition, Kitwas upregulated 6 hr after

FGF10 addition (Figure 2C). Thus, FGFR2b signaling posi-

tively regulates Kitl expression in the epithelium, which

may result in an autocrine activation of KIT in the endbud

progenitors by epithelial SCF.

FGFR2b and KIT Signal via Separate MAPK and AKT

Pathways

Because FGFR2b signaling may upregulate an autocrine

epithelial KIT pathway, we investigated the molecular in-

teractions of these pathways and paracrine KIT signaling

using cell lines expressing KIT and FGFR2b, and isolated

SMG epithelium. We were unable to coimmunoprecipitate

FGFR2b and KIT from SMG epithelium (not shown). Since

we could not show a direct interaction, we investigated

possible transactivation or signaling crosstalk on two

levels. First, at the ligand level, we used a rat myoblast

cell line (L6) expressing either Flag-tagged FGFR2b

(FGFR2b-FL) or hemagglutinin (HA)-tagged KIT (KIT-HA)

to show that the ligands are specific and do not phosphor-

ylate (Anti-PY) the other receptor in these cells (Figure 2D).

Second, at the receptor level, we used L6 cells expressing

both receptors (KIT+FGFR2b+L6) to show that KIT and

FGFR2b do not transactivate (Anti-PY) each other (Fig-

ure 2E). We then used FGFR2b+L6 or KIT+L6 cells to
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show that pERK1/2 is downstreamof bothKITand FGFR2b,

and that the KIT inhibitor ISCK03 (ISCK) specifically

reduced SCF/KIT-dependent pERK1/2, whereas SU specif-

ically reduced pERK12 downstream of FGF10/FGFR2b (Fig-

ure 2F). We confirmed that ISCK specifically inhibited KIT,

but not FGFR2b, phosphorylation (Figure S2A). Further, we

used a KIT+ human leukemic cell line, Mo7e, which does

not express FGFR2b, to confirm that SU did not inhibit

SCF-dependent pKITY721 and downstream pAKT, whereas

ISCK did (Figure S2B). Neither inhibitor reduced pERK1/2,

which is downstream of other RTKs in Mo7e cells. Taken

together, these data suggest that FGFR2b and KIT do

not transactivate each other, and that separate MAPK

and AKT signaling pathways occur downstream of each

receptor.

We also measured phosphorylation of KITY721 in isolated

SMG epithelia cultured for 24 hr with FGF10 and then

treated for 15 min with additional SCF or FGF10 and/or

SU and ISCK. There was a robust baseline level of pKITY721,

and SCF further increased pKITY721 and pAKT, whereas

FGF10 increased pERK1/2 (Figure 2G). As expected, SU

reduced pERK1/2 downstream of FGF10, and ISCK reduced

pAKT downstream of SCF. Exogenous FGF10 also increased

pKITY721, which is likely due to endogenous epithelial SCF

(i.e., autocrine KIT signaling in the epithelium) being

enhanced by FGF10. This FGF10-dependent pKITY721 and

pAKT were reduced by SU or SU+ISCK, suggesting that

in SMG epithelia, FGF10 may transactivate KIT or that SU

inhibits another receptor that transactivates KIT. We also

show that ISCK reduced pKITY721 and pAKT to near control

levels after SCF treatment and partially reduced pKITY721

after FGF10 treatment. In other experiments, ISCKwas spe-

cific and did not reduce pERK1/2 or pAKT downstream of

FGFR2b (with FGF10), epidermal growth factor receptor

(EGFR; with HBEGF), or FGFR1 receptors (with FGF2) after

1 hr (Figures S2C and S2D). These data suggest that separate

KIT and FGFR2b signaling occurs in SMG epithelia KIT+

progenitors.

Combined FGFR2b and KIT Signaling Amplifies

FGFR2b-Dependent Transcription

To investigate how separate KIT and FGFR2b signaling

pathways regulate progenitor expansion, we treated iso-

lated SMG epithelia with SCF and FGF10 alone or in com-

bination. The downstream phosphorylation with SCF

and FGF10 was additive and led to enhanced and sustained

phosphorylation of SHP2, AKT, and ERK1/2 comparedwith

either SCF or FGF10 alone (Figure 3A). We predicted that

this might increase downstream gene transcription. Thus,

we measured the expression of a cassette of transcription

factors (TFs), Sox10, Myc, Etv4, Etv5, and DNp63, all of

which are expressed in endbuds and potentially involved

in SMG progenitor expansion (Lombaert et al., 2011).
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Figure 2. FGFR2b Signaling Upregulates the Autocrine Epithelial KIT Pathway, and the Receptors Signal via Separate MAPK and AKT
Pathways
(A) qPCR analysis of Kitl and Kit in E13 epithelia 2 hr after addition of FGF10 and inhibitors: Control (DMSO), FGFR (SU5402), MAPK
(UO126), PI3K (LY29052), and PLCg (U7312). Data are mean ± SEM, normalized to Rsp29 and Control. One-way ANOVA with post-hoc
Dunnett’s test; ***p < 0.001, n = 3 biological samples.
(B) qPCR analysis of E13 epithelia 2 hr after growth factor addition. Data are mean ± SEM, normalized to Rsp29 and epithelia at 0 hr
(dashed line). Unpaired t test; *p < 0.05, n = 3 biological samples.
(C) qPCR analysis of E13 epithelia at different times after FGF10 treatment. Data are mean ± SEM, normalized to Rsp29 and 0 hr (gray
dashed line), n = 3 biological samples.
(D) Immunoblot for p-tyrosine kinase (PY), FGFR2 (Anti-Bek), and KIT (Anti-HA) after immunoprecipitation (IP) of FGFR2b-FL- or KIT-HA-
tagged proteins from FGFR2b+L6 or KIT+L6 cells 15 min after growth factor stimulation with either FGF10 or SCF.
(E) Immunoblot of phosphotyrosine (PY) and FGFR2 (Bek), and KIT (HA) after IP of Flag-FGFR2b or HA-KIT in KIT+FGFR2b+ L6 cells, after
FGF10, SCF, and/or ISCK treatment.
(F) Immunoblot of pERK1/2 and total (T) ERK after FGFR2b+L6 or KIT+L6 cells were treated with FGF10, SCF, SU, and ISCK.
(G) Immunoblot of pKITY721, pAKT, pERK1/2, and total (T) AKT or ERK1/2 and KIT after epithelia were cultured for 5 min with SCF and/or
FGF10 in the presence of ISCK or SU. Representative blot, n = 3 biological samples.
See also Figure S2.
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Costimulation with FGF10+SCF for 3 hr increased expres-

sion of Sox10, Myc, Etv4, and Etv5, but not DNp63, above

the level observed with FGF10 alone (Figure 3B). We

show that KIT signaling was essential for this increased

expression, since ISCK reduced expression to a level similar

to that obtained with FGF10 alone. The PI3K inhibitor

LY29052 (which reduces pAKT), but not the PLCg inhibitor
Stem Cell R
U73122, mimicked this effect, suggesting that the posi-

tive regulation by KIT occurs via increased PI3K/AKT

signaling. We confirmed that activation of FGFR2b

signaling upregulated TFs in a MAPK-dependent manner

(Figure S3). Importantly, SCF alone did not have direct ef-

fects on TF gene expression. Furthermore, KIT and FGFR2b

regulate these conserved TF targets in cells that do not
eports j Vol. 1 j 604–619 j December 17, 2013 j ª2013 The Authors 607



Figure 3. KIT Signaling Increases Expression of FGFR2b-Dependent Transcriptional Targets
(A) Immunoblot of pSHP2, pAKT, pERK1/2, and total (T) SHP2, AKT, or ERK1/2 at different time points after addition of SCF and/or FGF10.
Graphs represent quantification of a representative blot, n = 3 biological samples.
(B and C) qPCR analysis of gene expression in SMG epithelia (B) or KIT+FGFR2b+L6 cells (C) cultured for 3 hr with SCF and/or FGF10. SMG
epithelia were treated with inhibitors ISCK, LY29052 (LY), or U73122 (U7). Unpaired t test; *p < 0.05, **p < 0.01. Statistics compare
FGF10+SCF with FGF10 alone or with FGF10+SCF+ISCK; n = 3 biological samples.
See also Figure S3.
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endogenously express the receptors, as was observed with

KIT+FGFR2b+L6 cells stimulated with SCF/FGF10 (Fig-

ure 3C). We conclude that the KIT and FGFR2b signaling
608 Stem Cell Reports j Vol. 1 j 604–619 j December 17, 2013 j ª2013 The
pathways converge to increase expression of a conserved

cassette of FGFR2b-dependent TFs during the expansion

of KIT+ endbud progenitors.
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Endbuds Contain Distinct Populations of KIT+K14+

Distal and KIT+K5+ Proximal Progenitors

In addition to KIT+ endbud progenitors, we previously

identified K5-expressing (K5+) progenitors that are essen-

tial for proximal K19+ duct development (Knox et al.,

2010). Therefore, we characterized the distinct cell types

within the KIT+ population by their keratin (K) expression.

Usually, K5 pairs with K14 (Rock et al., 2009), but in SMG

KIT+ endbuds the basal K14+ cells did not coexpress K5

(Figure 4A). This unexpected observation led us to charac-

terize the progenitor potential of K14+ cells by genetic line-

age tracing. We labeled K14+ cells and their progeny with

GFP using a K14Cre mouse crossed with a RosamTmG re-

porter strain. At P1, we observed GFP expression in

ECAD+ epithelial cells (Figures 4B, S4A, and S4B). The

K14+ progenitors are multipotent, as their progeny

included K5+ ductal cells, Amylase-producing acinar

cells, and smooth-muscle-Actin+ myoepithelial cells (Fig-

ure S4C). FACS analysis showed that KIT+K8+ epithelial

endbud cells are a heterogeneous population of distal

K14+ (14% ± 3%) and proximal K5+ progenitors (10% ±

2%; Figure 4C). Furthermore, proximal K5+ progenitors

and their progeny (K5+K19+ and K19+ cells) were localized

centrally in endbuds and were contiguous with the duct

(Figure 4A). KIT+K8+ cells (56% ± 4%) that did not express

K14, K5, or K19 were located between the basal layer and

central duct cells of the endbud (Figure 4A). We conclude

that the endbud contains two distinct populations of pro-

genitors: a pool of distal KIT+K14+ progenitors and a pool

of proximal KIT+K5+ progenitors.

KIT and FGFR2b Signaling Selectively Expands Distal

Progenitors in the Endbud

Next, we investigatedwhether KITand FGFR2b regulate the

expansion of both distal KIT+K14+ and proximal KIT+K5+

progenitors. Combined FGF10+SCF treatment increased

K14 expression in isolated epithelial endbuds within

24 hr (Figure 4D). Staining for KIT, SOX10, and p63

confirmed that multiple cell layers of K14+ progenitors

were present in the endbud. Conversely, central K19+

ductal cells were reduced as compared with FGF10 treat-

ment alone. Consistent with this, Krt14 and Sox10

increased, whereas Krt19 decreased, with FGF10+SCF

versus FGF10 treatment (Figure S4D). To confirm that KIT

and FGFR2b signaling selectively amplify KIT+K14+ distal

progenitors, we cultured E13 SMGs with FGF10�/+ SCF

and did a FACS analysis. Similar to the case with isolated

epithelium, combined KITand FGFR2b signaling expanded

the number of K14+, KIT+, and SOX10+ cells (Figures 4E

and S4E). The KIT+K14+ distal progenitors increased in

number at the expense of KIT+K14� cells (Figure 4F).

This is reflected in the doubling number of all KIT+K14+

cells, including those coexpressing K5 and/or K19: K14+
Stem Cell R
(K14+K5�K19�), K14+K5+ (K14+K5+K19�), K14+K19+

(K14+K5�K19+), and K14+K5+K19+. Immunostaining

validated the FACS data, showing that endbuds contained

more cells expressing K14, SOX10, and KIT (Figure 4G).

Thus, KIT and FGFR2b selectively expand distal KIT+K14+

progenitors, but not proximal KIT+K5+ progenitors or their

K19+ progeny. We also measured proliferation in intact

SMGs and isolated epithelia after FGF10�/+ SCF stimula-

tion. FACS analyses showed that the number of prolifer-

ating (Ki67+) and epithelial (ECAD+) SMG cells did not

change with FGF10+SCF treatments (Figure 4E), and there

was no difference in glandmorphology or endbud number

(Figure S4F). In isolated epithelia, SCF alone did not

support survival or proliferation (Figures S4G and S4H).

Since KIT signaling alone did not affect proliferation, we

conclude that selective expansion of KIT+K14+ progenitors

involves combined KIT and FGFR2b signaling for prolifera-

tion and doubling of the cell number.

Expansion of Distal Progenitors Is Essential for

Branching Morphogenesis

We then asked whether distal progenitor cell expansion is

required for branching morphogenesis. We used two loss-

of-function approaches: KitW/W SMGs, which lack KIT

signaling due to a SNP in the W locus (Chabot et al.,

1988), and ISCK treatment of intact SMGs (Figures 5A–

5H). In both E14 KitW/W and ISCK-treated SMGs, we found

a significant reduction in the number of cells expressing

KIT, K14, SOX10, and p63 as determined by protein stain-

ing, FACS analysis, and mRNA expression (Figures 5A, 5B,

5E, S5A, and S5B). Importantly, loss of KIT signaling

reduced branching in cultured ISCK-treated and E14

KitW/W SMGs, which were smaller than KitW/+ and Kit+/+

glands (Figures 5C, 5D, and S5C). Even though E14 KitW/W

SMGs were similar in size to E13 Kit+/+ SMGs, they ex-

hibited reduced branching in culture (Figures 5C, 5D, and

S5C). Notably, this reduction in size was associated with

differentiated ducts with limited proliferative capacity.

Consequently, KitW/W and ISCK-treated SMGs had reduced

numbers of proximal K5+ progenitors and a concomitant

increase in the number of K19+ duct cells (Figures 5A, 5B,

and 5E). Increased expression of Hbegf and Egfr (Figure 5E),

which drive ductal differentiation (Knox et al., 2010) and

reduce proliferation, further supported this finding (Figures

5E and S5B). In sum, loss of KIT signaling drives ductal dif-

ferentiation and reduces branching morphogenesis.

To confirm that the primary defect was due to loss of KIT

function in the epithelium, and not in the mesenchyme or

blood vessels, we cultured both KitW/W and ISCK-treated

wild-type epithelia. Both exhibited reduced growth

compared with the Kit+/+ and DMSO-treated controls (Fig-

ure 5F). As expected, they showed reduced staining for

KIT, CCND1, and K14; increased staining for K19; and
eports j Vol. 1 j 604–619 j December 17, 2013 j ª2013 The Authors 609



Figure 4. Combined KIT and FGFR2b Signaling Selectively Expands the Distal KIT+K14+SOX10+ Progenitors
(A) E13 endbud stained for KIT, K14, K8, K5, or K19. Pink cells coexpress K14 and K8 or K5 and K19. Images are 1 mm laser scanning
confocal microscopy (LSCM) sections. Scale bar: 20 mm.

(legend continued on next page)
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reduced expression of Ccnd1, Sox10, Etv4, Etv5, and Myc

(Figures 5G and 5H). We conclude that reduced epithelial

branching in KitW/Wand ISCK-treated glands was primarily

due to reduced KIT signaling in the epithelium.

We further evaluatedwhether combined KITand FGFR2b

signaling has a conserved role in other organs that require

FGFR2b, such as the lung. The lung, limb, kidney, liver, and

pancreas express transcripts for Kit and Kitl (Figure S5D). At

early stages (E10–E12), both lung epithelia and mesen-

chyme expressed Kit mRNA and protein as determined by

qPCR, in situ analysis, and immunostaining (Figures S5E–

S5G). Lung KIT+ cells are proliferative (CCND1+), express

the progenitor marker SOX9 (Lu et al., 2008), and are

located in FGFR2b+ and inhibitor of DNA binding 2

(ID2)+ endbuds (Rawlins et al., 2009). However, in E14

lung epithelia, KIT protein was not detectable and there

was reduced Kit expression compared with earlier stages

(Figures S5E and S5G). Similar to the case with SMGs, the

loss of KIT signaling in E13 KitW/W lungs resulted in

�40% smaller lungs, and there was reduced branching

morphogenesis in E11 lungs cultured with ISCK for 48 hr

(Figures S5H and S5I). This correlated with a reduction in

expression of TFs (Id2, Sox9, Myc, Etv4, and Etv5) in lung

endbuds (Figure S5J). Furthermore, there was reduced

expression of proliferation (Ccnd1) and neuroendocrine

cell markers (Sv2b and Calca), suggesting that KIT signaling

may also impact these cell types. The primary defect in lung

branching was also due to reduced KIT signaling in the

epithelia, as shown by treating E10 lung epithelia with

ISCK (Figure S5K). In gain-of function experiments with

lung epithelia, SCF alone did not affect proliferation (Fig-

ure S5L), but altered TF gene expression when combined

with FGF10. These data suggest that KIT and FGFR2b

signaling expands progenitors by regulating a cassette of

TFs in both SMGs and lungs.

Distal KIT+ Progenitors Communicate with the

Neuronal Niche toMaintain Proximal Progenitors and

Coordinate Ductal Architecture

Since a loss of KIT signaling depletes both distal and prox-

imal progenitors, and proximal progenitors aremaintained
(B) Lineage tracing of K14 in P1 SMG from a K14Cre x RosamTmG mouse.
K14 cells (Tomato). Images are 2 mm LSCM sections. Scale bar, 20 mm
(C) FACS analysis of K5, K14, and K19 cells in an epithelial KIT+K8+ c
(D) Staining of K14, KIT, SOX10, p63, and K19 in epithelia cultured f
(E) FACS analysis of KIT, K14, SOX10, K19, ECAD, and Ki67 in E13 SM
biological samples.
(F) FACS analysis of K14-, K5-, and K19-expressing cells in the epit
FGF10�/+ SCF. Data are mean ± SEM; n = 3 biological samples.
(G) E13 SMGs cultured for 72 hr in FGF10�/+ SCF were stained for K14,
LSCM sections. Scale bar, 20 mm.
See also Figure S4.
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by innervation (Knox et al., 2010), we hypothesized that

communication occurs between these distinct progenitors

via the neuronal niche. To test this, we analyzed the

parasympathetic innervation in KitW/W and ISCK-treated

SMGs. In both situations, we observed defects in epithelial

innervation and reduced nerve function (Figure 6A). There

was reduced defasciculation (arrowhead), such that fewer

but wider nerve bundles extended toward the endbuds.

Nerves also contained fewer varicosities (Figure 6A, middle

panels), which release neurotransmitters such as acetylcho-

line. Loss of neuronal function in KitW/W and ISCK-treated

SMGs was confirmed by measuring reduced expression of

Tubb3 (an axonal marker), Gfra2 (a parasympathetic

marker), and markers of neuronal acetylcholine function

(vesicular acetylcholine transporter [Slc18a3 or Vacht] and

choline acetyltransferase [Chat]; Figure 6B). Similar reduc-

tions of innervation and similar trends in the reduction

of neuronal function were observed when KIT signaling

was inhibited with ISCK at later stages of development

after branching morphogenesis had occurred (Figures S6A

and S6B). Washout of ISCK resulted in reinnervation,

continued branching morphogenesis, and increased

expression of genes associatedwith neuronal function (Fig-

ures S6B and S6C). These data suggest that maintenance of

epithelial-neuronal communication requires KIT signaling.

To confirm that KIT signaling in KIT+ mesenchymal or

endothelial cells did not influence nerve defasciculation

and proximal K5+ progenitors, we recombined isolated

epithelia from either KitWW or KitWW;K5Venus mice with

control (Kit+/+) mesenchyme, which contains endothelial

and neuronal cells. Recombined SMGs had reduced

epithelial endbud growth and innervation (Figures 6C

and S6D), and depletion of K5+ progenitors occurred in

the KitWW;K5Venus SMGs (Figure S6E) as compared with

control. Taken together, these data confirm that KIT

signaling in distal epithelial progenitors is essential for

functional innervation and maintenance of proximal K5+

progenitors.

Since loss of KIT signaling affects K5+ proximal progeni-

tors indirectly via the nerves, we predicted that we could

rescue the K5+ cells from ISCK treatment with CCh and
K14 progeny cells (GFP), endogenous K14 (red and yellow), and non-
.
ell population of E13 SMGs. Mean ± SEM; n > 3 biological samples.
or 24 hr in FGF10�/+ SCF. Scale bar, 20 mm.
Gs cultured for 72 hr in FGF10�/+ SCF. Data are mean ± SEM; n > 3

helial K8+KIT+ cell population in E13 SMGs cultured for 72 hr in

SOX10, and K19, or KIT, ECAD, and Perlecan (PLN). Images are 1 mm
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Figure 5. Loss of Epithelial KIT Signaling Reduces Branching Morphogenesis by Depleting Both K14+ and K5+ Progenitors
(A) Staining for K14, K5, and K19 in E14 SMG endbuds from Kit+/+ and KitW/Wmice or E13 SMGs cultured for 72 hr with DMSO or ISCK. Images
are 1 mm LSCM sections. Scale bar, 20 mm.
(B) FACS analysis of KIT, K14, SOX10, K5, K19, Ki67, and ECAD in E13 SMGs cultured with DMSO (Cont) or ISCK. Data are mean ± SEM; n > 3
biological samples.
(C) E14 and E13 SMGs from Kit+/+, KitW/+, and KitW/W embryos cultured for 24 hr, and E13 SMGs cultured in DMSO (Control) or ISCK for 72 hr.
Scale bar, 200 mm.
(D) Endbud number from (C). Data are normalized to 0 hr and E14 Kit+/+ or Control. Unpaired t test, ***p < 0.01, ISCK versus DMSO, KitW/+

and KitW/W versus Kit+/+, and E13 versus KitW/W. Unpaired t test, ***p < 0.01; n > 3 biological samples.

(legend continued on next page)
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HBEGF, which maintain K5+ progenitors (Knox et al.,

2010). The addition of CCh and HBEGF to ISCK-treated

SMGs maintained K5+ cells, but K14+ proximal progeni-

tors were not rescued (Figures 6D and S6F). There was

also no increase in branchingmorphogenesis or expression

ofKrt14,Kit, and Sox10 (Figure S6F). These data suggest that

coordination of the organ’s architecture requires KIT-medi-

ated expansion of K14+ distal progenitors.

We then hypothesized that KIT+ cells secrete neurotro-

phic factors that promote innervation and neuronal

function. We recently identified that neurturin (NRTN) is

produced by SMG epithelium and is important for

neuronal survival (Knox et al., 2013). KitW/W and ISCK-

treated SMGs showed reduced Nrtn expression compared

with controls (Figure 6B). Furthermore, FACS-sorted

epithelial KIT+FGFR2b+ cells from E13 SMGs had 3-fold

more Nrtn expression than KIT� cells (Figure S6G). In

addition, we confirmed that this occurred both in KitW/W

lungs and in control E11 lungs treated with ISCK, in which

we also observed reduced innervation and varicosities

(Figure S6H). Importantly, in both situations there was

reduced Nrtn, Tubb3, and Vacht expression (Figure S6H).

There was also reduced Gfra2 in KitW/W lungs and reduced

Chat expression with ISCK treatment. Thus, the reduction

in neuronal gene expression is likely secondary to the

reduction in NRTN. We conclude that the production

of neurotrophic factors by distal KIT+ progenitors is a

conserved mechanism to support the neuronal niche dur-

ing organogenesis.

KIT Signaling in a Rare Population of Adult

KIT+FGFR2b+ Progenitors Maintains Epithelial-

Neuronal Communication during Homeostasis

Since adult SMG epithelial KIT+ cells (Lombaert et al.,

2008) and lung KIT+ cells (Kajstura et al., 2011) were used

for regeneration, we sought to determine whether our

findings from organogenesis were conserved during adult

tissue homeostasis. Immunostaining of the adult SMG

revealed that KIT+ cells were localized in intercalated ducts

(IDs; Figure 7A), which harbor progenitor cells based on

label-retaining assays (Man et al., 2001) and are in close

proximity to differentiated Aquaporin5+ acinar cells

(Figure 7B). Adult mouse lungs exhibited abundant
(E) qPCR analysis of E14 Kit+/+ and KitW/W SMGs, and SMGs cultured for 7
or Control (dotted line), respectively, and Rps29. Unpaired t test, *p
(F) Isolated KitW/W epithelia and E13 epithelia treated with ISCK for 4
Scale bar, 20 mm.
(G) Isolated epithelia cultured with ISCK for 48 hr have reduced stainin
of 1 mm section through endbud.
(H) Gene-expression profile of Kit+/+ and KitW/W or DMSO and ISCK-trea
Rps29. Unpaired t test, *p < 0.05, **p < 0.01, ***p < 0.001; n = 3 b
See also Figure S5.
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KIT+Vimentin+ or KIT+CD31+ blood vessels, with only

rare epithelial KIT+ECAD+ or K18+ cells detected (Fig-

ure S7A). Similar to what was observed during organogen-

esis, adult SMG KIT+ progenitors were proliferative

(CCND1+) (Figures 7C and 7F) and expressed FGFR2b on

their cell membrane (Figures 7D and 7F). To compare their

expression with that of embryonic KIT+ cells, we FACS

sorted adult SMG epithelial LIN-EPCAM+KIT+FGFR2b+

cells, termed KIT+FGFR2b+. FGFR2b was expressed on

fewer KIT+ cells in the adult SMG (23% ± 3%, green peak;

Figure 7E) compared with KIT+ cells in E13 SMGs (90% ±

4%, green peak; Figure 7E). Since KIT+ cells account for

�3% of epithelial cells in the adult gland (Lombaert et al.,

2008), adult KIT+FGFR2b+ cells are a rare population of

0.6% ± 0.2%. Intriguingly, qPCR analysis of adult

KIT+FGFR2b+ sorted cells revealed a striking similarity to

embryonic KIT+ progenitors, with Etv4, Sox10, Ccdn1,

and Nrtn being highly expressed compared with

KIT+FGFR2b� cells (Figure 7F). Therefore, we predicted

that KIT and FGFR2b signaling in adult ID epithelial cells

might also maintain communication with nerves. Since

KitW/W is embryonic lethal, we cultured adult wild-type

SMG explants for 3 days in the presence of ISCK. As pre-

dicted, neuronal innervation was affected (Figure 7G) and

K5 and K14 staining was reduced along with an increase

in ductal K19+ cells (Figure 7H). Accordingly, ISCK reduced

expression of Tubb3, Krt5, Krt14, Kit, and Ccnd1 (Figure 7J).

Conversely, adding FGF10 and SCF increased cell prolifera-

tion and Ccnd1 (Figures 7I and 7J). Taken together, these

data indicate that during organ homeostasis, KIT signaling

also maintains the ductal architecture via communication

among multiple epithelial progenitors and their niches.

Finally, we confirmed that a similar KIT+FGFR2b+ cell

population occurs in human salivary glands (Figure 7K).

Human SMG KIT+ cells are located in IDs and excretory

ducts (EDs). Although many KIT+ cells expressed SOX10

(Figure S7B), only a rare population of KIT+ cells coex-

pressed FGFR2 (Figure 7K). Surprisingly, we also detected

KIT expression on acinar cells, which may make them

potentially responsive to KIT signaling as well, although

they were not FGFR2+. The working model presented in

Figure 7L shows that mesenchymal-derived SCF and

FGF10 expand KIT+FGFR2b+ distal progenitors that
2 hr with DMSO (Control) or ISCK. Data were normalized to E14 Kit+/+

< 0.05, **p < 0.01, ***p < 0.001; n = 3 biological samples.
8 hr undergo less epithelial morphogenesis than control epithelia.

g for KIT, CCND1, and K14, and increased K19 staining. LCSM image

ted epithelia. Data were normalized to control (DMSO or Kit+/+) and
iological samples.
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Figure 6. KIT Signaling in Distal Epithelial Progenitors Is Essential for Epithelial-Neuronal Communication and Maintenance of
Proximal K5+ Progenitors
(A) Staining for nerves (TUBB3) and epithelium (PNA) in E14 Kit+/+ and KitW/W SMGs and E13 SMGs cultured for 72 hr with
DMSO (Control) or ISCK. White box in upper panels is shown in middle panels. Arrowheads represent axons, arrows indicate varicosities.
Scale bars, 200 mm (upper and lower panels) and 20 mm (middle panel). Images are 1 mm LSCM sections. Graphs show nerve
area (area of nerves/area of epithelia) and varicosities (number of varicosities per area of TUBB3). Mean ± SEM. Unpaired t test,
**p < 0.05.
(B) qPCR analysis of genes that are markers of neuronal function in E14 Kit+/+ and KitW/W SMGs, and in E13 SMGs cultured for 72 hr with
DMSO (Control) or ISCK. Data were normalized to Control (dotted line) or E14 Kit+/+, respectively, and Rps29. Unpaired t test, *p < 0.05,
**p < 0.01, ***p < 0.001; n = 3 biological samples.

(legend continued on next page)
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coordinate organ architecture by establishing communica-

tion between multiple niches and proximal progenitors.
DISCUSSION

Here, we propose that combined KIT and FGFR2b signaling

regulates epithelial progenitor expansion. We identify

an interaction between KIT and FGFR2b signaling path-

ways that converges to upregulate a conserved group of

FGFR2b-dependent TFs and expand distal progenitors.

These progenitors further communicate with the neuronal

niche to direct proximal progenitors to form ducts. These

interactions are maintained during adult organ homeosta-

sis, and exist in human organs. Our findings may have

implications for regenerative medicine because they

demonstrate that both KIT and FGFR2b signaling and

communication among multiple cell types are necessary

for organogenesis.

We propose that a similar conserved mechanism occurs

in other organs, because FGFR2b signaling is required to

initiate development of mammary, pituitary, and thyroid

glands, as well as the kidney, pancreas, and prostate (Lin

et al., 2007; Mailleux et al., 2002; Ohuchi et al., 2000).

Similarly, KIT is expressed in these organs and is essential

for kidney and prostate development (La Rosa et al., 2008;

Leong et al., 2008; Li et al., 2007; Schmidt-Ott et al., 2006;

Ulivi et al., 2004). Although previous studies have shown

that FGFR2b signaling induces progenitor survival and

proliferation (Bhushan et al., 2001; Ohuchi et al., 2000),

we now demonstrate that it is a key upstream driver that

induces distal KIT+ progenitor expansion. FGFR2b

signaling achieves this by upregulating the KIT pathway

to maintain KIT+-responsive progenitors. This is a critical

event because combined KIT and FGFR2b signaling path-

ways converge at the transcriptional level to upregulate

the expression of a conserved cassette of FGFR2b-depen-

dent TFs in KIT+ progenitors. Distal progenitors of other

organs, such as the pancreas (Kobberup et al., 2007) and

limb (Zhang et al., 2009), express ETV4 and ETV5, which

are part of this conserved TF cassette. Our experiments

with L6 rat myoblasts also suggest that conserved TFs are

upregulated when KIT and FGFR2b are overexpressed in

cells where they are not normally present, and that for

each cell type additional TFs may provide a cell-type-spe-

cific response.
(C) Recombination of Kit+/+ or KitWW epithelia with Kit+/+mesenchyme
innervation. SMGs were stained for nerves (TUBB3) and ECAD. White bo
respectively.
(D) Staining of K5, K14, and K19 in endbuds from SMGs cultured with D
sections. Scale bar, 20 mm.
See also Figure S6.
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We also propose that the KIT/FGFR2b pathway likely in-

tegrates with other signaling pathways to direct progenitor

expansion. For example,WNTsignaling has been proposed

to be a master regulator of lung development (Rajagopal

et al., 2008). Yet, our data suggest that WNT and KIT/

FGFR2b can affect distal progenitors in different ways.

The specific loss of WNT7b did not alter the number of

Sox9 or SOX9+ cells in lungs, whereas loss of KIT signaling

reduced Sox9 in lung endbuds. In contrast to WNT

signaling, KITdoesnot directly influenceCCND1-mediated

proliferation, and although lung development is arrested in

FGFR2b�/� mice, it is only reduced in b-Catenin�/� mice

(Mucenski et al., 2003; Shu et al., 2005). Itwill be interesting

to determine whether the neuronal niche is affected in

WNT-depleted mice.

Prior to this work, we did not fully understand how

epithelial progenitors communicate with their surround-

ing niche during organogenesis (Bryant and Mostov,

2008; Hogan, 1999). Here, we propose that a key mecha-

nism is distal progenitor expansion, since these cells pro-

duce critical neurotrophic signals to communicate with

the neuronal niche to regulate proximal progenitors. Neu-

rturin is also produced by distal progenitors in the kidney

(Davies et al., 1999) and is found in the prostate, pituitary

gland, and pancreas (Golden et al., 1999). It is not known

whether KIT+ cells secrete neurotrophic factors in these

organs.

Previous studies have shown that paracrine and auto-

crine morphogenic gradients control branching morpho-

genesis, and a number of models propose the existence of

iterative positive and negative unidirectional cues between

the epithelium and mesenchyme or within the epithelial

lineage (Bryant and Mostov, 2008; Gjorevski and Nelson,

2011; Hogan, 1999; Hsu and Fuchs, 2012). These studies

provided valuable insights into organogenesis, but focused

on communication from a single cell type. Progenitors

in vivo must interpret signals from multiple cell types in

their surrounding microenvironment during organogen-

esis. Our work has implications for regenerative medicine

and the bioengineering of tissues, which may require mul-

tiple progenitor cell types to generate branching organs.

Also, our findings will inform efforts to expand epithelial

progenitors in vitro, which will be critical in clinical set-

tings where small numbers of progenitors from biopsies

could be expanded with reagents that target FGFR2b, KIT,

and the neuronal niche. We propose that using progenitor
cultured for 72 hr shows that loss of epithelial KIT signaling reduces
x in upper panel is shown in lower panel. Scale bars, 200 and 20 mm,

MSO (Control), ISCK, and/or CCh and HBEGF. Images are 1 mm LCSM
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transplants with factors that preserve nerves will improve

regeneration of damaged organs. For instance, nerves

may facilitate the production of insulin (Rossi et al.,

2005) after grafting of beta-progenitors to treat diabetic

neuropathy and pancreatitis (Melton, 2011), or enhance

lung repair after progenitor transplants (Rock and Hogan,

2011).

It has been proposed that tumors and organs are similar

in terms of the complexity of cell types, microenviron-

ments, and signaling networks involved in these compo-

nents (Hanahan and Weinberg, 2011). The clonal nature

of cancer means that targeting a single RTK may provide

selective pressure for resistant tumor clones (Nik-Zainal

et al., 2012). It is also possible that an activating KIT or

FGFR2 mutation in an FGFR2b- or KIT-expressing tumor,

respectively, may expand a dominant tumor clone and

amplify downstream responses. Thus, by targeting KIT

and FGFR2b, and/or the signals between the progenitors

and their niches, wemay be able to target tumorsmore effi-

ciently. In conclusion, a clear resolution of the signaling

pathways and communication among multiple cell types

that are representative of the endogenous microenviron-

ment during organogenesis and homeostasis provides

insight into tumor biology and a framework to direct ther-

apeutic organ regeneration.
EXPERIMENTAL PROCEDURES

Mouse Lines, Breeding, Genotyping, and Lineage

Tracing
All protocols involving mice (Supplemental Experimental Proce-

dures) were approved by the NIH ACUC. Culture of Mo7e and L6

cells, and staining of human biopsies are described in the Supple-

mental Experimental Procedures.
Figure 7. KIT Signaling Regulates Epithelial-Neuronal Commu
KIT+FGFR2b+ Cells that Are Present in Human SMGs
(A–D) Staining of KIT, ECAD, PLN, Aquaporin 5 (AQP5), CCND1, FGFR2b,
(a). Scale bar, 10 mm. Graph represents the protein intensity of KIT a
(E) Histogram of FACS analysis showing the total number of FGFR2b+ c
adult SMGs. Data are mean ± SEM; n > 3 biological samples. Gray are
(F) qPCR analysis of FACS-sorted adult SMG epithelial LIN-EPCAM+KIT+
to KIT-FGFR2b� cells and Rps29. Unpaired t test, *p < 0.05, **p < 0
(G and H) Adult SMG explants cultured for 3 days with ISCK. Staining o
in (H). Images are 10 mm LCSM sections. Scale bars: 20 mm.
(I) Adult SMG explants cultured for 3 days ± FGF10+SCF were stained fo
(J) qPCR analysis of adult SMG explants cultured in basal media (Con
Control or DMSO, and Rps29. Unpaired t test, *p < 0.05, **p < 0.01,
(K) Staining of KIT, ECAD, DAPI, and FGFR2 in human SMGs. Image
striated duct.
(L) Working model. Multicellular communication initiated by combine
during organogenesis and adult homeostasis.
See also Figure S7.
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Ex Vivo Organ Culture
We performed fetal and adult intact organ and mesenchyme-free

epithelia culture of SMG or lung in the presence of different

growth factors and/or inhibitors as described in the Supplemental

Experimental Procedures.

qPCR
Real-time qPCRwas performed as previously described (Knox et al.,

2013). cDNAs were generated and amplified to determine fold

changes in expression by normalizing to the housekeeping gene

Rps29. The generation of single amplicon products was confirmed

by melt curve analysis.

Immunofluorescence Analysis and FACS
We performed whole-mount immunofluorescence as described in

the Supplemental Experimental Procedures. For FACS, single-cell

suspensions of SMGs were analyzed on either a BD Calibur or an

LSRII, and sorted on a BD Aria sorter (see Supplemental Experi-

mental Procedures). Negative cell populations were used as

controls.

In Situ Hybridization
Digoxigen-11-UTP-labeled single-stranded RNA probes were pre-

pared using the DIG RNA labeling kit (Roche Applied Science)

according to the manufacturer’s instructions.

Western Blot Analysis
Protein lysates were resolved on Tris gels, transferred to mem-

branes, probed with antibodies, and visualized with West Dura

reagent as described in detail in the Supplemental Experimental

Procedures.

Statistical Analysis
Experiments were performed with at least three biological repli-

cates. To determine significance between two groups, comparisons

were made using Student’s t test. Analysis of multiple groups was
nication during Homeostasis in a Rare Population of Adult

and DAPI in adult mouse SMGs. Arrows indicate IDs near acinar cells
nd FGFR2b through an ID cell. BF, bright field.
ells within the epithelial (EPCAM+, epi) KIT+ population in E13 and
a, KIT+FGFR2b� cells; green area, KIT+FGFR2b+ cells.
FGFR2b+ and LIN-EPCAM+KIT-FGFR2b� cells. Data were normalized
.01; n = 3 biological samples.
f ECAD, nerves (TUBB3), and DAPI in (G), and K14, K19, K5 and DAPI

r CCND1 and DAPI. Images are 1 mm LSCM section. Scale bar, 20 mm.
trol), FGF10+SCF, DMSO, or ISCK for 72 hr. Data were normalized to
***p < 0.001; n = 3 biological samples.
s are 1 mm LSCM section. Scale bars, 20 mm. a, acinar cells; SD,

d KIT and FGFR2b signaling establishes the branching architecture
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performed by one-way ANOVA. For statistical tests, p < 0.05 was

considered statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and seven figures and can be found with this article

online at http://dx.doi.org/10.1016/j.stemcr.2013.10.013.
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