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Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including
retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through
apoptosis, which is the most characterized form of programmed cell death. The caspase family of
cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD,
dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase
inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting
that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that
non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific
molecular machinery, such as those mediated by autophagy-related proteins and receptor-
interacting protein kinases, respectively. Here we summarize the current knowledge of cell death
signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases.
A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are
involved in photoreceptor cell death, and that combined targeting of these pathways may be an
effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.

1. Introduction
Photoreceptor cells die when they are physically separated from the underlying retinal
pigment epithelium (RPE) and choroidal vessels, which provide metabolic support to the
outer layers of the retina. Retinal detachment occurs in various retinal disorders, including
age-related macular degeneration (AMD) (Dunaief et al., 2002), diabetic retinopathy (Barber
et al., 1998), as well as rhegmatogenous, tractional, and exudative retinal detachment (RD)
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(Cook et al., 1995). Although surgery is carried out to reattach the retina, only two-fifths of
patients with rhegmatogenous RD involving the macula recover 20/40 or better vision
(Campo et al., 1999). In other conditions mentioned, sustained serous RD causes progressive
visual decline. Although various pathological changes occur in detached retina (Anderson et
al., 1981; Lewis et al., 1994; Jablonski et al., 2000), studies on experimental models and
human patient samples have shown that photoreceptor cell death is immediately induced as
early as 12 hours and peaks at around 2-3 days after RD (Cook et al., 1995; Hisatomi et al.,
2001; Arroyo et al., 2005). Retinal imaging by optical coherence tomography have
demonstrated that the microstructure of foveal photoreceptor cells is a critical factor
predicting better visual function in patients who received successful RD repair (Schocket et
al., 2006; Wakabayashi et al., 2009). These findings suggest that loss of photoreceptor cells
may be an important cause of vision loss after RD. Photoreceptor cell death also underlies
the pathology of other retinal disorders such as retinitis pigmentosa (RP) and AMD, and is
the basis for visual decline. Although the causes and clinical characteristic of each retinal
disorder differ, accumulating evidence suggests that some molecular pathways leading to
photoreceptor cell death appear to be shared by these diseases at leaset in part. Therefore,
identification of the mechanisms involved in photoreceptor cell death will be critical to
developing new treatment strategies for these retinal diseases associated with photoreceptor
cell loss. In the present review, we summarize the current knowledge of cell death
mechanisms and their roles in RD and other retinal disorders.

2. Classification of cell death: Apoptosis, autophagic cell death, and
necrosis
2.1. Morphological features

Apoptosis, autophagy, and necrosis are three major forms of cell death defined by
morphological appearance (Kroemer et al., 2009; Galluzzi et al., 2012). Schweichel and
Merker proposed this classification in an ultrastructural study of physiological cell death in
prenatal tissues. The morphological characteristics of each form of cell death are as follows:
Type I (apoptosis): condensation of the nucleus and cytoplasm, rounding-up of the cell,
reduction of cellular volume, and engulfment by resident phagocyte; Type II (autophagy):
formation of large inclusions (autophagosomes and autolysosomes) in the cytoplasm and
lack of condensation and fragmentation of cells; Type III (necrosis): swelling of the
cytoplasm and organelles, a gain in cell volume, plasma membrane rupture, and connections
with the extracellular cavity (Schweichel and Merker, 1973). Although there are some
exceptional criteria or nomenclature of cell death based on biochemical features, this basic
threefold classification is accepted and widely used in a number of literature from the 1970s
to date (Clarke, 1990).

2.2. Genetic/Biochemical features
In various species, cell death during normal development always appears in the same place
and at the same developmental stage. In 1960s, Lockshin and Williams published a set of
papers focused on “programmed cell death” based on their proposed theory that ‘the cells
that will die have been programmed to do so’ (Lockshin and Williams, 1965). Saunders
showed that the cells in the axillae of embryonic chicken wing, which would die later in
development, followed the same fate even when they were explanted in tissue culture
(Saunders, 1966). From these findings, researchers speculated that cell death is actively
regulated at the level of genetic transcription and translation. Indeed, by the late 1960s, it
was shown that physiological cell death requires RNA and protein synthesis for its execution
(Tata, 1966; Lockshin, 1969; Makman et al., 1971).
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In 1972, Kerr, Wyllie and Currie highlighted a specific form of cell death, for which they
coined the term apoptosis (Greek for “falling off), and suspected it as a general mechanism
of controlled dell deletion (Kerr et al., 1972). Using C. elegans as a model to study the
genetic basis of cell death, Ellis and Horvitz identified essential genes that control cell death
during development such as ced-3 (Ellis and Horvitz, 1986). Ced-3 gene was cloned by
Yuan, Horvitz and colleagues (Yuan et al., 1993), which led to the identification of
mammalian homologs of the ced-3 gene, namely the caspase family of cysteine proteases
(Miura et al., 1993; Li and Yuan, 2008). Accumulating evidence indicate that caspases are
essential for signal transduction and execution of apoptosis during development as well as in
certain diseases. However, it should be noted that caspases do not necessarily regulate all
forms of apoptosis. Some mitochondrial proteins such as apoptosis-inducing factor (AIF)
and endonuclease G were shown to induce apoptosis independently of caspases when they
were released from the mitochondria (Susin et al., 1999). Calpains, cathepsins or poly(ADP-
ribose) polymerases (PARPs) also trigger cell death in a caspase-independent manner
(Krantic et al., 2007). The detailed mechanisms of caspase-dependent and -independent
apoptosis and their roles in retinal degeneration are described later in this review.

Autophagy (Greek for “self-eating) is a process by which a cell’s own components, such as
macromolecules (e.g., proteins, lipids and nucleic acids) and organelles (e.g., mitochondria),
are degraded by the lysosome (Mizushima et al., 2008). Macroautophagy (hereafter referred
to autophagy) is the best-characterized autophagy pathway and involves the formation of
autophagosomes and autolysosomes. The autophagosome is a double- or multi-membrane
vacuole that sequesters cytoplasmic materials and fuses with lysosomes to form
autolysosomes, where its content is degraded. It is induced by nutrient starvation in order to
provide recycled energy and eliminate damaged organelles (Schworer and Mortimore,
1979). From the genetic screening of autophagy-defective mutants in yeast, Tsukada,
Ohsumi and colleagues discovered a set of autophagy-related (Atg) genes, most of which
have mammalian homologues (Tsukada and Ohsumi, 1993; Mizushima et al., 1998).
Although previous morphological studies identified accumulation of numerous
autophagosomes/autolysosomes in dying cells, the roles of autophagy, either promoting or
protecting against cell death, has been controversial. In specific circumstances, autophagy
appears to mediate cell death via excessive self-degradation (Yu et al., 2004). Nonetheless,
accumulating evidence has shown that autophagy is crucial for cell survival by regulating
the turnover of intracellular contents in normal and most pathological conditions
(Mizushima and Levine, 2010).

Although necrosis (Greek for “dead”) was traditionally thought to be an uncontrolled
process of cell death, it is now known to also have regulated components in certain
instances. This regulated type of necrosis was discovered from the extensive studies of death
receptor-induced cell death. Laster and colleagues observed that TNF-α caused not only
apoptosis but also necrosis depending on cell types (Laster et al., 1988). Intriguingly,
Vercammen and colleagues demonstrated that when death receptor-induced apoptosis is
suppressed by caspase inhibitors, murine L929 fibrosarcoma cells undergo an alternative
necrotic cell death (Vercammen et al., 1998a; Vercammen et al., 1998b). Twelve years later,
Holler and colleagues identified that this death receptor-induced necrosis is mediated by the
activation of receptor-interacting protein 1 (RIP1) (Holler et al., 2000). Furthermore, three
independent studies recently discovered that RIP3 is a crucial regulator of RIP1 kinase
activation and subsequent necrosis (Cho et al., 2009; He et al., 2009; Zhang et al., 2009a).
These advances in understanding the molecular basis of necrosis have revealed previously
unrecognized roles of necrosis in physiological and pathological processes, including retinal
degeneration (Vandenabeele et al., 2010). This RIP kinase-dependent regulated necrosis is
termed as ‘necroptosis’ or ‘programmed necrosis’ (Chan et al., 2003; Degterev et al., 2005).
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However, in order to avoid confusion, we here express it descriptively as ‘RIP kinase-
dependent necrosis’ according to recent studies (Green et al., 2011; Oberst et al., 2011).

2.3. Methods of detection and classification
Because apoptosis, autophagy, and necrosis were originally defined based on their
morphological appearance (particularly in ultrastructural studies), it is evident that
morphological analysis using transmission electron microscopy (TEM) is one of the most
sensitive and direct methods to classify cell death. Although TEM has been used less
frequently in the laboratory over the past decades, it is still useful to know what kind of cell
death is involved in disease processes (Eskelinen, 2008). However, limitations exist in a
morphological study by itself. First, morphological features do not indicate the involvement
of specific molecules among multiple death signaling pathways, albeit they may suggest a
link to certain pathways. Second, the information for functional aspects of cell death is
unavailable from morphological studies.

Several biochemical methods to detect cell death have been developed. Cell death can be
easily labeled and quantified by these methods; however, it is still difficult to specifically
discriminate the types of cell death. For example, whereas detection of phosphatidylserine
(PS) exposure is known as a marker of early apoptosis, necrotic cells also externalize PS
before membrane permeabilization in certain cells (Krysko et al., 2004). TUNEL staining,
which was initially thought to specifically detect apoptotic cells, also labels DNA breaks in
necrotic cells (Grasl-Kraupp et al., 1995; Artus et al., 2010). Conversely, cell-impermeable
dye such as propidium iodide, which is used to label necrotic cells, also detects late-stage
apoptosis. Biochemical detection of key molecular events in apoptosis (e.g., caspase
cleavage), necrosis (e.g., RIP kinase phosphorylation), and autophagic cell death [e.g., light
chain 3 (LC3) conversion], or inhibition of these molecules by pharmacological or genetic
approaches, may provide significant information for the specific roles of each molecule and
cell death type. However, because these molecular pathways are not completely independent
and are activated redundantly during death execution, it is important to use care when
interpreting the results from these experiments. For example, even if caspase inhibition fails
to prevent cell death, it does not necessarily mean that caspases are not involved in cell
death; other caspase-independent pathways may compensate for caspase inhibition.
Moreover, because one molecule can mediate diverse and sometimes opposite effects in
multiple cells and conditions, it is complex to define the precise biological mechanisms
behind the phenotypes induced by its blockade. For experiments using small compound
inhibitors, the target specificity and off-target effects should always be carefully considered.

Taken together, each of the morphological and biochemical approaches has advantages and
drawbacks in detecting and classifying cell death. Therefore, a combination of these
techniques should be considered for proper classification and better understanding of cell
death.

3. Caspase-dependent apoptosis
3.1. Caspase signaling

3.1.1. Initiator and effector caspases—While there is only one caspase (CED-3) in C.
elegans, multiple caspases are found in more complex organisms (Li and Yuan, 2008). Thus
far, 10 murine caspases (caspase-1, -2, -3, -6, -7, -8, -9, -11, -12 and -14) and 11 human
caspases (caspase-1, -2, -3, -4, -5, -6, -7, -8, -9, -10 and -14) have been identified. The
human caspase-4 and -5 are functional orthologs of mouse caspase-11 and -12, whereas
human caspase-10 is not present in the mouse genome. The remaining caspases with the
same numbers in human and mouse are functional orthologs of each other.
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The caspase family proteins consist of the prodomain, p20 and p10 subunits. They are
produced as catalytically inactive zymogens and their activation requires proteolytic
cleavage at specific Asp residues and/or allosteric conformational changes. According to the
length of the prodomains, caspases are divided into initiator caspases (caspase-1, -2, -4, -5,
-8, -9, -10, -11, and -12) and effector caspases (caspase-3, -6, and -7). Initiator caspases have
long prodomains containing protein-protein interaction motifs, i.e. the death effector domain
(DED) in caspase-8 and -10 or the caspase recruitment domain (CARD) in caspase-1, -2, -4,
-5, -9, -11, and -12. In contrast, effector caspases possess short prodomains (Fig. 1A). The
initiator caspases are activated in the multiple-protein complex where they interact with their
regulatory adaptor proteins through the DED or CARD domain. The initiator caspases
further activate the downstream effector caspases through the cleavage at specific Asp
residues. Once activated, the effector caspases cleave a broad spectrum of protein substrates,
thereby inducing apoptosis or other biological functions.

3.1.2. Caspase activating complexes: DISC, apoptosome, PIDDosome, and
inflammasome—Four distinct caspase activating complexes are formed with the initiator
caspases. These include death inducing signaling complex (DISC), which mediates
caspase-8 activation; apoptosome ,which activates caspase-9; PIDDosome, (PIDD = p53-
induced death domain protein) which activates caspase-2; and inflammasome, which
activates caspase-1. Each of these protein complexes is induced by distinct signals and has
specialized functions.

Formation of the DISC is initiated by the binding of extracellular death ligands, such as Fas
ligand and TNF-α, to their cell-surface death receptors (Peter and Krammer, 2003). Upon
activation, death receptors undergo multimerization and recruit Fas-associated death domain
(FADD) and RIP1 through the death domain (DD). FADD in turn interacts with caspase-8
via the DED. The oligomerizaton of caspase-8 in the DISC leads to its activation and
cleavage of the downstream effector caspases. This cell surface receptor-mediated process
of apoptois is called the ‘extrinsic pathway’ (Fig. 1A and B). Of note, in certain cell types,
the extrinsic pathway can cross-talk to the mitochondria-mediated apoptotic pathway (the
‘intrinsic pathway’). Active caspase-8 cleaves Bid, a BH3-only pro-apoptotic Bcl-2 family
protein, thereby triggering the release of mitochondrial proteins and the formation of the
apoptosome as described below (Li et al., 1998; Luo et al., 1998).

The apoptosome is a wheel-shaped protein complex, which contains apoptotic protease
activating factor-1 (Apaf-1), cytochrome c and caspase-9. It is initiated through the release
of pro-apoptotic proteins from the mitochondria. The mitochondrial membrane integrity is
regulated by the balance between pro-apoptotic and anti-apoptotic B cell lymphoma 2
(Bcl-2) family proteins. When the pro-apoptotic signal is activated over a certain threshold
in response to intracellular and environmental stress, Bcl-2-associated X protein (Bax)
channels are formed at the outer mitochondrial membrane, which leads to the release of
cytochrome c and second mitochondria-derived activator of caspases (Smac) [also known as
direct inhibitor of apoptosis-binding protein with low pI (Diablo)]. Released cytochrome c
triggers the formation of the apoptosome in the presence of ATP, which mediates
conformational change and activation of caspase-9 (Li et al., 1997). In addition, Smac
enhances caspase activation through the neutralization of inhibitor of apoptosis (IAP)
proteins (Du et al., 2000; Verhagen et al., 2000) (Fig. 1A and B).

The PIDDosome contains the p53-induced protein with a death domain (PIDD), RIP-
associated Ich-1/Ced-3homologue protein with a death domain, and caspase-2 (Tinel and
Tschopp, 2004). PIDD is a p53 target gene whose expression is induced by genotoxic stress
(Lin et al., 2000). Increased PIDD expression leads to formation of the PIDDosome, which
mediates caspase-2 activation. Activated capase-2 acts upstream of mitochondrial intrinsic
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pathway, by inducing the cleavage of BH3 interacting domain death agonist (Bid) or directly
causing cytochrome c.

The inflammasome is a pro-inflammatory complex composed of apoptosis-associated speck-
like protein containing a CARD (ASC), nucleotide-binding oligomerization domain-
containing protein (NOD)-like receptor (NLR) family or pyrin and HIN domain (PYHIN)
family, and caspase-1. Several NLRs such as NLRP1, NLRP3 and NLRC4 and PYHIN
family proteins such as absent in melanoma 2 (AIM2) assemble into the inflammasomes.
The formation of the inflammasome is triggered by diverse danger signals including
bacterial toxins, extracellular ATP and amyloid- β fibrils, mitochondrial reactive oxygen
species (ROS), double-stranded DNA (dsDNA) and others. Activation of caspase-1, which
was initially called IL-1β-converting enzyme, leads to the cleavage of pro-IL-1β and pro-
IL-18 into their mature pro-inflammatory forms (Fig. 1A and C).

These molecular platforms for caspase signaling clearly indicate that caspases control not
only apoptosis but also inflammation. In addition, recent studies have demonstrated
unexpected physiological and pathological functions of caspases in the CNS (Hyman and
Yuan, 2012). For example, localized caspase activation in neurons mediates the dendrite
pruning and controls the synaptic formation and plasticity in the brain (Huesmann and
Clayton, 2006; Kuo et al., 2006; Li et al., 2010b). In another case, caspase activation does
not cause immediate cell death but induces neurofibrillary tangle formation in a mouse
model of Alzheimer disease (de Calignon et al., 2010). The roles and mechanisms of these
localized, low-level caspase activation in the retina have not been fully explored and require
to be elucidated in future studies.

3.2. Caspase inhibitors and clinical trials
Caspase activation is regulated by several inhibitors: those derived from virus genes, those
produced endogenously in cells, and chemically synthesized inhibitors (Callus and Vaux,
2007). The first caspase inhibitor discovered was cytokine response modifier A (CrmA), a
cowpox virus-encoding protein. Crm-A inhibits caspase-1-dependent cytokine maturation as
well as caspase-8 activity, thereby allowing viruses to evade elimination by the host’s
immune responses or apoptosis of infected cells. P35 and IAP are baculoviral gene products
that prevent apoptosis during infection (Clem et al., 1991; Crook et al., 1993). While p35
directly inhibits caspases, baculoviral-derived IAP (OpIAP) acts upstream to prevent
caspase activation. Viral FLICE-inhibitory proteins (v-FLIPs) were identified from the
screening of γ-herpesvirus genes that share homology with caspase-8 (also called FLICE)
(Thome et al., 1997). v-FLIP inhibits caspase-8 activation induced by death receptors, and
facilitates the persistence and replication of viruses in infected cells.

Mammalian cells are equipped with endogenous mechanisms of caspase inhibition (Fulda
and Vucic, 2012). There are multiple IAPs that possess baculoviral IAP repeat (BIR) domain
in mammals (Fulda and Vucic, 2012). Among them, X chromosome-linked IAP (XIAP) is
the best characterized mammalian IAP that directly binds and inhibits caspase-3, -7 and -9
(Huang et al., 2001; Riedl et al., 2001). Other IAPs such as cellular IAPs (cIAPs) indirectly
regulate caspase activation through the interaction with Smac. Besides caspase regulation,
cIAPs also mediate pro-survival NF-κB signaling through its ubiquitin ligase activity in the
c-terminal really interesting new gene (RING) domain. Cellular FLIPs (c-FLIPs) are
expressed in three splice variants (Yu and Shi, 2008). The shorter forms (c-FLIPS and c-
FLIPR) are reminiscent of v-FLIPs, and strongly inhibit caspase-8 activation. The longer
form (c-FLIPL) structurally resembles to caspase-8, but lacks an enzymatic activity in its C-
terminal domain. c-FLIPL expression is induced by pro-survival NF-κB and Akt activation,
and when highly expressed, c-FLIPL competes with caspase-8 and prevents the dimeric
activation of caspase-8 and apoptosis induction (Scaffidi et al., 1999). However, at
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physiological expression levels, c-FLIPL appears to support the enzymatic activity of
caspase-8 in the heterodimer complex with caspase-8 (Micheau et al., 2002). Recent studies
have shown that the c-FLIPL--caspase-8 heterodimer has a restricted substrate repertoire and
appears to be critical for non-apoptotic function of caspase-8 such as cell survival and
proliferation (van Raam and Salvesen, 2012).

A number of synthetic caspase inhibitors have been developed in the laboratory and
industries as research tools as well as potential therapeutics. Most of these inhibitors target
the catalytic sites of caspases, and are relatively specific to each or multiple caspases.
However, it should be noted that they could have off-target effects, such that a pan-caspase
inhibitor Z-VAD inhibits nonrelated cysteine proteases such as calpains and cathepsins
(Schotte et al., 1999). For clinical use, non-peptide or peptide-mimetic caspase inhibitors
have been developed by pharmaceutical companies. However, despite extensive efforts over
decades, there are only a few clinical trials employing caspase inhibitors in human diseases.
PF-03491390 (formally called IDN-6556) is an anti-apoptotic caspase inhibitor that has
advanced into phase 2 clinical trials (Fischer and Schulze-Osthoff, 2005). PF-03491390 is
an irreversible and broad-spectrum caspase inhibitor, and blocks the activities of caspase-1,
-2, -3, -6, -7, -8, and -9 (Hoglen et al., 2004). Intravenous or oral administration of
PF-03491390 was generally well tolerated in phase 1 and 2 studies (Baskin-Bey et al., 2007;
Shiffman et al., 2010; Valentino et al., 2003). Oral administration of PF-03491390 reduced
serum AST and ALT in a phase 2 study for patients with chronic hepatitis C virus (Shiffman
et al., 2010). In another clinical trial conducted for patients undergoing liver transplantation,
intravenous administration of PF-03491390 reduced a serum marker of liver cell apoptosis
(Baskin-Bey et al., 2007). VX-740 (or pralnacasan), a specific inhibitor of caspase-1, was
tested in a phase 2 study for patients with rheumatoid arthritis patients. Although it was
reported that VX-740-treated patients exhibited dose-dependent tendency towards
improvement in disease symptoms, the trial was stalled because high dose treatment caused
liver fibrosis in toxicology study in dogs (Linton, 2005). To our knowledge, there is no
caspase inhibitor that has been used for retinal or neurodegenerative disorders or that has
reached phase 3 trials.

3.3. Knockout animals for caspase families
The phenotypes of caspase knockout mice were summarized in a recent review by Li and
Yuan (Li and Yuan, 2008). Mice deficient for caspase-1 gene (Casp1−/− mice) are viable,
but are defective in mature IL-1β production and resistant to LPS-induced septic shock
(Kuida et al., 1995; Li et al., 1995). Casp3−/− mice in a mixed 129/SvJ and C57BL/6
background die at 1-3 weeks of age, and exhibit neuronal cell hyperplasia and decreased
apoptosis in the brain and retina. However, because Casp3−/− mice in C57BL/6 background
are viable and developmentally normal, these phenotypes may be attributed to unknown
modifier genes in the 129/SvJ background in combination with the absence of caspase-3
(Leonard et al., 2002). While Casp7−/− mice appear to show a normal phenotype,
Casp3−/−Casp7−/− double knockout mice in the C57BL/6 background die immediately after
birth with defects in cardiac development (Lakhani et al., 2006), suggesting that these two
effector caspases have redundant functions. Mice deficient for initiator caspases responsible
for the extrinsic or intrinsic pathway also exhibit a lethal phenotype. Casp8−/− mice die
prenatally with impaired heart muscle development and abnormal vasculature formation
(Varfolomeev et al., 1998). Casp9−/− mice die perinatally with exencephaly and decreased
apoptosis in the brain (Kuida et al., 1998). These findings indicate the distinct and redundant
functions of individual caspases and their involvement not only in apoptosis but also in cell
proliferation and differentiation through direct or indirect mechanisms.
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Although these studies are critical to understand the in vivo functions of caspases during
development, their roles in postmitotic cells including photoreceptor cells are still unclear.
There are several reasons for this shortage of understanding. First, because most of knockout
mice in one or two major Casp are prenatally or perinatally lethal, it is not possible to
investigate the phenotype of these mice in adult. One potential approach to overcome this
limitation is a tissue-specific and inducible control of caspase expression using the Cre/loxP
recombination system. For instance, it was shown that hepatocyte-specifice deletion of
Casp-8 protects hepatocytes from Fas-induced caspase activation and apoptosis (Kang et al.,
2004). Targeted deletion of a specific Casp in the postmitotic photoreceptors will provide
critical evidence for its functions in retinal diseases, and such approaches need to be
addressed in future studies. However, the results from conditional knockout studies require
careful interpretation because Cre-mediated recombination is not 100% efficient, and
overexpression of Cre itself can be toxic to mammalian cells including retinal cells (Thanos
et al., 2012). In addition, because members of the caspase family share redundant functions
and exhibit cross-talk, it is possible that the depletion of one Casp can be compensated by
the function of other caspases. Therefore, there remain some hurdles in genetic knockout
studies, and careful and extensive investigation (using a combination of biochemical,
pharmacological and genetic experiments) will be necessary to better understand the roles of
caspases in pathological cell death.

3.4. The role of caspase-dependent apoptosis in photoreceptor cell death after RD
Machemer and colleagues introduced experimental RD in the owl monkeys (Machemer and
Norton, 1968), and the subsequent studies using animal models of RD have revealed the
occurrence of multiple biological events such as gliosis, inflammatory responses, RPE
proliferation, and photoreceptor cell loss in the detached retina (Anderson et al., 1981;
Erickson et al., 1983; Lewis et al., 1994; Jablonski et al., 2000). The first clear
demonstration of apoptosis as a major form of photoreceptor cell death after RD was made
by Cook and colleagues in a cat model of RD (Cook et al., 1995), following the
establishment of TUNEL assay (Gavrieli et al., 1992). They showed that photoreceptor cells
in the detached retina exhibit strong TUNEL reactivity as well as pyknotic morpholorical
changes. Moreover, they demonstrated that the photoreceptor cell death after RD occurs in
an earlier period than previously recognized: TUNEL-positive cells are detected as early as
1 to 3 days after RD, followed by a decline in their number over the next few weeks. This
early activation of apoptosis, which begins within 1 day and peaks at 2-3 days after RD, has
been confirmed in other animal models of RD and in human retinal samples with
rhegmatogenous RD (Arroyo et al., 2005; Hisatomi et al., 2001).

Activation of caspases in the apoptotic photoreceptor cells after RD was first demonstrated
by Zacks and colleagues. The enzymatic activities of both initiator caspases (caspase-8 and
-9) and effector caspases (caspase-3 and -7) are substantially increased in the rat retinas after
RD (Zacks et al., 2003; Zacks et al., 2004). In addition, the expression levels of death
ligands/receptors such as TNF-α, Fas-L, and Fas, which activate the extrinsic pathway, are
elevated before and together with photoreceptor cell death (Nakazawa et al., 2011;
Nakazawa et al., 2006. Both TNF and Fas pathways are functional in RD because
antagonists to each molecule impair caspase activation and ameliorate photoreceptor cell
death (Besirli et al., 2010; Zacks et al., 2004). Paradoxically, however, caspase inhibition in
rodent eyes by intravitreal injection of pan-caspase inhibitor Z-VAD fails to prevent
photoreceptor cell death after RD (Hisatomi et al., 2001; Trichonas et al., 2010). One
possible explanation for this observation is that caspases are not the sole mediator of
photoreceptor cell death after RD, but rather that other death signals downstream of TNF/
Fas may cooperate with caspases to induce photoreceptor cell death. Another explanation is
that the inhibitors do not sufficiently block caspases due to the short half-life and poor
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penetration in the eye. Yet, the latter possibility seems to be less likely because intravitreal
injection of Z-VAD shows biological changes such as decreased apoptosis and increased
necrosis in the retina after RD (Trichonas et al., 2010), as described later.

In another study in our laboratory, Hisatomi and colleagues investigated the role of the
intrinsic pathway using forebrain overgrowth (fog) mutant mice. The Fog mutation was
found in the Apaf-1 gene and results in near-to-complete loss of Apaf-1 expression and
defects in neural tube closure. Whereas Apaf-1−/− mice die perinatally with exencephaly
(Cecconi et al., 1998), fog/fog mice survive into adulthood, serving a valuable model to
assess the functions of the intrinsic pathway in mature tissues (Honarpour et al., 2001).
Creation of RD in fog/fog mice revealed that the photoreceptor cell death after RD was
partially (but not completely) suppressed in fog/fog mice compared with WT mice (Hisatomi
et al., 2008). Although we cannot fully exclude the possibility that residual amounts of
Apaf-1 might mediate photoreceptor cell death in fog/fog mice, it is more likely that
molecular interactions between different pathways, including the extrinsic pathway and/or
other caspase-independent pathways, may compensate for each other in the initiation and
execution process of photoreceptor cell death after RD.

3.5. The role of caspase-dependent apoptosis in photoreceptor cell death in other retinal
degenerative diseases

RP is a genetically heterogenous group of inherited retinal degenerations. Molecular genetic
studies have identified mutations in more than 50 genes, most expressed exclusively in rod
photoreceptor cells, which are associated with RP (Hartong et al., 2006). In animals,
including drosophila, rodents, rabbits, cats and dogs, there are several different models of
RP, which occur naturally or are produced by genetic manipulation (Chang et al., 2002).
Although the phenotypes arising from these mutations are different, Chang and colleagues
showed that the rod photoreceptor cells undergo a common mode of cell death, apoptosis in
rd1 (caused by Phosphodiesterase 6β (Pde6β) mutation), rds (caused by Peripherin
mutation), and Rhodopsin mutant mice (Chang et al., 1993). Portera-Cailliau and colleagues
also demonstrated the involvement of apoptosis of rod photoreceptor cells in these animals,
and suggested that retinal degeneration may be slowed by interfering with the apoptotic
mechanisms (Portera-Cailliau et al., 1994). Subsequently, several studies investigeted the
roles of caspases in animal models of RP; however, the results are conflicting. Whereas
some studies reported an increased activity of caspase-3 and -8 in rd1 mice (Jomary et al.
2001), others showed that activation of caspases is not observed in rd1 mice (Doonan et al.,
2003). Yoshizawa and colleagues reported that intraperitoneal injection of a caspase-3
inhibitor provides mild and transient protection in rd1 mice (Yoshizawa et al., 2002). In
contrast, other groups demonstrated that photoreceptor cell loss still occurs in caspase-3-
deficient mice or after caspase inhibition by Z-VAD (Sanges et al., 2006; Zeiss et al., 2004).
In rd5 mice, which carry mutation in the Tubby gene, a caspase-3 inhibitor partially reduces
the photoreceptor cell death (Bode et al., 2003).

Excessive exposure to light triggers apoptosis of photoreceptor cells (Reme et al., 1998).
Light-induced photoreceptor damage is initiated by overactivation of phototransduction
pathway, because photoreceptor cells are rescued in the absence of 11-cis retinal, the
chromophore of rod and cone opsins (Grimm et al., 2000; Sieving et al., 2001). Light
appears to be an importnat cofactor in various retinal degenerative diseases. In animal
models of RP, retinal degeneration is accelerated by light and conversely, is delayed by
dark-rearing (Naash et al., 1996; Tam et al., 2007). In addition, light absorption by various
chromophores within lipofuscin granules may mediate toxic effects on RPE cells in AMD
(de Jong, 2006). Using retinal light injury model, several groups have investigated whether
caspases play a role in the execution of photoreceptor cell death. Donovan and Cotter
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reported that photoreceptor apoptosis after light exposure is not inhibited by Z-VAD
(Donovan and Cotter, 2002), while another group exhibited that it is partially attenuated by
Z-VAD in a different setting of light level and inhibitor dose (Perche et al., 2007). Taken
together, these findings suggest that, although caspases can be activated during retinal
degeneration, they may not be the sole mediator of photoreceptor cell death. Althougth there
is extensive literature investigating the roles of visual pigments, signal transduction
moleculecules, and neurotrophic factors in RP and light injury, a detailed discussion
regarding these mechanisms is beyond the scope of this article and can be found in previous
reviews (Wenzel et al., 2005; Wright et al., 2010).

Two recent studies have shown that the NLRP3 inflammasome contributes to the
progression of AMD. Tarallo and colleagues demonstrated that the NLRP3 inflammasome is
activated in the RPE by Alu RNA, repetitive element transcripts of non-coding RNA. Alu
RNA accumulates in the RPE of patients with dry AMD, and overexpression of Alu RNA
induces RPE cell death in vitro and in vivo (Kaneko et al., 2011). This Alu RNA toxicity is
mediated via IL-18 maturation and is reversed by Nlrp3 deficiency (Tarallo et al., 2012),
suggesting the detrimental role of the inflammasome during Alu RNA-induced retinal
degeneration. In a separate study, Doyle and colleagues showed that drusen isolated from
AMD patient eyes activate the inflammasome in macrophages, which in turn mediates
caspase-1 cleavage and the secretion of IL1-β and IL-18. In addition, caspase-1 cleavage is
associated with the activated macrophages in a mouse model of AMD immunized with a
oxidation fragment of docosahexaenoic acid (Hollyfield et al., 2008). Laser-induced CNV is
more severe in Nlrp3-deficient mice, suggesting the protective role of the inflammasome
against neovascularization (Doyle et al., 2012). Therefore, the inflammasome may have
different functions depending on the site of activation (macrophage vs. RPE). Furthermore,
the protective effect of IL-18 against CNV seems to contradict the previous report showing
the anigiogenic effect of IL-18 in retinal neovascularization in a model of oxygen-induced
retinopathy (Qiao et al., 2007). These discrepancies may result from the differences in
underlying pathology (inflammation vs. hypoxia), and need to be addressed in future studies.

3.6. Endogenous anti-apoptotic factors in the retina
There are several endogenous survival mechanisms that counteract the apoptotic caspase
cascade in the retina. First, it has been shown that caspase-dependent apoptosis is down-
regulated in post-mitotic neurons in the brain and retina because of a maturation-associated
reduction in Apaf-1 and caspase-3 expression and increased efficacy of IAPs (Donovan and
Cotter, 2002; Wright et al., 2004; Yakovlev et al., 2001).

Second, a number of pro-survival molecules are rapidly increased and/or activated during
retinal degeneration. These include Jak-STAT, Akt, endothelin, and other pathways (Rattner
and Nathans, 2005; Zacks et al., 2006). In an animal model of RP, Joly and colleagues
reported that leukemia inhibitory factor (LIF), which mediates STAT3 activation, is up-
regulated in degenerating retina and supports photoreceptor cell survival (Joly et al., 2008).
Consistent with these reports, rod photoreceptor-specific knockout of gp 130, a common
receptor for the IL-6 family of cytokines including LIF, increases photoreceptor cell death in
models of RP and light injury (Ueki et al., 2009). In experimental RD, Chong and colleagues
demonstrated that IL-6, an activator of Jak-STAT pathway, acts as a photoreceptor
neuroprotectant, suggesting that Jak-STAT pathway may be a general endogenous protective
mechanism against photoreceptor cell damage (Chong et al., 2008).

In addition, heat shock proteins (HSPs) are induced in the retina in response to various
enviromenal stress. HSPs are cytoprotective molecular chaperones that prevent protein
misfolding and aggregation. They also prevent the induction of apoptosis via directly
interacting with pro- and anti-apoptotic molecules. In experimental RD, Kayama and
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colleagues showed that heat shock protein 70 (HSP70) is up-regulated in photoreceptors
after RD and suppresses photoreceptor cell death via activating anti-apoptotic Akt and
preventing caspase activation (Kayama et al., 2011). The crystallins, which belong to small
HSP subfamily, are expressed not only in the lens but also the retina and brain (Andley,
2007). The levels of crystallins increase in various retinal disorders such as retinitis
pigmentosa and AMD (Jones et al., 1998; Nakata et al., 2005). Although precise function of
α-crystallins in these diseases has not been fully elucidated, Yaung and colleagues showed
that hypoxia-induced retinal degeneration is exacerbated by αA-crystallin or αB-crystallin
deficiency (Yaung et al., 2008). In addition, oxidative stress-induced cell death is attenuated
by oxerexpression of αA-crystallin or αB-crystallin in RPE cell line (Yaung et al., 2007),
suggesting the cytoprotective effect of α-crystallin in retinal degeneration.

Taken together, these findings suggest that increasing the efficacy of these endogenous
protective mechanisms that counteract caspases and other pathways may be a potential
strategy to prolong photoreceptor survival in RD and other retinal degenerative disorders.

4. AIF-mediated mitochondrial pathway
4.1. AIF as a caspase-independent inducer of cell death

AIF was discovered as the first protein that mediates caspase-independent apoptosis (Susin
et al., 1999). AIF is a flavoprotein that is located in the mitochondrial intermembrane space
(IMS) and involved in energy and redox metabolism (Modjtahedi et al., 2006). AIF
modulates the structure and function of complex I of the respiratory chain, and thus is
crucial for mitochondrial oxidative phosphorylation and cell survival (Vahsen et al., 2004).
In contrast, under stress conditions, AIF is cleaved, translocates into the cytoplasm and the
nucleus, and mediates chromatinolysis in a caspase-independent manner (Fig. 2A and B). In
addition, recent studies have shown that AIF also promotes necrotic cell death in response to
DNA alkylating agents (Artus et al., 2010; Moubarak et al., 2007).

AIF contains a transmembrane segment and is anchored to the inner membrane of the
mitochondria. The mitochondrial release of AIF requires two-step process: mitochondrial
outer membrane permeabilization (MOMP) and cleavage in the IMS (Otera et al., 2005).
The cleavage of AIF is regulated by multiple molecules and signals. First, calpain I (μ-
calpain), a calcium-dependent cysteine protease, is a critical enzyme to mediate AIF
processing (Polster et al., 2005). Second, poly(ADP-ribose) (PAR) polymer, a product of
PAR polymerase-1 (PARP-1) activation, has been shown to act as a potent AIF-releasing
factor (Yu et al., 2002; Yu et al., 2006b). Third, reactive oxygen species (ROS) may
modulate AIF cleavage through conformational changes (Churbanova and Sevrioukova,
2008). It was shown that oxidative modification sensitizes AIF to calpain-mediated
processing (Norberg et al., 2010).

There is another step of regulation in the process of AIF translocation from the cytoplasm to
the nucleus. Interaction of AIF and cyclophilin A is required for AIF nuclear translocation
(Cande et al., 2004; Zhu et al., 2007). On the other hand, the inducible HSP70 under stress
conditions binds to AIF and prevents its nuclear translocation (Ravagnan et al., 2001).

4.2. AIF knockout or mutant animals
Aif gene is located on the X chromosome, and Joza and colleagues demonstrated that Aif-
deficient male ES cells (Aif− /Y ES cells) fails to produce chimeric mice after injection into
host blastocysts. Aif deficiency abolishes the first wave of developmental cell death during
cavitation of embryoid bodies, which is indispensable for development of the chimeric
embryos (Joza et al., 2001). However, there is a controversial study using conditional Aif
knockout mice. Brown and colleagues showed that loss of Aif function does not influence

Murakami et al. Page 11

Prog Retin Eye Res. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the cavitation process in embryoid bodies, but rather causes extensive cell death beginning
at embryonic day 9, which results in impaired embryo growth. This seems to be attributed to
reduced mitochondrial complex I activity in Aif-deficient embryos (Brown et al., 2006).
Consistent with this report, skeletal muscle- or cardiac-specific Aif knockout mice exhibit
impaired activity of complex I and develop progressive skeletal muscle atrophy or dilated
cardiomyopathy (Joza et al., 2005). Targeted deletion of Aif in photoreceptor cells will be
important to better understanding the roles of AIF in retinal development and degeneration.

The X-linked Harlequin (Hq) mutation was originally identified in mice that exhibit a lack
of hair, reduction in body weight, and ataxia in hemizygous males and homozygous females.
Histology of Hq mice demonstrates a late onset degeneration of cerebellar neurons and
retinal ganglion cells beginning after 3 months of age. It has been now shown that Hq
mutation is a proviral insertion in the Aif gene, which causes about an 80% reduction in AIF
expression (Klein et al., 2002). These findings further confirm that AIF is crucial for cell
survival, especially in specific types of neurons including retinal ganglion cells. In addition,
because Hq mice grow into adulthood, they represent an important model for studying the
role of AIF in adult cells and organs.

Cells derived from Aif knockout or Hq mice show different responses to death stimuli
compared with control wild-type cells. For instance, Aif− /Y ES cells are resistant to serum
deprivation, but are equally susceptible to other cell death stimuli such as staurosporine,
etoposide and ultraviolet irradiation (Joza et al., 2001). Primary granule cells from Hq mice
undergo significantly less cell death after serum deprivation, while they are more susceptible
to hydrogen peroxide or glutamate (Klein et al., 2002). Cortical neurons from Hq mice are
resistant to PARP-1-mediated cell death induced by NMDA or PAR polymer (Xu et al.,
2006). These results suggest that AIF is critical in mediating cell death in specific conditions
(e.g., starvation) and certain cell types (e.g., neurons). Indeed, neuronal and retinal cell death
in starved conditions substantially suppressed in Hq mice in vivo (Culmsee et al., 2005;
Hisatomi et al., 2008). However, because AIF has dual roles in cell survival and death, it is
still difficult to address the precise pro-death function of AIF in these experiments. The loss
of mitochondrial pro-survival function of AIF may alter the cellular physiological condition,
which could influence the cell fate in response to death stimuli (Cheung et al., 2006).

4.3 The role of AIF in photoreceptor cell death after RD
Photoreceptors are highly polarized cells that consist of the light-sensitive outer segment, the
mitochondrion-rich inner segment, the nuclear layer, and the synaptic terminal. This layered
structure of photoreceptors provides an advantage to observe the molecular shuttling
between the nucleus and mitochondria. Hisatomi and colleagues showed that AIF is located
in the inner segment of photoreceptors in normal conditions. In contrast, AIF is observed in
the shrunken nuclei of photoreceptors in the retina after RD (Hisatomi et al., 2001). To our
knowledge, this is the first clear demonstration of AIF nuclear translocation during cell
death in vivo. The authors further investigated the role of AIF in photoreceptor cell death
after RD using Hq mice. In this study, experimental RD was induced in 8-week-old Hq/Y
mice, in which late-onset retinal degeneration had not been present. The results showed that
the photoreceptor cell death after RD is partially suppressed in Hq mice compared with that
in age-matched controls, suggesting that AIF contributes to RD-induced photoreceptor
degeneration at least in part. Importantly, the human retina after RD shows AIF nuclear
translocation as well as caspase activation in dying photoreceptor cells, as seen in rodent
models of RD (Hisatomi et al., 2008). Collectively, these data suggest that not only caspases
but also caspase-independent pathways are involved in photoreceptor cell death after RD.
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4.4 The role of AIF in photoreceptor cell death in other retinal degenerative diseases
AIF has been implicated in other models of retinal degeneration. Nuclear translocation of
AIF is observed in dying rod photoreceptor cells in mouse and rat models of RP (Sanges et
al., 2006; Murakami et al., 2008). The retinas from RP animals exhibit increased activities of
calpain and PARP, which mediate the mitochondrial release of AIF (Paquet-Durand et al.,
2007; Sanges et al., 2006). Inhibition of calpain or PARP pathway prevents the nuclear
translocation of AIF and attenuates rod photoreceptor cell death in RP models (Mizukoshi et
al., 2010; Murakami et al., 2012a; Ozaki et al., 2012). These findings suggest that AIF
translocation and its regulatory pathways mediate retinal degeneration in RP.

5. RIP kinase and necrosis
5.1. RIP kinase signaling

Two members of the RIP kinase family proteins, RIP1 and RIP3, have been identified as
critical mediators of necrosis (Vandenabeele et al., 2010). RIP1 was originally identified as
a protein that interacts with Fas (Stanger et al., 1995). RIP1 consists of an N-terminal serine/
threonine kinase domain, an intermediate domain, a RIP homotypic interaction motif
(RHIM), and a C-terminal DD. RIP1 acts as a multifunctional adaptor protein downstream
of death receptors, and mediates pro-survival NF-κB activation, caspase-dependent
apoptosis, and RIP kinase-dependent necrosis (Festjens et al., 2007). RIP3 was found as a
serine/threonine kinase that shares homology with RIP1 but does not possess a DD (Sun et
al., 1999) (Fig. 3A). RIP3 contains the RHIM domain in its C-terminus, and directly binds to
and phosphorylates RIP1 (Sun et al., 2002). Although the precise biological function of
RIP1-RIP3 interaction was unclear for a long period, recent studies have revealed that RIP3-
dependent phosphorylation of RIP1 kinase in the RIP1-RIP3 complex is critical for the
induction of death receptor-induced necrosis (Cho et al., 2009; He et al., 2009; Zhang et al.,
2009a). This necrosis-inducing protein complex is termed the ‘necrosome.’

5.1.1. RIP1 polyubiquitination and pro-survival NF-κB activation—In response to
TNF-α stimulation, RIP1 is recruited to TNFR and forms a membrane associated complex
with TNF receptor-associate death domain (TRADD), TNF receptor-associated factor 2 or 5
(TRAF2/5) and cIAP1/2, the so-called complex I (Micheau and Tschopp, 2003). cIAP1/2
are key ubiquitin ligases that induce RIP1 polyubiquitination in the complex I (Mahoney et
al., 2008). This ubiquitin chain provides an assembly site for transforming growth factor-β-
activated kinase-1 (TAK1), TAK1 binding protein 2 or 3 (TAB2/3) and inhibitor κB kinase
(IKK) complex, and mediates NF-κB activation (Ea et al., 2006). TNF-α-induced RIP1
polyubiquitination is abrogated in cIap1−/−cIap2−/− fibroblasts, and these cells show
blunted NF-κB activation and increased cell death, indicating that RIP1 polyubiquitination
is critical for prosurvival NF-κB activation in TNF signaling (Varfolomeev et al., 2008). On
activation, NF-κB translocates to the nucleus and induces transcription of prosurvival genes
such as c-IAPs, c-FLIPs and IL-6 (Micheau et al., 2001; Wang et al., 1998). In addition, it
mediates the induction of cylindromatosis (CYLD) or A20 (Jono et al., 2004; Krikos et al.,
1992), which dephosphorylates RIP1 and acts as a negative feedback loop in NF-κB
signaling (Trompouki et al., 2003; Wertz et al., 2004) (Fig. 3A and B).

5.1.2. RIP1 deubiquitination and formation of cytosolic pro-death complex:
DISC or necrosome—In TNF signaling, RIP1 switches its function to a regulator of cell
death when it is deubiquitinated by CYLD or A20 (Shembade et al., 2010; Wright et al.,
2007). Deubiquitination of RIP1 abolishes its ability to activate NF-κB and leads to the
formation of cytosolic pro-death complexes, the so-called complex II (Micheau and
Tschopp, 2003). These complexes contain TRADD, FADD, RIP1, caspase-8, c-FLIP, and/or
RIP3, and mediates either apoptosis or necrosis depending on cellular conditions.
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Dimerization of caspase-8 in the DISC mediates a conformational change to its active form,
thereby inducing apoptosis (Fig. 3A and C). On the other hand, in conditions where caspases
are inhibited or cannot be activated efficiently, RIP1 interacts with RIP3 and forms the
necrosome (Fig. 3A and D). RIP3-dependent activation of RIP kinase is crucial for necrosis
induction in response to TNF-α (Cho et al., 2009; He et al., 2009; Zhang et al., 2009a).
Other death ligands such as Fas-L are also capable to mediate RIP kinase-dependent
necrosis as well as caspase-dependent apoptosis. In contrast to TNF-α, Fas directly recruits
RIP1 and FADD to the plasma membrane, and forms pro-death complexes with caspase-8
and/or RIP3 (Stanger et al., 1995; Morgan et al., 2009). In 1998, Vercammen and others
demonstrated two different pathways in Fas signaling: one rapidly leading to apoptosis, and
a second directing the cells to necrosis if apoptosis is blocked by the caspase inhibitors
(Vercammen et al., 1998b). The latter is now known to be mediated by RIP kinase activity
(Holler et al., 2000; Cho et al., 2009).

In addition to death receptor signaling, RIP1 and RIP3 are involved in toll-like receptor
(TLR) 3 and 4 signaling, which mediates innate immune response and cell death after
infection and tissue injury. Double-stranded RNA (dsRNA) and lipopolysaccharide (LPS)
are respective ligands for TLR3 and TLR4, and the activation of TLR3/4 triggers the
recruitment of TIR-domain-containing adaptor inducing interferon-β (TRIF), which further
interacts with RIP1 and RIP3 through the RHIM domain. TLR3/4-induced NF-κB activation
and cytokine production are mediated by RIP1 ubiquitination (Meylan et al., 2004; Cusson-
Hermance et al., 2005; Chang et al., 2009). In contrast, RIP3 is critical for RIP kinase
activation and necrotic cell death induced by TLR3/4 in the presence of caspase inhibitor
(He et al., 2011). Therefore, although different molecules are assembled through activation
of death receptors and TLRs, RIP kinase may act as a common intermediary for various
upstream signals.

5.1.3. Regulatory mechanisms of RIP kinase activation—Beause caspase inhibition
sensitizes cells to RIP kinase-dependent necrosis, caspases may directly or indirectly inhibit
RIP kinase activity. Indeed, caspase-8 directly cleaves and inactivates RIP1 and RIP3 (Feng
et al., 2007; Lin et al., 1999). Interestingly, this inactivation does not require pro-apoptotic
caspase-8 activation through its homodimerization, but is mediated by the restricted
caspase-8 activity in the heterodimer with c-FLIP (Oberst et al., 2011) (Fig. 3C and D).
Knockdown of either caspase-8 or c-FLIP enhances the formation of the RIP1-RIP3
complex, suggesting that the caspase-8-c-FLIP heterodimer antagonizes RIP kinase
activation without inducing apoptosis. In addition to its direct effect on RIP1/RIP3,
caspase-8 prevents the necrosome formation through the cleavage of CYLD, which mediates
RIP1 deubiquitination (O’Donnell et al., 2011).

While IAP antagonists promote apoptosis by increasing caspase activiy, they also facilitate
the cells to undergo RIP kinase-dependent necrosis in certain conditions. It has been shown
that loss of cIAP1/2 induces the spontaneous formation of a protein complex containing
FADD, RIP1, caspase-8 and c-FLIP (Feoktistova et al., 2011; Tenev et al., 2011). TLR3
ligation in the absence of cIAP1/2 recruits TRIF to this complex and induces pro-apoptotic
caspase activation. On the other hand, under conditions of caspase blockade, TLR3
stimulation with IAP antagonists causes necrotic cell death through RIP kinase activation
(Feoktistova et al., 2011). IAP antagonists also enhance necrotic response in combination
with TNF-α and/or Z-VAD (He et al., 2009; Vanlangenakker et al., 2010). Therefore,
cIAP1/2 negatively regulates the formation of pro-death protein complex, which is
necessary for cell death execution. Caspase activity in this complex appear to control if the
cell death occur through caspases-dependent apoptosis or RIP kinase-dependent necrosis.
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The expression levels of RIP3 are another factor that control RIP kinase activation. Whereas
RIP1 is expressed ubiquitously in all cell types, RIP3 expression differs amongst cells and
tissue (Sun et al., 1999; He et al., 2009). In addition, the levels of RIP3 correlate with the
responsiveness to necrotic cell death induced by TNF-α (He et al., 2009). The levels of
caspases also change depending on cellular types and conditions. Caspase-dependent
apoptosis is downregulated in the mature neurons because of reduced caspase-3 expression
after development (Donovan and Cotter, 2002). Caspase-8 expression is substantially lower
in RPE cells compared with other ocular epithelial cells or tumor cells, which may protect
the RPE from apoptosis (Yang et al., 2007). Therefore, it is likely that the balance between
caspases and RIP3 may be important to decide the cell fate (i.e., apoptosis or necrosis) in
response to death receptor stimulation or other signals.

5.1.4. Downstream signaling of RIP kinase leading to necrosis—Although the
downstream mechanisms by which RIP kinase causes necrosis are less unclear, recent
studies have shown some downstream substrates responsible for the induction of necrosis.
Mixed lineage kinase domain-like (MLKL) interacts with and is phosphorylated by RIP3
during necrosis initiation. Knockdown or inhibition of MLKL inhibits RIP kinase-dependent
necrosis, but does not affect RIP1-RIP3 interaction, indicating that MLKL is a downstream
target of RIP3 (Sun et al., 2012). Phosphoglycerate mutase 5 (PGAM5), a mitochondrial
phosphatase located in the mitochondrial outer membrane, is another substrate of RIP
kinase. In HeLa cells overexpressing RIP3, activated RIP3 translocates to the mitochondrial
membrane and interacts with PGAM5 and the mitochondrial fission factor Drp1, thereby
inducing the mitochondrial fragmentation. Knockdown of PGAM5 prevents the
mitochondrial fission and attenuates RIP kinase-dependent necrosis (Wang et al., 2012),
suggesting that RIP kinase may induce the mitochondrial necrotic pathway through the
phosphatase activity of PGAM5. Another necrotic mechanism downstream of RIP3 may
occur via the death domain-associated protein Daxx, which was recently identified as a
novel substrate of RIP3 (Lee et al., 2013). This protein exerts opposite effects on ischemic
cell death depending on its subcellular localization: when confined to the nucleus, Daxx
protects against cell death, whereas nuclear export to the cytoplasm promotes JNK-mediated
cell death (Jung et al., 2007). Lee and colleagues demonstrated that under oxygen glucose
deprivation, RIP3 phosphoylates Daxx at Ser-668, resulting in nuclear export of Daxx and
ischemic necrosis of rat retinal ganglion cells (Lee et al., 2013).

Previous works in the 1990s reported that overproduction of ROS occurs in death receptor-
mediated necrosis (Goossens et al., 1995; Vercammen et al., 1998b). Consistent with these
findings, recent studies have revealed the molecular links between RIP kinases and ROS-
regulating enzymes. First, activated RIP3 interacts with metabolic enzymes such as
glycogen phosphorylase (PYGL), glutamate-ammonia ligase (GLUL) and glutamate
dehydrogenase 1 (GLUD1). PYGL catalyzes the degradation of glycogen to glucose-1-
phosphate. GLUL and GLUD1 mediate glutaminolysis. GLUL catalyzes the synthesis of
glutamine from glutamate and ammonia, and GLUD1 is a mitochondria matrix enzyme that
converts glutamine to α-ketoglutarate. Activation of these enzymes eventually stimulates the
Krebs cycle and oxidative phosphorylation, thereby increasing mitochondrial ROS
production (Zhang et al., 2009a). Secondly, after TNF-α stimulation, RIP1 forms a complex
with TNFR, riboflavin kinase, and NADPH oxidase 1. NADPH oxidase is the best-
characterized non-mitochondrial source of ROS and forms a membrane-bound enzyme
complex with p22phox and Rac (Sumimoto, 2008). This complex generates superoxide by
transferring an electron from NADPH in the cytsol to oxygen on the luminal side or in the
extracellular space (Kim et al., 2007; Yazdanpanah et al., 2009). Thirdly, RIP1 kinase
activates autophagic degradation of catalase, which converts hydrogen peroxide to water and
oxygen, thereby increasing ROS accumulation (Yu et al., 2006a). The requirement of ROS
for RIP kinase-mediated necrosis has been demonstrated in several (albeit not all) types of
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cells (Vanlangenakker et al., 2010), suggesting the importance of ROS as a downstream
target in RIP kinase signaling at least in certain conditions.

Although RIP1 is a key substrate of RIP3 in the induction of necrosis, it should be noted
that, in some instances, RIP3 mediates necrosis in RIP1-independent manner. Upton and
others showed that mouse cytomegalovirus infection induces RIP3-dependent cell death in
3T3 fibroblasts, which cannot be inhibited by Nec-1 or RNAi knockdown of RIP1 (Upton et
al., 2010). Therefore, it is likely that RIP3 may have additional substrates besides RIP1
during necrosis induction. Further studies investigating the currently unknown substrates of
RIP3 will be important for the better understanding of RIP kinase signaling.

5.1.5. Non-necrotic role of RIP kinase—It was shown that RIP kinase is not essential
for NF-κB activation and pro-inflammatory cytokine production induced by death receptor
and TLR ligands (Newton et al., 2004). However, recent studies have suggested that RIP
kinase not only regulate necrosis, but also has a role in mediating inflammatory response.
Biton and Ashkenazi showed that extensive DNA damage induces TNF-α production and
further activates RIP kinase in an autocrine feedforward signaling loop in Hela cells. In turn,
RIP kinase triggers JNK3-dependent IL-8 production (Biton and Ashkenazi, 2011). Vince
and colleagues showed that TLR priming with IAP antagonists mediate inflammasome
activation and IL1-β production in a RIP kinase-dependent manner in macrophages (Vince
et al., 2012). However, the role of RIP kinase in inflammasome activation has been
controversial, because IL-1β maturation can be induced in a RIP3-independent manner in
Fas-stimulated macrophages or in a mouse model of autoinflammatory disease (Bossaller et
al., 2012; Lukens et al., 2013). Moreover, Christofferson and colleagues reported that
caspase inhibition activates RIP kinase and another protein EDD, which in turn mediating
JNK activation and Sp-1-dependent transcription of TNF-α in L929 cells (Christofferson et
al., 2012). These finding suggest that RIP kinase may directly modulate inflammatory
response in certain conditions. However, it should also be noted that inflammation can be
induced subsequent to RIP kinase-dependent necrosis, since intracellular proteins released
from necrotic cells can act inflammatory mediators (please see the details in the section ‘8.2.
Inflammatory signals from dying or dead cells’). It has been shown that Rip3 deficiency
ameliorates inflammation as well as necrosis in models of sepsis, colitis, and RD (Duprez et
al., 2011; Welz et al., 2011; Trichonas et al., 2010). The precise mechanisms by which RIP
kinase regulates inflammation warrant further investigation.

5.2. RIP kinase inhibitors
Degterev and colleagues identified small compounds named necrostatin that specifically
inhibit death receptor-mediated necrosis in a cell-based screening of ~15,000 chemical
compounds (Degterev et al., 2005). Necrostatin-1 (Nec-1) has been shown to strongly inhibit
RIP1 kinase phosphorylation, and structure-activity relationship analysis demonstrated that
Nec-1 may bind to the adaptive pocket on RIP1 and stabilize the inactive conformation of
RIP1 kinase (Degterev et al., 2008). Nec-1 inhibits the formation of necrosome complex
induced by TNF-α both in vitro and in vivo (Cho et al., 2009; He et al., 2009). Importantly,
other two necrostatins, which have different structures than Nec-1, also inhibit RIP1 kinase
phosphorylation, suggesting that necrostatins target RIP1 kinase.

However, there are some reports raising concerns about the specificity of necrostatins. For
instances, it was shown that Nec-1 partially affects the PAK1 and PKAcα activity on a panel
screening of 98 human kinases (Biton and Ashkenazi, 2011). Cho and colleagues reported
that Nec-1 exerts RIP1-dependent and independent effects for inhibition of necrosis (Cho et
al., 2011). More recently, Takahashi and colleagues demonstrated critical issues on the
specificity and activity of Nec-1. They report that Nec-1 is identical to methyl-
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thiohydantoin-tryptophan (MTH-Trp), an inhibitor of indoleamine 2,3-dioxygenase (IDO)
(Takahashi et al., 2012). IDO is the rate-limiting enzyme in tryptophan catabolism, and
modulates immune tolerance. It was shown that IDO-dependent effect of immune
suppression is inhibited by MTH-Trp/Nec-1 (Jurgens et al., 2009), suggesting the possibility
that Nec-1 may modulate inflammatory reaction through targeting IDO.

Nec-1i is an inactive derivative of Nec-1, in which the methyl group in the thiohydantoin
moiety is eliminated. Although Nec-1i shows only a minor inhibitory effect on human RIP1
kinase phosphorylation in a cell-free kinase assay, it inhibits necrotic cell death in mouse in
vitro and in vivo systems, and is equipotent to Nec-1 at higher concentration. In addition,
Nec1i also suppresses IDO activity (Takahashi et al., 2012). These findings exclude the use
of Nec-1i as an inactive control, at least in mouse experiments. The authors showed that 7-
Cl-O-Nec-1, a more potent and stable derivative of Nec-1, selectively inhibits RIP1
phosphorylation without affecting IDO activity, suggesting it as a superior RIP1 kinase
inhibitor (Degterev et al., 2013; Takahashi et al., 2012). However, because 7-Cl-O-Nec-1 is
not currently commercially available, most data on pharmacological targeting of RIP1 have
been obtained using Nec-1, especially in vivo experiments (Linkermann et al., 2012;
Rosenbaum et al., 2010; You et al., 2008; Zhu et al., 2011). Hence, interpretation of these
results requires consideration of its nonspecific effect, and additional experiments using
RIP3-deficient mice or RNAi knockdown of RIP kinase will help the precise understanding
of the role of RIP kinase in diseases.

5.3. Knockout animals for RIP kinases
Rip1−/− mice exhibit postnatal lethality with reduced NF-κB activation and extensive cell
death in lymphoid and adipose tissues. Rip1-deficient cells fail to activate NF-κB in
response to TNF-α and are susceptible to TNF-α-induced cell death (Kelliher et al., 1998),
suggesting that a reduction in prosurvival NF-κB signals may cause lethality in Rip1−/−

mice.

In contrast, Rip3−/− mice are viable and do not show gross abnormality in any of the major
organs including the retina. Fibroblasts and macrophages derived from Rip3−/− mice exhibit
comparable NF-κB activation in response to TNF-α (Newton et al., 2004). Although Rip3−/−

mice are indistinguishable from WT mice in physiological conditions, recent studies have
revealed that they display marked reduction in necrotic response against viral infection or in
tissue injury. Vaccinia virus, which encodes the viral caspase inhibitor B13R/Spi2, was
shown to sensitize the host cells to TNF-induced necrosis (Chan et al., 2003). Cho and
colleagues demonstrated that RIP3 is essential for the induction of necrosis after vaccinia
virus infection (Cho et al., 2009). Consequently, Rip3−/− mice fail to eliminate infected cells
and control viral replication. Interestingly, murine cytomegalovirus encodes a viral RIP
kinase inhibitor, which interacts with RIP1/3 via RHIM and counteracts necrosome
formation (Upton et al., 2008, 2010). These findings suggest that certain viruses have
strategy to evade elimination by inhibiting necrosis of the host cells. RIP3-dependent
necrosis is also implicated in cerulein-induced pancreatic injury, ethanol-induce liver injury,
atherosclerosis, and retinal degeneration after RD and in RP (He et al., 2009; Roychowdhury
et al., 2012; Lin et al., 2013; Trichonas et al., 2010; Murakami et al., 2012b) (please see the
detailed retinal phenotypes in next section).

Genetic ablation of Casp8−/− results in embryonic lethality with impaired development of
heart and vasculature (Varfolomeev et al., 1998). Because caspase-8 negatively regulates
RIP kinase-dependent necrosis (Feng et al., 2007; Lin et al., 1999), two independent groups
have tested the hypothesis that Casp8 deficiency may activate RIP kinase pathway during
embryonic development. Indeed, the embryonic lethality of Casp8−/− mice is completely
rescued by Rip3 deficiency, indicating the crucial function of caspase-8 in suppressing RIP
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kinase in vivo. Although Casp8−/−Rip3−/− mice display normal development and fertility,
aged animals develop lymphoadenopathy, probably because of impaired induction of
apoptosis and necrosis in lymphocytes (Kaiser et al., 2011; Oberst et al., 2011). The
inhibitory function of caspase-8 on RIP kinase is further confirmed by a recent study
showing that target deletion of Casp8 in intestinal epithelium induces RIP3-dependent
necrosis and intestinal inflammation. They also showed that increased levels of RIP3
expression and the presence of necrosis in Paneth cells in patients with Crohn’s disease,
suggesting that RIP kinase may be also important in the pathology of human diseases
(Gunther et al., 2011).

FADD and c-FLIP are components of the DISC and necrosome, and Fadd−/− and c-Flip−/−

mice show embryonic lethality with cardiac failure and hemorrhage, which are reminiscent
of the phenotype of Casp8−/− mice (Yeh et al., 2000; Yeh et al., 1998). Fadd−/− embryos
exhibit increased levels of RIP1, and Rip1 deficiency restores normal embryogenesis of
Fadd−/− mice (Zhang et al., 2011), indicating that FADD inhibits RIP1-dependent cell
death. This concept is further supported by other studies in which tissue-specific knockout
of Fadd in keratinocytes or intestinal epithelial cells caused RIP3-dependent necrosis in skin
or intestine (Bonnet et al., 2011; Zhang et al., 2011). Alternatively, He and colleagues
showed that Flip-deficient T cells become susceptible to RIP1-dependent necrotic cell death
in response to T cell receptor stimulation, suggesting that c-FLIP also inhibits RIP kinase
activation (He and He, 2013). cIap1−/−cIap2−/− mice die prenatally associated with defects
in cardiovascular development. This cardiac defects in cIap1−/−cIap2−/− mice are rescued by
additional Rip1 or Rip3 deficienty (Moulin et al., 2012), suggesting the ubiquitination of
RIP1 by cIAPs may negatively regulate RIP kinase activation during development. Taken
together, these in vivo data indicate that there are multiple molecules that regulate RIP
kinase activation during development and in disease.

5.4. The role of RIP kinase in photoreceptor cell death after RD
Although apoptosis is a predominant form cell death after RD, previous morphological
analysis described the presence of necrosis in RD-induced photoreceptor cell death
(Erickson et al., 1983). However, necrosis was not considered as a therapeutic target for a
long period because of the general concept that necrosis is an uncontrolled process of cell
death. During photoreceptor cell death after RD, death ligands such as TNF-α and Fas-L
(which mediate not only apoptosis but also necrosis) are up-regulated and contribute to
photoreceptor cell loss (Besirli et al., 2010; Nakazawa et al., 2011; Zacks et al., 2007).
However, caspase inhibition by the pan-caspase inhibitor Z-VAD is not sufficient to prevent
photoreceptor cell loss after RD (Hisatomi et al., 2001). Given the emerging roles of RIP
kinase-dependent necrosis especially in conditions where caspase pathway is inhibited, we
hypothesized that RIP kinase may act as an alternative pathway of photoreceptor cell death
after RD. Trichonas and colleagues demonstrated that, while RIP3 is barely detectable in the
normal retina, its expression increases over 10-fold in the retina after RD (Trichonas et al.,
2010). Induction of RIP3 also occurs during cerulein-induced pancreatitis, carotid artery
injury, and liver steatohepatitis (Csak et al., 2011; He et al., 2009; Li et al., 2010a). Because
the expression levels of RIP3 have been shown to correlate with necrotic responses in
various cell lines (He et al., 2009), the increased RIP3 may sensitize cells to undergo
necrosis in these pathological conditions. Furthermore, our morphological analysis using
TEM showed that treatment with Z-VAD decreases apoptosis but substantially increases
necrotic cell death of photoreceptors (Fig. 4A and B). Theses necrotic changes after caspase
inhibition are rescued by additional Nec-1 treatment or Rip3 deficiency (Fig. 4C). These
findings clearly demonstrate that RIP kinase-dependent necrosis is essential pathway for
photoreceptor cell death after RD, which acts in concert with caspase-dependent apoptosis.
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Recently, an independent group has also detected the involvement of RIP kinase in
photoreceptor cell loss after RD in a non-pigmented strain of rats. (Dong et al., 2012).

5.5. The role of RIP kinase in photoreceptor cell death in other retinal degenerative
diseases

In RP, vision loss typically begins with loss of night vision because of rod dysfunction and
death, followed by loss of daylight vision because of subsequent cone cell death. Rod
photoreceptor cell death in RP has been shown to occur through apoptosis (Chang et al.,
1993). In contrast, the mode of cone cell death has been less well characterized. In RP
patient eyes with extensive rod degeneration, TEM studies demonstrated that the remaining
cones had swollen cytoplasm, disruption of plasma membrane and autophagic vacuoles,
suggesting that nonapoptotic mechnisms may be involved in the secondary death of cones.
In our recent work, we investigated whether RIP kinase-dependent necrosis plays a role in
photoreceptor cell death in rd10 mice, which carry a missense mutation in the Pde6β gene.
RIP3 expression increases in rd10 mouse retinas in the phase of cone but not rod
degeneration. Rd10 mice lacking Rip3 develop comparable rod degeneration to control rd10
mice. In contrast, Rip3 deficiency substantially rescues cones against cell death in rd10
mice. Furthermore, TEM analysis showed that dying cones in rd10 mice exhibit necrotic
morphology, which is rescued by Rip3 deficiency (Murakami et al., 2012b). These findings
suggest that necrotic mechanisms involving RIP kinase are crucial in cone cell death in RP
and may be a potential therapeutic target. Further studies will be needed to clarify the roles
of RIP kinase in other models of RP.

Chang and colleagues investigated the function of Fas in vitro model of light-induced cell
death. They showed that treatment with Fas-L antagonist or the caspase-8 inhibitor prevents
light-induced apoptosis in 661W photoreceptor-like cells. However, it simultaneously
induces RIP kinase-dependent necrosis. Therefore, targeting both caspase and RIP kinase
pathways is required for efficient protection of 661W cells agains light-induced cell death
(Chang et al., 2012). The roles of RIP kinase-depenent necrosis in vivo light injury model
warrarnt further investigation.

In retinal ischemic-reperfusion injury model, Rosenbaum and colleagues showed that
intravitreal injection of Nec-1 protects retinal inner neurons against cell loss and provides
functional improvement. They also reported that Nec-1 inhibits autophagy activation after
retinal ischemic injury (Rosenbaum et al., 2010). In another study, Fujita and collegues
investigated the function of prothymosin-α, which swiches the cell death mode from
necrosis to neurotrophin-reversible apoptosis (Ueda et al., 2007), in retinal ischemic-
reperfusion injury. They showed that neurotrophins such as brain-derived neurotrophic
factor and erythropoietin are upregulated in the ischemic retina, and treatment with
prothymosin-α attenuates both apoptotic and necrotic cell death after ischemic injury (Fujita
et al., 2009). These findings suggest that not only apoptotic but also necrotic mechanisms
are involved in retinal degeneration, and that targeting necrotic pathways in combination
with endogenous anti-apoptotic mechanisms may be a potential therapy for retinal
degenerative diseases.

6. Atg family and autophagy
6.1. Molecular machinery of autophagy

Autophagy is the major catabolic mechanisms that involve degradation of cell’s own
components via lysosomal machinery (Mizushima et al., 2008). Upon induction of
autophagy, a small vesicular sac called the ‘isolation membrane’ elongates and subsequently
encloses a portion of cytoplasm, which results in the formation of a double-membraned
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autophagosome. Then, the outer membrane of the autophagosome fuses with a lysosome to
form autolysosome, leading to the degradation of the enclosed materials (Fig. 5).

Since the identification of Atg genes that are essential for autophagy induction in yeast
(Tsukada and Ohsumi, 1993), significant progress has been made in understanding the
molecular machinery of autophagy. Over 30 Atg genes have been identified in yeast, many
of which have mammalian homologues. In the induction of autophagy, Atg6 (also known as
Beclin-1) forms class III phosphoinositide-3-kinase (PI3-kinase) complex with Atg14,
vacuolar protein sorting (VPS)34, and p150/VPS15. Upon activation of class III PI3-kinase,
Atg12-Atg5 conjugate and microtubule-associated protein LC3, a mammalian homologue of
Atg8, are recruited to the isolation membrane, which sequesters cytoplasmic materials
(Ohsumi, 2001). LC3 is synthesized as a cytoplasmic precursor, which is cleaved by the
cysteine proteinase Atg4 (belonging to the caspase family) and becomes LC3-I (Kirisako et
al., 2000). LC3-I is subsequently conjugated with membrane-bound
phosphatidylethanolamine (PE) to form LC3-II, which is essential for autophagosome
completion (Ichimura et al., 2000). This LC3 conversion is mediated by ubiquitin ligase-like
activity of Atg7 (E1-like) and Atg3 (E2-like). Following the formation of autophagosome,
LC3-II is deconjugated by Atg4 and released from the membrane for recycling, or degraded
by lysosomal enzymes in the autolysosomes (Fig. 5).

LC3 has been a useful marker for monitoring and quantifying autophagy (Mizushima et al.,
2010). The conversion of LC3-I to LC3-II can be detected by Western blotting because
LC3-II migrates faster than LC3-I in SDS-PAGE due to the hydrophobicity of LC3-II.
Translocation of LC3 from the cytosol to the autophagosome membrane is visualized by the
immunofluorescence or overexpression of LC3-GFP fusion protein. However, it should be
noted that the number of LC3-II-positive autophagosomes does not always correlate with
autophagic activity. The increase in autophagosomes may result from either the increased
generation of autophagosomes and/or the reduced clearance of autophagosomes due to
impaired fusion of autophagosomes and autolysosomes. Similarly, the increased levels of
LC3-II expression represent either the increases in LC3 conversion and/or the decreased
degradation of LC3-II in the autolysosomes (Tanida et al., 2005).

6.2. The roles of autophagy in cellular homeostasis
6.2.1. Cell death mediated by autophagy—Autophagic cell death is a form of cell
death distinct from apoptosis and characterized primarily by the formation of numerous
autophagic vacuoles (Schweichel and Merker, 1973). This extensive activation of autophagy
in dying cells has led scientists to suggest that autophagy may play a major role in the
destruction of the cells (Kroemer and Levine, 2008). Indeed, genetic and biochemical
studies confirm that autophagy actively mediates cell death in certain conditions. For
instance, Yu and colleagues showed that caspase inhibiton in L929 fibroblasts induces cell
death associated with massive autophagy accumulation. Importantly, this autophagic cell
death is reversed by the autophagy inhibitor or knockdown of Atg7 or Beclin-1 (Yu et al.,
2004). In embryonic fibroblasts deficient for pro-apoptotic Bcl-2 family members Bax and
Bcl-2 homologous antagonist killer (Bak), photodamage induces autophagic cell death in a
manner dependent on Atg5 and Beclin-1 (Buytaert et al., 2006). These results indicate
excess autophagy can execute cell death, especially when cells are not able to undergo
apoptosis. In addition, several studies have shown the link between autophagy and necrosis.
Degterev and colleagues showed that autophagosome formation is induced downstream of
RIP kinase activation in Jurkat cells. However, because 3-methyladenine (3-MA) treatment
does not prevent death receptor-induced necrosis, autophagy may not actively contribute to
cell death execution in this condition (Degterev et al., 2005). On the other hand, Bonapace
and colleagues reported that combined treatment of glucocorticoids and obatoclax, an
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antagonist of pro-survival Bcl-2 family members, induces Atg protein- and RIP kinase-
dependent cell death, where Atg proteins act upstream of RIP kinase (Bonapace et al.,
2010). These findings indicate that there are substantial cross-talks between apoptosis,
autophagic cell death and necrosis, and elucidating the molecular links warrants further
investigation.

6.2.2. Cytoprotective roles of autophagy—It has been hypothesised that autophagy is
activated to counteract cellular stress and damage (Clarke, 1990). Recent accumulating
evidence shows that autophagy is critical for maintaining cellular homeostasis, as supported
by studies demonstrating increased cell death in cells lacking Atg5 or Beclin-1 (Boya et al.,
2005). Consistently, autophagy inhibition by Beclin-1 knockdown promotes sensitivity to
metabolic stress in tumor cells, indicating the prosurvival role of autophagy to confer stress
tolerance (Degenhardt et al., 2006). In addition, autophagy mediates the clearance and
recycling of defective proteins and organelles (Williams et al., 2006). In culture models of
Huntington disease, autophagy promotes the degradation of protein aggregates and prevents
cell death induced by mutations in the HTT gene (Bjorkoy et al., 2005; Ravikumar et al.,
2002). In a mouse model of Alzheimer disease induced by transgenic overexpression of
amyloid precursor protein, Pickford and colleagues showed that heterozygous deficiency of
Beclin-1 exacerbates amyloid-β deposition and neurodegeneration (Pickford et al., 2008).
These data suggest that autophagy mediates cell survival by eliminating mutant or defective
proteins during neurodegeneration. Accumulation of amyloid-β is also implicated in the
pathogenesis of AMD (Johnson et al., 2002; Yoshida et al., 2005). Wang and colleaguse
showed that autophagic markers are upregulated in the drusen of human AMD eyes or in
stressed RPE cells (Wang et al., 2009). Further studies should address whether autophagy
functions to counteract or promote the disease progression using in vitro and in vivo models
of AMD.

6.3. Autophagy inhibitors and inducers
6.3.1. Autophagy inhibitors—As autophagosome formation requires class III PI3-kinase
activity, one of the most commonly used pharmacological approaches to inhibit autophagy
involves the use of PI3-kinase inhibitors such as wortmannin, LY294002, or 3-MA
(Blommaart et al., 1997; Seglen and Gordon, 1982) (Fig. 5). However, these reagents can
also inhibit class I PI3-kinase activity (Knight et al., 2006), and both PI3-kinases regulate
not only autophagy but also a variety of cell signaling (e.g., membrane trafficking).
Furthermore, 3-MA is used at very high concentrations to inhibit autophagy (millimolar
range) so that it potentially affects other cellular processes (Caro et al., 1988). Another
approach is to interrupt autophagy maturation by lysosomotropic reagents such as
bafilomycin A1 or chloroquine (Fig. 5). These reagents block autophagy at a late stage by
inhibiting fusion between autophagosomes and autolysomes or lysosomal acidification
(Yamamoto et al., 1998; Suzuki et al., 2002). Inhibition of autophagy maturation results in
an increase in LC3-II-positive autophagic vacuoles, representing a decreased turnover of
autophagic vacuoles. Based on basic studies showing the pro-survival effect of autophagy in
tumor cells (Katayama et al., 2007), chloroquine and its derivative hydroxychloroquine has
been tested in clinical trials in multiple cancers as an adjuvant of chemotherapy (Mancias
and Kimmelman, 2011; Townsend et al., 2012). In a phase III trial for glioblastoma patients,
chloroquine showed a trend to improve mid-term survival when given in addition to
conventional treatment of glioblastoma (Sotelo et al., 2006).

6.3.2. Autophagy inducers—In the upstream of autophagic flux, class III PI3-kinase is
necessary for the formation of autophagosomes. Class III PI3-kinase is negatively regulated
by mammalian target of rapamycine (mTOR). Therefore, inhibitors of mTOR such as
rapamycin or Torin1 induce autophagy via the activation of class III PI3-kinase (Ravikumar
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et al., 2006; Thoreen et al., 2009) (Fig. 5). Rapamycin exerts a broad range of therapeutic
effect, including the ability to inhibit inflammation and proliferation, and has been approved
as an oral medication to prevent rejection in organ transplantation. Rapamycin has been
tested in clinical trials for treamtnent of AMD and diabetic retinopathy, and uveitis. Wong
and collegues repoted that repeated subconjunctival rapamycin treatment was well-tolerated
in patients with dry AMD; however, no positive anatomic or functional effects were
indentified in their phase I/II trial (Wong et al., 2013). Lithium is also known to induce
autophagy and enhance the clearance of mutant proteins. The autophagy-enhancing
properties of lithium are not dependent on mTOR but mediated by decreasing myo-
inositol-1,4,5-triphosphate (IP3) (Sarkar et al., 2005). Lithium has been translated to clinical
trial for the treatment of amyotrophic lateral sclerosis; however, this trial has been stalled
because of the adverse events related to lithium (Sacca et al., 2013).

6.4. Knockout animals for Atg families
Systemic deletion of Atg genes essential for autophagic machinery resulted in neonatal
(Atg3−/−, Atg5−/−, and Atg7−/−) or embryonic (Atg8−/−) lethality in mice, indicating the
essential roles of autophagy in development and differentiation (Mizushima and Levine,
2010). Mice deficient for Atg4C which encodes autophagin-3 and is a most widely
expressed Atg4 homolog in mouse and human tissues, are viable, fertile, and develop
normally. Atg4C−/− mice show a decreased autophagic activity in the diaphragm muscle
under starved conditions, indicating that Atg4C is required for a proper autophagic response
under stressed conditions (Marino et al., 2007). In contrast, mice deficient for Atg4B
(autophagin1) exhibit defects in inner ear development (Marino et al., 2010). Atg4B−/− mice
also show abnormal structure of deep cerebellar neurons, displaying mild impairment of
motor performance (Read et al., 2011).

The roles of basal level of autophagy have been further investigated using conditional Atg
knockout mice. Komatsu and colleagues demonstrated that liver-specific Atg7 deficiency
leads to impaired autophagosome formation and hepatomegaly associated with hepatocyte
swelling and accumulation of ubiquitin-positive protein aggregates (Komatsu et al., 2005).
Hara and colleagues reported that Atg5 deficiency in CNS neurons induces accumulation of
ubiquitin-positive inclusions in the brain and loss of neuronal cells such as Purkinje cells,
accompanied by progressive deficits in motor function (Hara et al., 2006). Neuron-specific
Atg7 knockout mice show more severe degeneration in the cerebral and cerebellar cortices,
and die within 28 weeks of age (Komatsu et al., 2006). These data suggest that basal
autophagy is critical for cell survival, probably through the clearance of ubiquitin-positive
defective proteins in multiple organs.

6.5. Research in autophagy and photoreceptor cell death
Photoreceptor cell autophagy was first documented by Reme and colleagues in a series of
TEM studies, and was considered to be an important degradative pathway of visual cycle
proteins and organelles in normal condition (Reme, 1977; Reme and Young, 1977). They
also showed that the number of autophagic vacuoles increases after light exposure in frog
and rat photoreceptor cells (Reme and Knop, 1980; Reme et al., 1999). They speculated that
autophagic degradation of visual pigments may protect photoreceptor cells against light
damage by absorbing too many photons. In accordance with recent advances in the
molecular understanding of autophagic machinery, scientists have addressed the role of
autophagy in photoreceptor cell death after light injury. Kunchithapautham and colleagues
showed that the levels of LC3-II are up-regulated in the mouse retina after light injury and
661W photoreceptor-like cells treated with H2O2. Treatment with 3-MA or knockdown of
Atg5 or Beclin 1 partially blocks 661W cell death induced by H2O2 (Kunchithapautham and
Rohrer, 2007), suggesting the possibility that autophagy may contribute to oxidative stress-
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induced photoreceptor cell death. In contrast, a number of in vivo experiments have
demonstrated the protective function of autophagy in light-induced retinal damage. Wang
and colleagues showed that suppression of autophagy by genetic activation of mTOR
sensitizes photoreceptor cells to age- and light-dependent degeneration in Drosophila (Wang
et al., 2009). Consistently, Midorikawa and colleagues reported that knockdown of Atg-7 or
Atg-8 causes a similar phenotype, along with rhodopsin accumulation (Midorikawa et al.,
2010). Moreover, Chen and colleagues recently demonstrated that heterozygous Beclin-1
deficiency or rod photoreceptor-specific Atg7 deficiency increased the susceptibility to light-
induced retinal degeneration in mice. Interestingly, in contrast to severe neuropathology in
the Atg7−/− brain, its deficiency in rod photoreceptors cells does not show overt abnormality
in retinal structure at least by the ages of 6 months (Chen et al., 2013), suggesting that in
mammalian photoreceptor cells, autophagy may be more involved in the stress response
against photooxidative damage than maintaining visual metabolism in normal conditions.

The roles of autophagy in RD have been relatively less investigated. Recently, Besirli and
colleagues reported that the levels of Atg5 and LC3-II are elevated in the rat retina after RD
in a Fas-dependent manner. Treatment with 3-MA or knockdown of Atg5 exacerbates
photoreceptor cell loss after RD, along with increased activity of caspase-8 (Besirli et al.,
2011). These findings suggest that Fas activates both autophagic and apoptotic pathways,
where autophagy negatively regulates caspase-dependent apoptosis; however, the detailed
mechanisms have not been fully elucidated.

In human autopsy samples of RP, Szamier and Berson reported that autophagic vacuoles are
observed in the cytoplasm of remaining cone photoreceptor cells (Szamier and Berson,
1977). In a mouse model of RP, we confirmed that whereas rod photoreceptor cells mainly
die through apoptosis, the subsequent cone cell death shows necrotic features and
accumulation of autophagic vacuoles (Murakami et al., 2012b). Punzo and colleagues
demonstrated gene expression changes in the insulin/mTOR pathway during cone
degeneration in microarray analysis of RP models. Treatment with insulin delays cone cell
death in rd1 mice (Punzo et al., 2009); however, whether this effect is mediated through
suppressing autophagy or directly activating pro-survival pathways (such as Akt) remain to
be addressed in further studies.

Taken together, autophagy is activated in response to various stresses to photoreceptor cells.
In most cases, autophagy appears to protect photoreceptor cells against cellular damage;
however it may also mediate cell death when activated excessively. Defining the roles of
autophagy in retinal degeneration warrants further studies using tissue-specific knockout
mice or more specific autophagy inhibitors.

7. Mitochondria and cell death
7.1. Mitochondrial outer membrane permeabilization

While mitochondria are double-membrane metabolic organelles that help cells to live, they
also function as a critical regulator of cell death through the mitochondrial outer membrane
permeabilization (MOMP) and the release of IMS proteins (Tait and Green, 2010). As
described above, the release of cytochrome c triggers the apoptosome formation and
caspase-9 activation. On the other hand, released AIF translocates into the nucleus and
mediates caspase-independent cell death, either apoptosis or necrosis (Artus et al., 2010;
Susin et al., 1999). Smac supports caspase activation by interacting with IAP proteins,
whereas it also promotes RIP kinase-dependent necrosis in conditions where caspases are
inhibited (Vanlangenakker et al., 2010). Therefore, MOMP is involved in both apoptotic and
necrotic signaling.
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There are at least two distinct mechanisms for MOMP. Firstly, pro-death Bcl-2 family
proteins such as Bax and Bak form membrane pores through oligomerization, allowing for
the release of cytochrome c and other IMS proteins (Cheung et al., 2005; Suzuki et al.,
2000). Bax/Bak are localized in the cytosol in normal conditions; however, on activation by
BH3-only proteins, Bax and Bak undergo conformational change that exposes the BH3
domain and hydrophobic groove, leading to oligomerization and translocation to the
mitochondrial outer membrane (Czabotar et al., 2013; Dewson et al., 2008; Hsu et al., 1997)
(Fig. 6A and B). MOMP also occurs secondary to the mitochondrial permeability transition
(MPT) induced by the opening of pre-existing mitochondrial channels such as the
permeability transition pore complex (PTPC) (Brenner and Grimm, 2006). PTPC is a
polyprotein complex formed at the junction between the inner and outer mitochondrial
membrane; it is composed of voltage-dependent anion channel (VDAC) in the outer
membrane, adenine nucleotide translocator (ANT) in the inner membrane, and cyclophilin D
in the matrix. Bax directly interacts with ANT and regulates its opening at least in part
(Marzo et al., 1998). PTPC opening induces an influx of fluid into the matrix, which results
in mitochondrial swelling and the rupture of mitochondrial outer membrane (Fig. 6A and C).
Overexpression studies have suggested the role of MPT in both apoptosis and necrosis
(Baines et al., 2005; Li et al., 2004). However, genetic knockout experiments have shown
that cyclophilin D-dependent MPT is essential for necrotic cell death induced by Ca2+

overload or oxidative stress, but not for death receptor- or staurosporine-induced apoptosis
(Baines et al., 2005; Nakagawa et al., 2005), suggesting that MPT may be more
preferentially involved in necrotic cell death (Galluzzi and Kroemer, 2008).

7.2. Regulation of mitochondrial integrity by Bcl-2 family proteins
MOMP is tightly controlled by the balance and interaction between pro-survival and pro-
death members of Bcl-2 family proteins. They are divided into three categories based on
their structure and function: 1) the pro-survival Bcl-2 members that share all Bcl-2
homology domain 1 (BH1), BH2, BH3 and BH4 (e.g. Bcl-2, Bcl-xl); 2) the ‘BH3-only’ pro-
death members, which possess only a nine amino acid BH3 (e.g. Bid, Bim, PUMA, Bmf,
Bad, Noxa); and 3) the multi-domain pro-death members, which contain BH1, BH2 and
BH3 (e.g. Bax, Bak) (Tait and Green, 2010) (Fig. 6A).

The pro-survival Bcl-2 proteins are the mammalian homolog of CED-9 in C. elegans, which
negatively regulates CED-3/caspases and CED-4/Apaf-1 (Lettre and Hengartner, 2006).
These Bcl-2-like proteins control membrane integrity and are located on the cytoplasmic
surface of the mitochondria and endoplasmic reticulum (ER). The overexpression of Bcl-2 is
associated with carcinogenesis in B-cell lymphoma and other tumors (Tsujimoto et al.,
1985), and prevents cell death induced by mitochondrial and/or ER stresses (Vaux et al.,
1988).

In contrast, BH3-only proteins are homologs of the EGL-1 protein (encoded by the egg-
laying defective-1 gene in C. elegans), which acts upstream of CED-9 as an initiator of cell
death. There are at least 10 mammalian BH3-only proteins, which activate Bax/Bak by
diverse and redundant mechanisms. For example, caspase-8-dependent cleavage of Bid
mediates its translocation to the mitochondrial outer membrane, where the cleaved Bid
interacts with Bax and induces its oligomerization (Lovell et al., 2008). On the other hand,
Bim and PUMA are activated in response to ER stress or DNA damage (Puthalakath et al.,
1999; Puthalakath et al., 2007; Reimertz et al., 2003). Bim is normally sequestered to the
microtubule-associated dynein motor complex; however, cellular stress disrupts its
interaction. The free Bim directly activates Bax or inactivates pro-survival activity of Bcl-2
(Gavathiotis et al., 2010; Gavathiotis et al., 2008). Increased PUMA expression following
DNA damage promotes Bax activation by directly interacting with Bax or by disrupting the
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interaction between Bcl-xl and p53, allowing p53-dependent Bax/Bak activation (Follis et
al., 2013; Zhang et al., 2009b). Bmf is involved in anoikis (from Greek “without home”), a
mechanism cell death caused by the loss of cell attachment and integrin signaling. Bmf is
released from the myosin V actin motor complex in response to the stimuli that affect the
actin cytoskeleton, thereby binding and inactivating Bcl-2-like proteins (Puthalakath et al.,
2001). Both Bim and Bmf are substrates of the stress-activated proteins kinase, c-Jun
NH(2)-terminal kinase (JNK), and their phosphorylation by activated JNK induces their
release from the motor complexes (Lei and Davis, 2003). Surprisingly, recent genome-wide
siRNA screens have identified Bmf as a crucial component of RIP kinase-dependent
necrosis (Hitomi et al., 2008), although the precise mechanisms by which Bmf is activated
during necrosis and mediates RIP kinase activation remain elusive.

7.3. MOMP as a target of neuroprotection in RD
The mitochondrial release of IMS proteins, such as cytochrome c and AIF, contributes to
photoreceptor cell death after RD (Hisatomi et al., 2008; Hisatomi et al., 2001). Therefore,
the blockade of MOMP may be a potential strategy to prevent the release of IMS proteins
and the subsequent photoreceptor cell death. Indeed, Yang and colleagues showed that the
photoreceptor cell loss after RD is substantially reduced in Bax−/− mice (Yang et al.,
2004b). Consistently, treatment with the cell-permeable BH4 domain peptide of Bcl-xl
prevents photoreceptor cell death after experimental RD, along with the suppression of
caspase-9 activity and reduced AIF translocation (Hisatomi et al., 2008). These findings
suggest that the regulation of mitochondrial integrity by Bcl-2 family proteins is critical for
photoreceptor cell death after RD. In addition, Hisatomi and colleagues demonstrated that
HIV protease inhibitors (PIs) provide protection of photoreceptor cells in experimental RD
(Hisatomi et al., 2008). Besides their effect on HIV replication, PIs have been shown in
recent studies to also inhibit cell death through interacting with ANT and preventing PTPC
opening (Weaver et al., 2005). Systemic oral administration of PIs prevents photoreceptor
cell death as well as the release and activation of IMS proteins after RD. These findings
suggest that in addition to Bax channels, PTPC pores contribute to the loss of mitochondrial
membrane integrity in dying photoreceptors.

Although the involvement of BH3-only proteins in RD has not been fully elucidated, Zacks
and colleagues showed that Bid is transcriptionally upregulated and cleaved to its active
form in mouse retinas after RD (Zacks et al., 2004). Because Bid is cleaved by active
caspase-8, Bid may mediate MOMP and photoreceptor apoptosis in downstream of caspase
signaling. In addition, Bmf would be an interesting BH3-only protein that could be involved
in RD, because Bmf is activated in cells detaching from the surrounding extracellular matrix
and mediates RIP kinase-dependent necrosis (Puthalakath et al., 2001; Hitomi et al., 2008).
Further studies will be needed to clarify which BH3-only proteins are activated and play
pivotal roles in photoreceptor cell death after RD.

7.4. The role of MOMP in other retinal degenerative diseases
In a light injury model, Hahn and colleagues reported that combined deficiency of Bax and
Bak prevents photoreceptor cell loss more effectively than Bax deficiency (Hahn et al.,
2004). Conversely, rod photoreceptor-specific knockout of Bcl-xl increases the susceptibility
to light injury (Zheng et al., 2006). Furthermore, transgenic overexpression of Bcl-2 or Bcl-
xl ameliorates light-induced retinal degeneration (Chen et al., 1996; Joseph and Li, 1996),
confirming that Bcl-2 family proteins are critical regulators of photoreceptor cell death after
light injury.

In RP models, Bax deficiency alone does not prevent photoreceptor cell death in rd1 mice,
an RP model with the Pde6b mutation (Mosinger Ogilvie et al., 1998). The effect of Bax and
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Bak double knockout on retinal degeneration in RP models has not been tested yet. The
results from Bcl-2 overexpression in RP models are controversial: transgenic overexpression
of Bcl-2 delayed photoreceptor degeneration in rd1 mice or rhodopsin mutant mice in one
study (Chen et al., 1996), but did not show any protection in another study (Joseph and Li,
1996).

Cotter and colleagues investigated the role of Bim in retinal cell death during development
and degeneration. They showed that Bim is highly expressed during postnatal retinal
development but substantially decreased thereafter (McKernan et al., 2007). Developmental
apoptosis of retinal neurons is delayed in Bim−/− mice, confirming that Bim is important for
cell elimination during development (Doonan et al., 2007). Although the expression level of
Bim is low in adult ganglion cells, it is substantially upregulated and contributes to retinal
ganglion cell death after optic nerve crush injury (Harder et al., 2012). In contrast, Bim
remains to be absent in the retinas of rd1 mice (Doonan et al., 2007), suggesting that Bim
may not be involved in retinal degeneration caused by Pde6β mutation. In addition, the
glacomatous retinal ganglion cell death in DBA/2J mice is not rescued by Bim deficiency
(Harder et al., 2012). These finding suggest that Bcl-2 family proteins may differentially
contribute to the retinal cell death depending on its causes and conditions, and further
studies may deepen the understanding of the role of MOMP in retinal degeneration.

8. Inflammation and cell death
8. 1. Interaction between dying cells and phagocytes

Clearance of cellular corpes by phagocytes is a classical feature of apoptosis. Previous TEM
studies of developmental cell death showed that fragmented apoptotic bodies are engulfed
and digested by neighboring cells or professional phagocytes such as macrophages
(Schweichel and Merker, 1973). An important aspect of this process is the lack of severe
inflammation and tissue scarring. Further studies have revealed the molecular mechanisms
by which apoptotic cells are recognized by phagocytes and modulate inflammatory
response. For example, when cells undergo apoptosis, they release “find-me” signals such as
nucleotides and lipid mediators to attract phagocytes. Surface exposed PS on apoptotic cells
binds to receptors on phagocytes and acts as an “eat-me” signal to facilitate the engulfment
of apoptotic cells by phagocytes. In addition, apoptotic corpes mediates the intracellular
signaling to repress pro-inflammatory cytokine production and promotes immune tolerance
(Ravichandran, 2011). Inappropriate clearace of apoptotic cells can lead to non-resolving
inflammation and has been linked to autoimmune disorders and developmental
abnormalities (Nathan and Ding, 2010; Nagata et al., 2010).

In contrast, necrosis is generally thought to be immunogenic. Intracellular macromolecules
released from necrotic cells act as damage-associated molecular patterns (DAMPs) that
activate inflammatory receptors such as TLRs. Among them, high-mobility group box 1
(HMGB1) is one of the most characterized DAMPs released from necrotic cells (Lotze and
Tracey, 2005). Although HMGB1 is a nuclear protein that regulates transcription activity,
extracellular HMGB-1 promotes inflammation through the interaction with TLRs. HMGB1
levels are increased in the serum of patients with sepsis (Wang et al., 1999), and
neutralization of HMGB1 reverses the lethality of animal models of sepsis (Yang et al.,
2004a). Furthermore, Duprez and colleagues reported that Rip3 deficiency prevents the
extracellular release of HMGB1 and protects mice from lethal sepsis (Duprez et al., 2011).
These findings suggest that necrosis and the subsequent release of DAMPs may be a key
inflammatory mediator in sepsis. Besides HMGB1, multiple proteins, nucleic acids and
organelles, such as S100, HSP, histones, DNA, mRNA, and damaged mitochondria are
shown to function as DAMPs when they are released into the extracellular space (Zitvogel et
al., 2010).
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Nonetheless, this concept that apoptosis is tolerogenic while necrosis is immunogenic has
been challenged in certain conditions. Casares and colleagues showed that tumor cells
undergoing caspase-dependent apoptosis in response to chemotherapy can elicit an effective
anti-tumor immune response (Casares et al. 2005). On the other hand, necrotic cells can be
engulfed by macrophages without producing inflammatory cytokines (Hirt and Leist, 2003;
Brouckaert et al., 2004). These findings suggest that immunological response may be related
not only to cell death modes but also to the types and intensity of cell death stimuli, the
amount of dying cells, and phagocyte activity.

8.2. Inflammatory signals from dying photoreceptor cells
The extracellular exposure of PS is the most-characterized “eat-me” signal for phagocytes
(Ravichandran, 2011). PS is a phospholipid component, which is usually present in the inner
leaflet of the plasma membrane. However, when cells undergo apoptosis (or necrosis in
certain conditions), PS is exposed to the outer leaflet together with other plasma membrane
lipids in caspase-dependent and caspase-independent manners (Krysko et al., 2004). There
are multiple receptors on macrophages that recognize PS exposure, such as CD36 and the T
cell immunoglobulin and mucin family receptors (Miyanishi et al., 2007). PS exposure and
its recognition by the phagocyte receptors are critical for the engulfment of dying cells. In
experimental RD, Hisatomi and colleagues demonstrated that blockade of the interaction
between PS and its receptors leads to the accumulation of cell debris in the subretinal space
(Hisatomi et al., 2003), indicating that macrophage-mediated phagocytosis is critical for the
clearance of dying photoreceptor cells after RD.

Extracellular release of ATP is a key “find-me” signal to recruit macrophages to the site of
injury (Davalos et al., 2005). ATP is secreted actively by exocytosis, anion channels, or
transporters in an early phase of apoptosis, or released passively via the loss of membrane
integrity. Extracellular ATP is sensed by the purinergic P2Y2 receptor expressed on
macrophages. ATP also activates the inflammasome through its action on P2X7, or mediates
cell death via the formation of P2X7-dependent pore and caspase activation (Khakh and
North, 2006). Notomi and colleagues showed that intraocular injection of ATP induces
photoreceptor cell death through the activation of P2X7 in mice and primary retinal cultures
(Notomi et al., 2011). In addition, extracellular ATP is substantially increased in the vitreous
of patients with subretinal hemorrhage associated with AMD (Notomi et al., 2013). The
involvement of ATP release in other retinal degenerative diseases and its roles on cell death
and inflammation warrant further investigation.

High-mobility group box 1 (HMGB1), a nuclear protein that regulates transcription, has a
divergent extracellular function as a DAMP (Lotze and Tracey, 2005). HMGB1 is passively
released from necrotic cells but not from apoptotic cells (Scaffidi et al., 2002). HMGB1 is
also actively secreted in response to LPS or TNF-α through its acetylation (Bonaldi et al.,
2003). Extracellular HMGB-1 binds and activates TLR2, TLR4 and receptor for advanced
glycation end products, and enhances pro-inflammatory cytokine production. Arimura and
colleagues showed that the extracellular release of HMGB1 occurrs in human patients and
experimental models of RD (Arimura et al., 2009), suggesting that HMGB1 released from
dying or dead photoreceptor cells may modulate retinal inflammatory response and
degeneration after RD (Fig. 7). We recently investigated the role of RIP kinase in retinal
degeneration induced by dsRNA, a component of drusen in AMD. Our study showed that
the necrosis of RPE and retinal inflammation are attenuated in Rip3−/− mice, along with
decreased levels of intravitreal release of HMGB1. In vitro, Rip3 deficiency inhibits the
release of HMGB1 from necrotic RPE cells and dampens pro-inflammatory cytokine
induction evoked by necrotic components. On the other hand, it does not modulate directly
pro-inflammatory cytokine production after dsRNA stimulation (Murakami et al., 2013).
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These findings suggest that the release of DAMPs from necrotic cells may contribute to
inflammatory amplification in retinal degenerative diseases such as AMD. Further
investigation of the roles of DAMPs in retinal degeneration will lead to better understanding
of the pathogenesis of the diseases and identification of novel therapeutic targets.

8.3. Production of cytokines/chemokines and macrophage infiltration after RD
Cytokines and chemokines are released in response to tissue injury and mediate cell
survival/death and inflammation. In human RD surgical samples, transcriptome analysis has
revealed enriched clusters demonstrating inflammatory responses and co-regulation of genes
involved in photoreceptor degeneration (Delyfer et al., 2011), indicating that these two
pathological processes are closely linked in RD. Multiplex analysis of subretinal fluid shows
significantly higher levels of IL-6 and various chemokines in rhegmatogenous RD patients
who developed redetachments due to postsurgical proliferative vitreoretinopathy (Ricker et
al., 2010). The vitreous fluid from patients with RD also contains substantially higher levels
of TNF-α, IL-1β, IL-6, IL-8 and MCP-1, compared to samples from patients without RD
(Bakunowicz-Lazarczyk et al., 1997; Yoshimura et al., 2009). Furthermore, Nakazawa and
colleagues showed that the mRNA levels of TNF-α, IL-1β and MCP-1 are up-regulated as
early as 1 hr after experimental RD, suggesting that these cytokines/chemokines may
actively contribute to the pathology of RD (Nakazawa et al., 2006). Indeed, as described
above, TNF-α induces photoreceptor cell death after RD along with the activation of
caspase-8 and RIP kinase. In addition, blockade of TNF-α suppresses the retinal infiltration
of macrophages and microglial cells (Nakazawa et al., 2011; Trichonas et al., 2010).
Therefore, not only pro-death but also pro-inflammatory signals of TNF-α could be involved
in photoreceptor loss after RD. In another study by Nakazawa and colleagues, genetic
deficiency of Mcp1 substantially reduces macrophage/microglia recruitment and attenuates
photoreceptor cell loss after RD. In primary retinal mixed cultures, MCP-1 treatment
induces photoreceptor cell loss; however, this cytotoxic effect is abolished by the removal of
CD11b-positive macrophages/microglia from the retinal cultures (Nakazawa et al., 2007).
These findings suggest that MCP-1 mediates photoreceptor cell death indirectly through
activation and recruitment of macrophages/microglia after RD. Protection against RD-
induced photoreceptor cell death is also obtained by genetic deletion of Cd11b/Cd18, an
integrin critical for leukocyte recruitment, or with the treatment with systemic steroids
(Nakazawa et al., 2007; Nakazawa et al., 2011), further confirming the pivotal role of
inflammation in photoreceptor cell loss after RD (Fig. 7). However, it should be noted that
inflammation is not always detrimental, but may also maintain tissue homeostasis by
removing waste materials and dead cells. Recent studies have shown that two distinct
macrophage subsets, i.e., ‘classically activated’ pro-inflammatory (M1) or ‘alternatively
activated’ anti-inflammatory (M2) cells, play divergent roles during neurodegeneration. Cao
and colleagues showed that advanced AMD macula contain a higher M1 to M2 chemokine
transcript compared with aging non-AMD eyes (Cao et al. 2011). Although the function of
M1 and M2 macrophages in retinal degeneration remain elusive, Kigerl and collegues
reported that M1 macrophages are neurotoxic while M2 macrophages promote axonal
regeneration in cultured cortical neurons (Kigerl et al., 2009). In experimental autoimmune
encephalitis, polarization to the M1 phenotype leads to enhanced demyelination and brain
inflammation, which is reversed by the adaptive transfer of M2 macrophages (Qin et al.,
2012). Therefore, the ‘neurotoxic’ subset of macrophages may be a potential target for the
treatment of neurodegeneration, and characterization of macrophage subsets in RD and other
retinal diseases will be an interesting area of future studies.
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9. Conclusions
Photoreceptor cell death is the ultimate cause of vision loss in RD and other retinal
degenerative disorders. Apoptosis is the best-characterized form of programmed cell death;
since the term was coined by Kerr and colleagues from morphological observation, a body
of genetic and biochemical investigation has identified the key molecules that initiate and
execute apoptosis. Furthermore, studies have implicated the involvement of apoptosis in the
process of development as well as the pathogenesis of various disorders including retinal
degeneration. However, despite more than a decade of work, attempts to achieve
neuroprotection by pharmacologically targeting apoptosis have largely failed. Recent
progress in cell death research has demonstrated that non-apoptotic forms of cell death, such
as autophagy and necrosis, are also highly regulated and active processes. In clinically
relevant models of RD, we and others have shown that not only apoptotic but also non-
apoptotic pathways contribute to photoreceptor cell death, and that simultaneously targeting
key mediators in both pathways (e.g., caspases and RIP kinase) is effective in preventing
photoreceptor cell loss. These findings provide new insights into the molecular mechanisms
of photoreceptor cell death; however, there remain many unanswered questions. Given the
redundancy and crosstalk between apoptotic, autophagic, and necrotic pathways, it is
important to clarify what factors determine the predominance of a particular pathway and
photoreceptor cell fate. Undoubtedly, there are RIP kinase-independent mechanisms to
induce necrosis, which remain to be elucidated. Although it seems reasonable that
autophagy is activated in the starved photoreceptor cells after RD, its detailed function
remains to be elucidated. The regulatory roles of mitochondria in each cell death type and
the interaction between cell death and inflammation during retinal degeneration warrants
further investigation. We believe that further dissection of the complex molecular
mechanisms underlying photoreceptor cell death will lead to better understanding of the
pathophysiology of RD and developing novel therapeutics for preventing vision deficits due
to photoreceptor cell loss.
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Figure 1. Caspase signaling
A. The structure of caspase family proteins and components of DISC and apoptosome.
DED, Death effector domain; DD, Death domain; KD, Kinase domain; ID, Intermediate
domain; RHIM, RIP homotypic interaction motif; p20, p20 subunit; p10, p10 subunit;
CARD, Caspase activation and recruit domain; NBD, Nucleotide binding domain; LRR,
Leucine rich repeats; PYD, Pyrin domain; NACHT, NAIP (neuronal apoptosis inhibitory
protein), CIITA (MHC class II transcription activator), HET-E (incompatibility locus
protein from Podospora anserina) and TP1 (telomerase-associated protein) domain.
B. The extrinsic pathway is initiated by the biding of death ligands to their cell-surface death
receptors. The death domains of these receptors recruit adaptor molecules such as FADD
and caspase-8. Multimerization of caspase-8 in the DISC leads to its activation and cleavage
of the downstream effector caspases such as caspase-3. On the other hand, the intrinsic
pathway is triggered by the release of pro-apoptotic proteins from the mitochondria.
Released cytochrome c forms the apoptosome with Apaf-1 and caspase-9. Additionally,
released Smac enhances caspase activation through the neutralization of IAP proteins. Of
note, there is a cross-talk between the extrinsic and intrinsic pathways. Active caspase-8
cleaves the BH3-only protein Bid, which in turn initiates the release of mitochondrial pro-
apoptotic proteins.
C. The inflammasome is formed in response to diverse danger signals such as ROS, ATP,
amyloid-β and dsRNA. Activation of caspase-1 in the inflammasome leads to the cleavage
of pro-ILβ and pro-IL18 into their mature pro-inflammatory forms and promotes their
secretion.
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Figure 2. AIF signaling
A. The structure of AIF protein. MLS, mitochondrial localization sequence; TMS,
transmembrane segment; FAD, flavin adenine dinucleotide-binding domain; NADH,
nicotinamide adenine dinucleotide hydride-binding domain; NLS, nuclear localization
sequence.
B. In healthy state, AIF is located in the mitochondrial inner membrane and modulates the
vital mitochondrial function. AIF regulates the complex I activity, and thus is critical for the
mitochondrial oxidative phosphorylation and cell survival.
C. In contrast, under stressed condition, AIF translocates from the mitochondria into the
nucleus, where it functions as a caspase-independent inducer of cell death. The
mitochondrial release of AIF proceeds by a two-step process: MOMP and proteolytic
cleavage. Released AIF interacts with a number of proteins such as cyclophilin A and binds
directly to DNA and RNA in the nucleus, thereby inducing chromatinolysis.
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Figure 3. RIP signaling
A. The structure of RIP signaling components. TRADD N, TRADD N-terminal domain;
DD, Death domain; RING, really interesting new gene domain; Zn finger, Zinc finger
domain; TRAF N, TRAF N-terminal domain; TRAF C, TRAF C-terminal domain; BIR,
Baculovirus IAP repeat domain; CARD, Caspase activation and recruit domain; DED, Death
effector domain; p20, p20 subunit; p10, p10 subunit; KD, Kinase domain; ID, Intermediate
domain; RHIM, RIP homotypic interaction motif.
B. In response to TNF-α stimulation, RIP1 is recruited to TNFR and forms a membrane
associated complex with TRADD, TRAF2 and cIAPs. cIAPs ubiquitinate RIP1, which in
turn mediate NF-κB activation. Nuclear translocation of p65/p50 subunits promotes the
production of pro-survival genes such as cIAPs and c-FLIPs as well as deubiquitinating
enzymes such as CYLD and A20, which act as a negative feedback loop in NF-κB
signaling.
C and D. RIP1 switches its function to a regulator of cell death when it is deubiquitinated by
CYLD or A20. Deubiquitination of RIP1 abolishes its ability to activate NF-κB, and leads to
the formation of cytosolic pro-death complexes. These complexes contain TRADD, FADD,
RIP1, caspase-8, c-FLIP and/or RIP3, and mediates either apoptosis or necrosis depending
on cellular conditions. Multimerization of caspase-8 in the DISC mediates a conformational
change to its active form, thereby inducing apoptosis (C). The catalytic activity of
caspase-8-c-FLIP heterodimer complex cleaves and inactivates RIP1 and RIP3. In
conditions where caspases/c-FLIPs are inhibited or cannot be activated efficiently, RIP1
forms the necrosome with RIP3, thereby promoting necrosis (D).
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Figure 4. TEM findings and proposed mechanisms of photoreceptor cell death after RD
A-C. TEM microphotographs show the outer nuclear layer of the mouse retina 3 days after
RD. The eyes were treated with vehicle (A), Z-VAD (B) or Z-VAD plus Nec-1 (C). A:
apoptotic cell. N: Necrotic cell. Scale bar, 5 μm. After RD, photoreceptor cell death occurs
mainly through apoptosis (A). Caspase inhibition by the pan-caspase inhibitor Z-VAD
decreases apoptosis but increases RIP kinase-dependent necrosis (B). Simultaneous
blockade of both caspase and RIP kinase pathways provides efficient protection against
photoreceptor cell loss (C).
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Figure 5. Autophagy signaling
Starvation activates autophagy through inhibition of mTOR, which negatively regulates
ULK1 and Class III PI3-kinase. Activation of Class III PI3-kinase in the Beclin-1-
interacting complex is a key step in the formation of isolation membrane. Elongation of
isolation membrane requires two ubiquitin-like conjugation systems: the Atg-5-Atg12
conjugation system and the LC3 conjugation system. Atg5-Atg12 complex and PE-
conjugated LC3 (LC3-II) are recruited to isolation membrane, and facilitate the formation of
autophagosome. After fusion with lysosome, the autophagosomal content is degraded in the
autolysosome. Autophagy is critical for cell survival by mediating the clearance and
recycling of defective proteins and organelles. Nonetheless, autophagy also induces cell
death via excessive self-degradation.
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Figure 6. Regulation of MOMP
A. The structure of Bcl-2 family proteins. BH, Bcl-2 homology domain; TM,
transmembrane domain.
B. Bax/Bak are localized in the cytosol in normal conditions. However, on activation by
BH3 only proteins, Bax and Bak undergo conformational change, leading to the
oligomerization and translocation to the mitochondrial outer membrane. The formation of
Bax/Bak channels allow for the release of cytochrome c and other IMS proteins.
C. PTPC is a polyprotein complex composed of VDAC, ANT and cyclophilin D. PTPC
opening induces an influx of fluid into the matrix, which results in mitochondrial swelling
and the rupture of mitochondrial outer membrane, thereby facilitating the non-selective
release of mitochondrial proteins.
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Figure 7. Inflammation and photoreceptor cell death
Cell death and Inflammation are interconnected. RD induces the production of cytokines and
chemokines such as TNF-α and MCP-1, which mediate the activation of macrophages and
microglial cells. Activated inflammatory cells infiltrate into the outer nuclear layer of the
retina and stimulate photoreceptor cell death. Concomitantly, dying photoreceptor cells
release numerous molecules such as ATP and HMGB1. These molecules are known as
DAMPs, and amplify inflammatory response through the binding to TLRs and other cell
surface receptors on inflammatory cells.
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