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Abstract

In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel
with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy
Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature
for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction
factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other
methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable
for use to solve strongly nonlinear problems in heat transfer phenomena.
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Introduction

In recent years a great deal of focus has been devoted to non-

Newtonian fluid flow and heat transfer because of various

applications in various fields of science and engineering. In this

regard there has been increased interest in flow and heat transfer

problem involving viscoelastic fluids. The mathematical modeling

of channel flow of viscoelastic fluid and related heat transfer

problems (e.g. hot rolling, extrusion of plastic) have been the focus

of considerable research works [1–9]. Obtaining velocity and

temperature distribution from the mathematical model in an

efficient and reliable manner is highly important.

The flow through a porous medium has many applications in

science and engineering. For instance in ground water hydrology,

reservoir engineering, petroleum engineering, chemical engineer-

ing, chemical reactors to agriculture irrigation and drainage and

the recovery of crude oil from the pores of the reservoir rocks [10–

12].

In particular, the characteristics of heat transfer in the case of

porous medium is of high importance due to its wide range

applications in for example, heat exchangers, transport of heated

or cooled fluids, micro-electronic cooling, chemical processing

equipment, and porous burners, etc. Many researchers have

investigated such phenomena. Example include Trimis [13] who

has shown that porous media can be very useful within many

applications in energy and heat-engineering and Bassam and Abu-

Hijleh [14] who have examined heat transfer from a 2D backward

facing step with different porous segments and analyzed the effect

of these layers on local and overall Nusselt numbers. Nield and

Kuznetsov [15] have analyzed the interaction of two porous layers

with the same porosity and permeability but different thermal

conductivity effects in forced convection and Nemoda et al. [16]

studied a porous burner and surface burner numerically with

different heat conductivity and power of burners. Pilevne and

Aydin [17] have investigated forced convection in axisymmetric

channel with different porous layers.

Many analytical methods like homotopy perturbation method

(HPM) [18–19], Adomian decomposition method (ADM) [20–21],

homotopy analysis method (HAM) [22] have been successfully

applied for different heat transfer phenomena.

Optimal homotopy asymptotic method (OHAM) is an approx-

imate (or semi) analytical technique that is straightforward to use

and does not require the existence of any small or large parameter.

The basic idea of optimal homotopy asymptotic method was

initially introduced by Marinca and Herisanu [23]. OHAM

reduces the size of the computational domain and can be applied

to wide variety of problems. OHAM is a consistent analytical tool

and it has already been successfully applied to a number of

nonlinear differential equations arising in science and engineering.

OHAM has been used to study steady flow of a fourth-grade fluid

flow through a porous medium [23], oscillators with discontinuities

and fractional-power restoring force [24], periodic solutions for the

motion of a particle on a rotating parabola [25], thin film flow of a

fourth-grade fluid [26], nonlinear heat transfer equations [27], and

nonlinear problem in elasticity [28].

By means of OHAM, Islam et al. [29] investigated Couette and

Poiseuille flows of a third grade fluid with heat transfer analysis,

Idrees et al. [30] analyzed the KDV equation and Mohsen et al.

[31] studied viscous flow in a semi porous channel with uniform

magnetic field. Ghoreishi et al. [32] provided a comparative study

for nth-order integro-differential equations, Mabood et al. [33,34]

investigated heat transfer in hollow sphere and analyzed boundary
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layer flow, Khan et al. [35] studied thin film flow in porous

medium. Babaelahi et al.[36] examined the viscoelastic boundary

layer fluid flow over a stretching sheet.

In this paper, optimal homotopy asymptotic method is utilized

in order to study the flow and heat transfer of a viscoelastic fluid in

an axisymmetric channel with porous wall and the influence of

various parameters on the dimensionless velocity and temperature.

Problem Formulation
We consider the phenomena of flow and heat transfer of a

viscoelastic fluid in a channel. The schematic diagram is presented

in Fig. 1. The x-axis is parallel to the surface of disc and z-axis is

normal on it. The porous disc of the channel is placed at Y = +H.

The wall that coincides with x-axis is externally heated and other

perforated wall viscoelastic fluid is injected consistently in a way to

keep cool the heated surface. In this regard, we follow the

approach of [9].

We assume that the flow field is stagnation flow with injection.

The flow of viscoelastic fluid is considered to be steady,

axisymmetric and two-dimensional. The governing equations for

the flow and heat transfer are [8]:
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The boundary conditions for Eqs. (1) – (3) are:

ur~uz~0, T~Tw as z ~ 0,

ur~0, uz~{V , T~T0 as z ~ L:

�
ð4Þ

Where ur, uz are the velocity components along in r andz{

directions, respectively. trr,trz,tzr,tzz be the components of stress

matrix, P,r,C,T ,k and W are pressure, density, specific heat,

temperature, thermal conductivity and dissipation function

respectively, and the dissipation function and stress components

are defined as [8]:

W~trr
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trr~w1Arrzw2A2
rrzw3Brr,

tzz~w1Azzzw2A2
zzzw3Bzz,

thh~w1Ahhzw2A2
hhzw3Bhh,

trz~w1Arzzw2A2
rzzw3Brz:

8>>><
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The similarity solution for Eqs. (1) – (3) with boundary

conditions Eq. (4), the dimensionless similarity variables [8]:

Figure 1. Schematic diagram of the problem.
doi:10.1371/journal.pone.0083581.g001

Table 1. Comparison of f (g) values using different methods.

g Re~1, K1~0:1

OHAM (Present results) NM [9] HAM [9] % error HAM % error OHAM

0.0 0 0 0 0 0

0.1 0.3021760 0.3021792 0.03021752 0.00132371 0.00105897

0.2 0.11348615 0.11348995 0.11348557 0.00385937 0.00334831

0.3 0.23672114 0.23672600 0.23671190 0.00595625 0.00205300

0.4 0.38448353 0.38449935 0.38448227 0.00444214 0.00411444

0.5 0.54036989 0.54036906 0.54037008 0.00018876 0.00015359

0.6 0.68889001 0.68889398 0.68891470 0.00203772 0.00057628

0.7 0.81730234 0.81729920 0.81731584 0.00203597 0.00038419

0.8 0.91604548 0.91604363 0.91604691 0.00035806 0.00020195

0.9 0.97845326 0.97845350 0.97845308 0.00004292 0.00001242

1.0 1 1 1 0 0

doi:10.1371/journal.pone.0083581.t001
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g~
z

L
, f gð Þ~ y

Vr2
, ur~

Vr

L
f 0 gð Þ,

uz~{2Vf gð Þ, hn gð Þ~ T{T0P
n~0

Cn
r

L

� �n ,
ð7Þ

where prime denotes differentiation with respect to g.

Using Eq. (7) and eliminating the pressure term, Eqs. (1) – (3)

reduced to the following ordinary differential equations or

similarity equations.

{2ff 000~
f 0000

Re
{K1 4f 00f 000z2f 0f 0000ð Þ

{K2 4f 00f 000z2f 0f 0000z2ff 00000ð Þ,
ð8Þ

nf 0h{2f h0~
1

Pr :Re
h00, n~0,2,3,4,:::ð Þ: ð9Þ

where K1~
w2

rL2
,K2~

w3

rL2
are cross viscosity parameters, Re is

the Reynolds number and Pr is the Prandtl number. Using Eq. (7)

the boundary conditions (Eq. (4)) can be transformed for the

considered problem are:

f 0ð Þ~ f 0 0ð Þ~ f 1ð Þ{1~f 0 1ð Þ~0 ð10Þ

h 0ð Þ~1, h 1ð Þ~0 ð11Þ

The above system of Eqs. (8) – (9) with boundary conditions

Eqs. (10) – (11) were studied by Kurtcebe and Erim [8] for K2 = 0.

Table 2. Comparison of h(g)values using different methods.

g Re~1, K1~0:1, Pr ~1, n~2

OHAM (Present results) NM [9] HAM [9] % error HAM % error OHAM

0.0 1 1 1 0 0

0.1 0.82706311 0.82706323 0.82706690 0.0004437 0.0000145

0.2 0.66453625 0.66453256 0.66453855 0.0009013 0.0005552

0.3 0.51925531 0.51925353 0.51925913 0.0010784 0.0003428

0.4 0.39448602 0.39448392 0.39448742 0.0008872 0.0005323

0.5 0.29052119 0.29051950 0.29052246 0.0010188 0.0005817

0.6 0.20561711 0.20561368 0.20561841 0.0023004 0.0016681

0.7 0.13697446 0.13697040 0.13697661 0.0045338 0.0029641

0.8 0.08156221 0.08156009 0.08156599 0.0072339 0.0025993

0.9 0.03663756 0.03663979 0.03664378 0.0108898 0.0060862

1.0 0 0 0 0 0

doi:10.1371/journal.pone.0083581.t002

Figure 2. Effects of K1on dimensionless velocity profile for different values of Reynolds number.
doi:10.1371/journal.pone.0083581.g002
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In this paper, we reconsider these equations as:

f 0000z2Reff 000{K1Re 4f 00f 000z2f 0f 0000ð Þ~0, ð12Þ

h00{ Pr :Re nf 0h{2f h0ð Þ~0, ð13Þ

and solve by means of optimal homotopy asymptotic method.

Quantities of physical interest are the local friction

factor, and the local Nusselt number. Physically,

Cfr~
2m

rV2

Lur

Lz

� �
z~0

~
2ffiffiffiffiffiffi
Re
p f 00 0ð Þ represents the friction factor,

and Nur~
hnL

k
~{

ffiffiffiffiffiffiffi
Re
p

h0 0ð Þ defines the heat transfer rate.

Basic Principles of OHAM
We review the basic principles of OHAM as expounded in [27–

28,34–35] and other papers in the following steps:

(i) Let us consider the following differential equation:

A w tð Þ½ �zh tð Þ~0, t[V, ð14Þ

where V is problem domain, A wð Þ~L wð ÞzN wð Þ, where L,
and N are linear and nonlinear operators respectively, w tð Þ is an

unknown function and h tð Þis a known function,

(ii) Construct an optimal homotopy equation as follows:

1{rð Þ L w t; rð Þð Þzh tð Þ½ �{H rð Þ A w t; rð Þð Þzh tð Þ½ �~0, ð15Þ

Figure 3. Variation of dimensionless temperature with transverse distance for different values of parameters.
doi:10.1371/journal.pone.0083581.g003

Figure 4. Variation of skin friction coefficient with Reynolds
number and different value of K1.
doi:10.1371/journal.pone.0083581.g004

Figure 5. Variation of heat transfer rates with Reynolds
number and different values of Pr.
doi:10.1371/journal.pone.0083581.g005
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where0ƒrƒ1 is an embedding parameter,H rð Þ~
Xs

t~1

rtCt is

an auxiliary function on which the convergence of the solution is

dependent. The auxiliary function H rð Þ serves also to adjust the

convergence domain as well as control the convergence region.

(iii) If w t; r,Cj


 �
is expanded in a Taylor’s series about r, the

following an approximate solution is obtained:

w t; r,Cj


 �
~w0 tð Þz

X?
t~1

wk t,Cj


 �
rt, j~1,2,3,::: ð16Þ

It has been observed by previous researchers that the

convergence of the series Eq. (16) depends upon

Cj , j ~1,2,:::ð Þ. If it is convergent then:

w~~w0 tð Þz
Xs

t~1

wk r, Cj


 �
, ð17Þ

is obtained.

(iv) Substituting Eq. (17) in Eq. (14), results in the following

residual:

R t; Cj


 �
~L w~ t; Cj


 �
 �
zh tð ÞzN w~ t; Cj


 �
 �
: ð18Þ

If R t; Cj


 �
~0, thenw~ will be the exact solution although for

nonlinear problems this will not usually be the case. For

determining Cj , j ~1,2,:::ð Þ methods such as Galerkin’s method

or the method of least squares can be utilized.

(v) Substitution of these constants into Eq. (17) results in the

approximate solution.

Solution of the problem via OHAM
According to the OHAM, Eqs. (12) – (13) can be written as:

1{pð Þ f 0000ð Þ{H pð Þ

f 0000z2Re ff 000{K1Re 4f 00f 000z2f 0f 0000ð Þð Þ~0,
ð19Þ

1{qð Þ h00ð Þ{G qð Þ h00{ Pr :Re nf 0h{2f h0ð Þð Þ~0: ð20Þ

where primes denote differentiation with respect to g.

We consider f ,h, H(p), and G(q) as follows:

f ~f0zpf1zp2f2,

h~h0zqh1zq2h2,

H(p)~pC1zp2C2,

G(q)~qC3zq2C4:

8>>><
>>>:

ð21Þ

Using Eq. (21) in Eqs. (19–20) and after simplification as well as

rearranging the terms based on the powers ofp and q, we obtain

zeroth, first, and second order problems are:

Zeroth order problem:

f
(4)

0 gð Þ~0,

h
(2)
0 gð Þ~0,

(
ð22Þ

with boundary conditions:

f0 0ð Þ~0, f
(1)

0 0ð Þ~0, f0 1ð Þ~1, f
(1)

0 1ð Þ~0,

h0 0ð Þ~1, h0 1ð Þ~0:

(
ð23Þ

Its solution is:

f0 gð Þ~3g2{2g3,

h0 gð Þ~1�g:

(
ð24Þ

First order problem:

f
(4)

1 g,C1ð Þ~C1 {24Re 3g2{2g3

 �

zK1Re 576g{288ð Þ

 �

,

h(2)
1 g,C3ð Þ~{C3 Pr Re n 6g{6g2


 �
1{gð Þ{4g3z6g2


 �
,

(
ð25Þ

with boundary conditions:

f1 0ð Þ~0, f
(1)

1 0ð Þ~0, f1 1ð Þ~0, f
(1)

1 1ð Þ~0,

h1 0ð Þ~0, h1 1ð Þ~0:

(
ð26Þ

Figure 6. Variation of heat transfer rates with Reynolds
number and different values of n.
doi:10.1371/journal.pone.0083581.g006
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Its solution is:

f1 g,C1ð Þ~{24C1Re
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420
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1
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C3PrRez

3
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� �
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8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð27Þ

and so on …

Set p~1, q~1, to obtain the three terms solution using

OHAM for dimensionless velocity and temperature profile as:

~ff g,C1,C2ð Þ~f0 gð Þzf1 g,C1ð Þzf2 g,C1,C2ð Þ,
~hh g,C3,C4ð Þ~h0 gð Þzh1 g,C3ð Þzh2 g,C3,C4ð Þ:

ð28Þ

The method of least squares is used to obtain the convergence-

control parameters C1, C2, C3, C4 in Eq. (28), i.e.

J C1,C2,:::,Cmð Þ~
ðb
a

R2 g,C1,C2,:::,Cmð Þ dg, ð29Þ

where R is the residual,

LJ

LC1
~

LJ

LC2
~:::~

LJ

LCm

~0: ð30Þ

In case of Re~1:5, Pr ~6, K1~0:1, n~2, then the values of

C1, C2, C3, C4 are given below: C1~� 0:5997362668,C2~

0:1418766522,C3~0:1778514446,C4~0:6537419068:

Results and Discussion

In this paper, we have successfully employed OHAM to obtain

the approximate analytical solutions of flow and heat transfer

problem for viscoelastic fluid in a channel with porous wall.

Various values of different controlling parameters for both

dimensionless velocity and temperature profiles are obtained.

The approximate analytical solution for dimensionless velocity and

temperature using OHAM are compared with those obtained by

HAM [9] and numerical shooting method [9] shown in Tables 1

and 2. These results indicate that OHAM is a feasible and efficient

technique for problems arising in heat transfer although more

Figure 7. Residual Error of dimensionless velocity and temperature profiles at Re~1:5, K1~0:01, Pr ~2, n~1.
doi:10.1371/journal.pone.0083581.g007

(27)
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studies need to be conducted. Percentage of error is calculated for

obtained OHAM solutions in Tables 1–2. The percentages reflect

that our solution is more accurate than HAM [9] solution.

The influence and effect of different parameters on velocity and

temperature are displayed in Figs. 2 and 3. In Figs 2(a) and (b), the

effect of parameters K1 and Re on the dimensionless velocity are

displayed while keeping fixed values of parameters n and Pr. It is

observed that the dimensionless velocity at the center of the

channel increases with an increase inK1. The dimensionless

velocity also increases with Reynolds number inside the channel.

In Fig. 3(a), the effects of Prand n on the dimensionless

temperature are displayed for different values of K1 and Re. It

is found that the dimensionless temperature decreases inside the

thermal boundary layer with increasing n and Pr. The effects of K1

on the dimensionless temperature are found to be negligible

whereas the dimensionless temperature decreases with an increase

in the Reynolds number. In Fig. 4 we present and highlight the

influence of Reynolds and cross viscosity parameter on skin-

friction factor. It is notice that skin-friction factor coefficient

increases linearly with an increase in Re and the opposite nature of

skin-friction factor can be observed with the increases in cross

viscosity parameter K1. The variation of the Nusselt number

(representing the dimensionless heat transfer rate at the surface) is

presented for different parameters in Figs. 5–6. Fig. 5 depicts the

behavior of heat transfer rates against Reynolds and Prandtl

numbers. A monotonic increase in heat transfer rate is observed

for increasing values in both parameters. Fig. 6 shows the heat

transfer rate against Reynolds and for different fluids according to

power law index nð Þ. The heat transfer rate increases with the

increase in power law index, which indicate that the non-

isothermal surface generate higher heat transfer rates. Finally, Fig.

7 shows the residual error for both dimensionless velocity and

temperature profiles.

Conclusion

In this paper, OHAM is successfully employed in order to

obtain an approximate solution for flow and heat transfer of

viscoelastic fluid in a channel. Effects of different controlling

parameters on dimensionless velocity, temperature, skin-friction as

well as Nusselt number are investigated. The present OHAM

results are compared with existing numerical and HAM result and

a good agreement is observed with both methods. These

comparisons show that OHAM is an effective technique for the

solution of nonlinear problems in heat transfer. We can draw the

following conclusion:

N The dimensionless temperature directly proportional to

Reynolds number

N The skin-friction factor increases monotonically with Reynolds

number

N Rate of heat transfer increases with increase in Prandtl number
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