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The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the
Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also
outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function
in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including
schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory
agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation
in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used
to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid
2-related factor (Nrf2) in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging
drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not
fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for

neuropsychiatric disorders.

1. Introduction

The earth began its life without free oxygen in its atmosphere
[1]. Oxygen accumulation is a consequence of the estab-
lishment and propagation of photosynthesizing archea and
bacteria on this planet [2]. With the arrival of the world’s first
de facto pollutant (i.e., oxygen), approximately 3 billion years
ago there evolved organisms that reductively metabolized
oxygen to produce ATP in mitochondria [3] (i.e., aerobic
respiration). Mitochondrial energy metabolism yields several
reactive oxygen species (ROS) including oxygen ions (O,
the primary ROS), free radicals, and peroxides (inorganic and
organic). The presence of ROS produced profound conse-
quences for life on earth, both beneficial and deleterious. For
example, a wealth of evidence suggests that high levels of ROS
are intimately linked to the appearance of neuronal death
in various neurological disorders. These include chronic

diseases (Parkinson’s disease or Alzheimer’s disease) [4],
acute injury of the brain (brain trauma and cerebral ischemia)
[5, 6], or psychiatric disorders (autism, attention deficit
hyperactivity disorder, depression, and schizophrenia) [7].

An increase in oxidative and nitrooxidative stress and
a decrease in the antioxidant capacity of the brain are key
factors involved in the etiology of neuropsychiatric diseases
(Figure 1). In the following we will detail both the beneficial
and deleterious impacts of these Janus-faced processes.

2. ROS Are Required for
Physiological Processes

Even though ROS are involved in a number of diseases,
they are also very pertinent mediators of several normal
physiological processes. All of the good ROS are products
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FIGURE 1: Schematic representation of oxidative stress-related mechanisms underlying disease development in Alzheimer’s disease (AD),
Parkinson disease (PD), stroke, attention deficit and hyperactivity disorders (ADHD), schizophrenia, and depression.

of turnover in the mitochondrial respiratory chain. The
highly reactive nature of singlet oxygen can even be exploited
to make reactive peroxides that can serve as antimicrobial
agents [8]. Most of the physiological effects are in fact
mediated by reactive oxygen species (ROS) derivatives of
superoxide. Similarly, the superoxide anion (O, "), through
its derivative, the hydroxyl radical (¢<OH), plays an essential
role in cell physiology by stimulating the activation of guany-
late cyclase and formation of the “second messenger” cGMP
in cells and activation of the transcription factor nuclear
factor kB (NF-kB) by hydrogen peroxide in mammalian
cells [9]. Under normal physiological conditions, the NO
radical (NOe) regulates the vascular tone by smooth muscle
relaxation.

In the inflammatory response, macrophages and neu-
trophils are attracted by activated T lymphocytes and IL-2
and produce high levels of O, ", which along with other ROS
destroy the engulfed bacteria (oxidative burst) [10]. In brain
tissue, ROS are generated by microglia and astrocytes and
modulate synaptic and nonsynaptic communication between
neurons and glia. ROS also interfere with increased neuronal
activity [11] by modifying the myelin basic protein and can
induce synaptic long-term potentiation, a form of activity-
dependent synaptic plasticity and memory consolidation.
Furthermore, results from animal models suggest that the
role of O, in modulating synaptic plasticity, memory forma-
tion, and learning is altered by age [12].

3. Deleterious Effects Associated with ROS

Activated oxygen species, especially those that share elec-
tronic orbital features with singlet oxygen, are highly reactive,
and therefore the evolutionary adaptation by organisms to
make oxygen wholly beneficial has never been complete.
Consequently, there are many deleterious effects associated
with excessive, activated ROS. ROS are thereby capable of
producing membrane damage, changes in the inner proteins
affecting their structure and function, lipids denaturation,
and structural damage to DNA. In the brain, those effects
appear when ROS are in excessive concentrations and thus
the ability of antioxidant mechanisms of neurons to counter-
balance the damaging reactions is diminished [13].

The brain is especially susceptible to the assaults per-
petrated by ROS. This is because the brain as an organ
is a major metabolizer of oxygen (20% of the body con-
sumption) and yet has relatively feeble protective antioxidant
mechanisms. Thus it is especially vulnerable to oxidative
stress. The brain contains a large amount of polyunsaturated
peroxidizable fatty acids along with high levels of iron that
act as a prooxidant and sometimes induce autophagic cell
death in hemorrhagic stroke. Synaptic transmission involving
dopamine and glutamate oxidation may also occur in the
brain [13-15]. In addition, lipid peroxidation leads to the
production of toxic compounds such aldehydes or dienals
(e.g., 4-hydroxynonenal) which may cause in turn neuronal
apoptosis [16].
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At the DNA level, oxidative modifications may cause
rapid depletion of intracellular energy by activating DNA
repair enzymes. Energy scarcity after stroke will cause in
turn endonuclease-mediated DNA fragmentation, the key
mechanism that leads to DNA-damage [17].

4. Brain Mitochondrion and Oxidative Stress

The mitochondria is the cellular powerhouse that generates
ATP and therefore is a key participant in all physiological
and pathological events. Following ischemia-associated exci-
totoxicity and other neurodegenerative insults, mitochondria
will take up calcium which leads to an increased production
of reactive oxygen species (ROS). As a result, neuronal
cells face excessive amounts of ROS [18]. The mechanisms
linking mitochondrial calcium uptake and ROS production
are incompletely understood but may involve an increase in
the permeability of the mitochondrial membranes to small
molecules and thereby initiate cell death through release
of apoptosis-inducing factors via the opening of an as yet
unidentified megapore protein [18-21].

Once opened, the pore can cause the collapse of the
proton gradient. This promotes collapse of respiratory control
as well as release of Ca** stored in the mitochondrial matrix.
Furthermore, since the mitochondrial matrix is negatively
charged, K" can enter through the pore and cause osmotic
swelling [22]. A bioenergetics failure ensues due to the
inhibition of oxidative phosphorylation and ATP synthesis.
The few ATP molecules generated by glycolysis or by residual
functional mitochondria are hydrolyzed by ATP synthase that
work in reverse under such extreme conditions [22]. If the
pore remains open for a long period major consequences for
energy metabolism and even cellular death may occur.

An increasing number of studies report the preva-
lence of oxidative stress and mitochondrial abnormalities in
numerous neuropsychiatric disorders [23-30]. A spectrum
of oxidative stress markers involved in schizophrenia and
anxiety related disorders were thoroughly categorized based
on several biochemical assays [31, 32] as well as genetic
assessment studies [32]. Recent genetic studies pinpoint
at mutations in several genes encoding proteins required
for synaptic plasticity suggesting a plausible link between
neuropsychiatric diseases and neurodevelopmental abnor-
malities [33, 34]. Notably, mutations in PTEN-induced kinase
1 (PINKI) gene function have been attributed to oxidative
stress and mitochondrial fragmentation [35]. However, alter-
ations in GMP-PKG signaling leading to increased brain
phosphodiesterase-2 (PDE2) levels [26, 36, 37] and NOX2-
dependent mechanisms [38] are believed to drive oxidative
stress-related events in the pathogenesis of psychiatric disor-
ders.

Defects in the electron transport chain (ETC) system and
especially the mitochondrial complex dysfunctions have been
reported to be involved in autism [39, 40] and schizophrenia
[40]. Additionally, defects in pyruvate dehydrogenase activity
and copy number variations in mtDNA were also seen in
autistic subjects [40]. In a more recent work, involving a

transgenic mouse model that expresses the gene, “puta-
tive dominant-negative disrupted in schizophrenia 17 (DN-
DISCI), a plausible mechanistic link between prefrontal
oxidative stress and neuropsychiatric problems was explored
[41]. Likewise, more recent genetic studies point to alterations
in a set of genes associated with epigenetic mechanisms
and oxidative stress pathology thereby suggesting histone
modifications and DNA methylation in schizophrenia related
psychopathology [42].

5. Oxidative Stress Mediated Inflammation
and Neuropsychiatric Diseases

Recent findings suggest that neuroinflammation is an impor-
tant player in the pathophysiology of neuropsychiatric dis-
eases such as stroke, depression, Alzheimer’s diseases, or
schizophrenia [43, 44].

5.1. Cerebral Ischemia (CI). After the onset of cerebral
ischemia, oxidative stress plays a major role in neuroinflam-
matory reactions [45, 46]. In postischemic brains, oxidative
stress triggers activation of microglia and astrocytes [47]
leading to striking elevations in the levels of inflammatory
mediators such as cytokines, chemokines, and matrix met-
alloproteases [48] and causing the loss of endothelial cell
integrity in the brain as manifested by upregulation of cell
adhesion molecules and neutrophil infiltration [49]. This
probably provokes subsequently secondary inflammation
and glial immune response resulting in permanent brain cell
damage [48].

Redox-mediated increase in free radicals in the postis-
chemic brains notably leads to augmented expression of
several proinflammatory genes whose expression is mediated
through the transcription factor nuclear factor-kappa-B or
NF-«xB [48]. Importantly, NF-«B mediated proinflamma-
tory reactions and innate immune responses are prominent
features in cerebral ischemic conditions [50-52]. Although
activation of innate immunity by Toll-like receptors seems
to promote regenerative mechanisms [53], neuronal loss
critically involves ROS induced TLR-mediated inflammatory
responses during cerebral ischemia [54-57].

5.2. Parkinson’s Disease. In Parkinson’s disease (PD), a con-
siderable body of evidence suggests that both dopaminergic
and nondopaminergic cells undergo degeneration [58-60].
The innate immune response seen in the CNS of PD subjects
involves a spectrum of oxidative stress and inflammatory
responses that cause neurodegeneration. However, the key
loss of dopaminergic neurons involves oxidative stress and
neuroinflammatory mechanisms through increased levels of
inducible nitric oxide synthase (iNOS) followed by activated
microglia, T-cell infiltration, and astrogliosis leading to accu-
mulation of O,  and NO free radicals [59]. Dopaminergic
neuronal loss via oxidative stress-mediated inflammation
also involves cyclooxygenase-2 (COX2) overexpression [59].
Additionally, higher levels of myeloperoxidase, generated by
reactive astrocytes, could even elevate the levels of reactive
(¢OH) and NO, ™ radicals that could in turn lead to neuronal



loss in Parkinson’s disease [59]. Similarly, the upregulation
of NADPH-oxidase, which is known to be associated with
inflammation and ROS generation, in PD has been tied to
microglial activation, local ROS elevation, and subsequent
dopaminergic neuronal loss [61].

The involvement of microglial activation most likely
attracts lymphocytes to the site of injury. Subsequent patho-
physiological sequelae involve damage to the integrity of the
blood brain barrier (BBB), and then increased shedding of
several inflammatory cytokines into the cerebral spinal fluid
(CSF) of PD patients [62, 63]. As reactive microgliosis seems
to be a major event in PD pathogenesis, altered cytokines and
ROS levels in microglia [64] as well as augmented microglial
NADPH-derived ROS accumulation [65] all contribute to the
neurotoxicity seen in PD.

The research findings from Reynolds and colleagues
implicate the role of adaptive immunity functions during
microglial inflammation in Parkinson’s disease [66]. On the
other hand, the effector T-cell (E) responses are believed
to be the mediators of microglial activation and subsequent
neurodegeneration. Taken together, both innate and adaptive
immunity play consistent, prominent roles in causing neu-
ronal death in PD.

5.3. Alzheimers Disease (AD). Major events associated
with oxidative stress could exacerbate inflammation-related
pathologies in Alzheimer’s disease (AD) [67-69]. Recent
reports suggest that oxidative stress-mediated binding of
advanced glycation endproduct (AGE) to its receptor (RAGE)
can adversely increase the microglial inflammation and
cytokine release. Such events contribute to neuronal loss
in AD [70]. In AD patients, both reactive astrocytes and
microglial activation are involved in amyloid beta protein-
mediated oxidative stress and inflammation [71-73] as well
as compromised immune responses [71] within the cerebral
parenchyma. Recent genomic studies [74] in AD patients
confirmed previous observations that showed upregulation
of several pathways associated with the innate immune
system following microglia activation and inflammation in
aging. The researchers concluded that such findings would
ultimately account for neurodegeneration and memory loss
in AD.

The important role conferred to Toll-like receptors (TLR2
and TLR4) in AD as peripheral biomarkers [75] of AD
pathophysiology [75-77] is well studied. Notably, the part
played by TLR receptors in AD progression addresses the
importance of innate immune responses [78]. However, the
striking elevation of TLR4 expression in neurons by the toxic
action of Abeta 1-42 or by increased elevation of the lipid
peroxidation product, 4-hydroxynonenal (HNE), obviously
suggests that oxidative stress does drive neuronal loss in AD
[77].

5.4. Multiple Sclerosis. 'The demyelination and axonal damage
triggered by oxidative stress and inflammatory reactions
are widely reported in multiple sclerosis (MS) [79]. The
subsequent appearance of peroxynitrate molecules is believed
to inflict severe damage to brain cells and especially neurons
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[80]. Recently, both ROS and RNS (reactive nitrogen species)
compounds are considered to be the early causative factors
for the inflammatory reactions associated with MS. This
subsequently leads to considerable loss of oligodendrocytes
and axons [81]. Moreover, the early mitochondrial damage
caused by oxidative stress seems to be critical for subsequent
inflammatory processes and neuronal loss in multiple sclero-
sis [82].

5.5. Neurodevelopmental Disorders. Epidemiological studies
on prenatal exposure to infection during the developmental
period suggests that the immune system plays an impor-
tant role in a number of disorders such as schizophre-
nia, depression, or cognitive impairment [83]. The innate
immune system triggers a cascade of events that results in
an increased synthesis of cytokines, interferons, and other
immunological mediators thereby altering the balance of pro-
and anti-inflammatory cytokines. Since cytokine receptors
are expressed as early as the fetal period, it is thought that
inflammatory cytokines may represent a key mechanism
involved in neurodevelopmental disorders [84, 85]. Indeed,
recent studies have shown that prenatal exposure to proin-
flammatory agents like I1-6, I1-8, and TNF alpha can increase
the risk for diseases like autism or schizophrenia by inducing
both neuromorphological and neurochemical changes in the
immature brain [86-88].

The vulnerability to develop psychiatric diseases later
in life (fetal programming) involves not only the immune
response of the brain, but also the changes in glial cell func-
tion [89, 90]. Thus, assessment of microglia in postmortem
autism cases revealed a strong microglial cortical activation
suggesting that activated microglia may play a central role in
the pathogenesis of autism [91].

5.6. Depressive Disorders. Major depressive disorders are
often associated with an increased inflammatory response
of the brain. A study employing the serotonin transporter
(SERT) mutant rats has shown that deletion of the SERT
gene is associated with an increased level of proinflammatory
cytokines and an increased number of activated microglia
suggesting that the serotonin transporter dysfunction plays
an important role in the pathogenesis of depressive disorders
via an increased glial response to inflammatory agents [92,
93]. More specific, Macchi and colleagues [93] showed that
the SERT mutant rats displayed an activated microglial
phenotype under basal conditions. The mechanisms for
microglial activation and its consequences are still not com-
pletely understood. However, several studies investigating the
role of proinflammatory cytokines like tumor necrosis factor
(TNF) alpha or interleukins (IL1 beta, IL6, and IL8) have
involved microglial activation in schizophrenia pathogenesis
[94, 95].

The progression of bipolar disorders is multifactorial
and include the interaction between the neurotransmitters,
neuropeptides, oxidative and nitrosative stress and cytokines,
and neurotrophins including BDNF [96, 97]. Most impor-
tantly, emerging evidence in animal models and also in
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humans suggests that anti-inflammatory therapy may delay
the progression of the diseases [98].

6. Biomarkers of Oxidative Stress in
Neuropsychiatric Diseases

The levels of several growth factors and metabolites are
altered in cerebral tissue, cerebrospinal fluid (CSF), and
serum of patients exposed to oxidative stress and can be used
to assess risk factors or as potential biomarkers. Similarly,
longitudinal in vivo "H-MRS that was used to evaluate the
postinjury evolution of 20 individual neurochemicals after
traumatic brain injury (TBI) revealed a dramatic depletion
of glutathione (GSH) and ascorbate (Asc), two endogenous
antioxidants with the highest concentration in the central
nervous system [99]. The following sections give an account
of current biomarkers of oxidative stress in neuropsychiatric
diseases.

6.1. Developmental Disorders. Although many of the cog-
nitive and behavioral features of autism spectrum dis-
orders (ASD) are associated with dysfunctions of the
central nervous system, ASD also appears to be associ-
ated with systemic metabolic abnormalities such as oxida-
tive stress and mitochondrial dysfunction [100-102]. Glu-
tathione deficiency also contributes to abnormalities seen
in autistic behavior [40, 103] as well as schizophrenia and
bipolar disorders [104]. Likewise, examination of urinary
samples from schizophrenia subjects revealed considerable
alterations in 8-0x0-7,8-dihydro-20-deoxyguanosine and 8-
ox0-738-dihydroguanosine levels indicating oxidative stress
induced nucleic acids damage [105]. Similarly, in plasma F2-
dihomo-isoprostanes, a specific component of myelin in the
brain of primates, plasma represents an early marker of Rett
syndrome, a developmental disorder that almost exclusively
affects females but has been found in male patients, too [106].
A recent meta-analysis of oxidative stress in schizophre-
nia suggests that red blood cells (RBC) SOD levels and
to a lesser extent RBC catalase and plasma nitrites, were
significantly decreased in acutely relapsed inpatients, first-
episode psychosis, and stable medicated outpatients [107].
Several markers of lipid peroxidation including the ubiq-
uitous lipid peroxidation product, malondialdehyde (MDA),
have been found to be significantly increased in ADHD
patients. The study comprised 20 adult-ADHD patients and
21 healthy volunteers, to whom malondialdehyde levels were
measured in plasma. The study evaluated indirectly the level
of ROS and found that the mean plasma MDA levels of
patients having adult-ADHD were significantly higher than
those of the control group. The results suggest a relation
between oxidative metabolism and adult ADHD [108].

6.2. Depressive Disorders. Studies conducted on postmortem
tissue from depressed patients have shown reduced levels of
hippocampal, an anatomical structure involved in anxiety
and depressive behaviors, as well as cortical BDNF [109].
In addition, a polymorphism in the BDNF gene has been
associated with depression [110-113].

In the periphery, a meta-analysis provided strong evi-
dence that BDNF levels in serum of depressed subjects are
lower as compared to those of the healthy controls. Further,
the antidepressant treatment restored BDNF to normal levels
[114].

After adipose tissue, the organ with the highest lipid
content is the brain and elevated serum levels of lipid
peroxidation products have been often reported in bipolar
disorders. Because the axonal membranes and myelin sheaths
of the brain are rich in lipids, it has been proposed that
lipid peroxidation products may be promising peripheral
biomarkers of underlying white matter abnormalities in
bipolar disorders (BP). A recent study combined diffusion
tensor imaging and biochemical analysis of serum to examine
relationships between measures of white matter integrity
as measured by fractional anisotropy, radial diffusivity, and
peripheral measures of lipid peroxidation, the lipid hydroper-
oxides, LPH and 4-hydroxy-2-nonenal, 4-HNE. The study
suggests that serum LPH may be useful in the development
of a clinically relevant assay for peripheral biomarkers of BD
[115].

Similarly, lipofuscin granule accumulation has been
described in biopsies from patients suffering from major
depressive disorder (MDD) indicating the impact of oxidative
stress on neurovascular abnormalities in these patients [116].

6.3. Alzheimer Disease. Mitochondrial dysfunction can also
be detected in peripheral tissues. Although erythrocytes are
considered as passive “reporter cells” for the oxidative status
of the whole organism, decreased glutathione peroxidase
activity (GPx) in RBC may be considered as a new peripheral
marker for AD [117]. Several other studies showed a decreased
cytochrome c activity and increased levels of ROS in human
platelets from AD patients [118-120]. Similarly, lymphocytes
of AD patients are characterised by increased basal ROS levels
[121].

Other classical markers of oxidative stress in plasma of
early stage AD patients include thiobarbituric acid reactive
substances (TBARS) as an index of lipid peroxidation, protein
carbonyl content as an index of protein oxidation, the
enzymatic activities of GPx, catalase (CAT), and superox-
ide dismutase (SOD) as well as the plasma levels of total
glutathione (reduced GSH plus oxidized glutathione (GSSG)
(122].

6.4. Parkinson’s Disease. Similarly, 4-hydroxynonenal (4-
HNE), an alpha, beta-unsaturated hydroxyalkenal produced
by peroxidation of polyunsaturated fatty acids, is widely
recognized as a specific marker of oxidative stress both
centrally and in the CSF and serum of PD patients [123-127].

Likewise, several markers of lipid peroxidation including
the ubiquitous lipid peroxidation product, malondialdehyde
(MDA), have been found to be significantly increased in
PD brains [128-131]. There is also strong evidence for lipid
peroxidation products like hydroxyeicosatetraenoic acid in
plasma, leukocytes, and erythrocytes from PD patients [132-
134]. Finally, higher nitric oxide and peroxynitrite serum



levels have been recently reported in Parkinson’s disease
versus controls [135].

7. Targets of Therapy in
Neuropsychiatric Disorders

Oxidative stress and neuroinflammation are key factors
contributing to aging of the brain. Many studies highlighted
the importance of antioxidative defenses in the aging process
[22, 136, 137], but it is still unclear whether these responses
are beneficial or detrimental. A diminished endogenous
antioxidative capacity of the brain can promote aged-related
diseases such as cerebral ischemia or neurodegenerative
disorders. In order to protect the brain from both aged-
associated pathological diseases and the aging process itself, it
becomes imperative to understand the molecular and cellular
mechanisms of antioxidative and/or inflammatory response.

71. Activators of the Nrf2/ARE Pathway. The nuclear factor
erythroid 2 related factor (Nrf2) is a dimer of the p45 protein
and a member of the small Maf family proteins involved in
the modulation of both antioxidant and anti-inflammatory
signaling [138].

As cells are permanently exposed to a variety of oxidative
stressors they must be able to trigger antioxidative signaling
pathways in order to maintain redox homeostasis. To this
end Nrf2 is activated, via phosphorylation, while under
oxidative stress (such as in hypoxia/ischemia reperfusion or
in neurodegenerative diseases) it is shuttled to the nucleus
where it builds up a dimer with the small Maf. The activated
complex in turn promotes the transcription of genes involved
in neuroprotection. An in vitro study on primary cortical
cultures has recently shown that prolonged expression of the
transcription factor NF-E2-related factor 2 (Nrf2) induced by
hypoxia and oxidative stress acts neuroprotectively against
oxygen glucose deprivation. By inserting the Nrf2 gene in
an inducible gene construct, a controlled, neuroprotective
effect can be achieved by overexpressing Nrf2 not only during
hypoxia but also after reperfusion [139].

The key trigger to this neuroprotective cascade is the
binding of Nrf2 to the antioxidant response elements (AREs)
[140-142]. Therefore, exogenous Nrf2/ARE activators may
represent powerful drugs to activate the antioxidant and
defensive acting genes. The Nrf2/ARE pathway can be
pharmacologically activated both by natural products such
as sulforaphane [143, 144], polyphenols, epigallocatechin 3-
gallate (EGCG), and curcumin [145] and synthetic drugs
including triterpenoids and N-(4-(2-pyridyl)(1,3-thiazol-2-
y1))-2-(2,4,6-trimethylphenoxy) acetamide, known as CPN-9
[146].

Interestingly, recent studies have also shown that Nrf2/
Hmox activation may enhance cell proliferation and survival
in the subventricular zone (SVZ) of aged brains by reverting
microglial phenotype into the proneurogenic phenotype [147,
148]. We also have observed that during conditions of cerebral
ischemia, the aged brain upregulates the Hmoxl gene only
partially and later (day 14 after-ischemia) as compared to
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young animals which activate this gene strongly and early
(day 3 after-infarct) after stroke [149].

7.2. Biochemicals: Omega-3 Polyunsaturated Fatty Acids and
Vitamins. Of these, omega-3 polyunsaturated fatty acid
(PUFA) is one of the few compounds that are able to
modulate the expression of genes involved in cell signaling,
division, apoptosis, and oxidative stress [150]. Mounting
evidence indicates that fatty acid deficiencies or imbalances
may also contribute to a range of adult psychiatric and
neurologic disorders including ADHD, DCD (developmental
coordination disorder), and autism.

A recent study investigated the antioxidant effect of
alpha linolenic acid in adults and children with ADHD,
DCD, and autism. Omega-3 polyunsaturated fatty acids were
given as supplements to patients diet, and the changes in
hyperactivity, attention, and other disruptive behaviors were
analyzed. The patients who received flax oil (an oil rich in
18 carbon omega-3 fatty alpha-linolenic acid) did show a
significant improvement in the symptoms of ADHD reflected
by a reduction in total hyperactivity scores [151]. However,
the diet with mixed omega-3 and omega-6 supplementation
had only a modest effect on attention and hyperactivity
symptoms in 117 children with DCD. The treatment did not
show a significant effect on motor skills but did show a
significant improvement in reading, spelling, and behavior
versus placebo during the 3 months of treatment [152].

Vitamins have also been used in clinical trials. A study
was performed on patients over 70 years old, who were
diagnosed with dementia and other cognitive dysfunctions
[153]. An improvement in their cognitive performance was
observed, after vitamin C and E were given as food sup-
plements. Of note, a positive response was seen in vascular
dementia but not in Alzheimers disease [153]. In other
studies, long-term high dosing of vitamin E supplementation
increased the risk of hemorrhagic stroke and other causes
of mortality, raising questions about the benefit or the harm
of this treatment [154]. The presence of vitamin D seems to
regulate autophagy that is used by the cell to degrade cytosolic
macromolecules and organelles in the lysosome. Being an
adaptive response, the autophagy can be useful or deleterious
depending on the energetic status of the cell [155, 156].

8. Peroxisome Proliferator-Activated
Receptor-Gamma Agonists

In human and animal models, the cognitive decline in vas-
cular dementia is dependent on the hippocampal function.
Recently, peroxisome proliferator-activated receptor gamma
(PPAR-gamma) agonists were shown to diminish oxidative
stress, inflammation, and apoptosis in the central nervous
system [157, 158]. Peroxisome-proliferator activator receptor-
gamma is a nuclear receptor with a key role in energy
homeostasis and inflammation that has been implicated in
the oxidative stress response.

Telmisartan is a special angiotensin II receptor blocker
(ARB) and a partial agonist of the (PPAR-gamma). A recent
study asked if telmisartan protects against cognitive decline
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in a rat model of vascular dementia. Indeed, it was found that
telmisartan acts neuroprotectively against cognitive decline
after cerebral ischemia by promoting anti-inflammatory
and antioxidant effects [159, 160]. In particular, it has
been hypothesized that ARB might act neuroprotectively
by upregulating the levels of BDNE, a known antioxidant,
in the hippocampus. Indeed, after 28 days of treatment
with telmisartan, BDNF expression in the hippocampus was
significantly higher as compared to controls and the animals
showed an improved cognitive performance. It was inferred
that telmisartan may protect the cells via upregulation of
BDNF and its receptor TrkB, in the hippocampus possibly via
angiotensin II-induced anti-oxidative stress [161]. Recently,
another PPAR-gamma agonist, 15d-PGJ2, has been shown to
exert neuroprotection by inhibiting neuronal autophagy in
stroke model [162].

Thiazolidinediones (TZDs) are still another potent syn-
thetic agonists of PPAR-gamma that have been successfully
used to diminish inflammation after cerebral ischemia [163].
Similarly, pioglitazone and rosiglitazone are two TZDs with
proven efficacy in reducing inflammation and upregulat-
ing antioxidant enzymes after spinal cord injury [164].
Recently, the neuroprotective efficacy of a TZD-unrelated
PPARgamma agonist L-796,449 has been tested in an animal
model of stroke. The study showed that L-796,449 decreased
the infarct size and improved neurologic outcomes [165].

8.1. Gases: Hyperbaric Oxygen and H,S. The first study
that used hyperbaric oxygen therapy to treat autistic chil-
dren showed a significant level of improvement of autistic
symptoms in 75% of patients [166]. The results have been
confirmed in a second study that evaluated social devel-
opment, fine motor and eye-hand coordination, language
development, gross motor development, and self-help skills,
before and after the treatment of children with autism. It
should be noted that the beneficial effect of hyperbaric
oxygen for brain diseases has been previously shown by
D. A. Rossignol and L. W. Rossignol in 2006 who showed
that hyperbaric oxygen therapy improved oxygen levels in
ischemic area by increasing the oxygen concentration in
plasma as a compensatory mechanism in hypoxia [167].

Hydrogen sulfide (H,S) is another gas recently used in
several neuroprotective studies. H,S is a mild inhibitor of
oxidative phosphorylation and can protect neurons after
a stroke [168]. The study was performed on 17-month-old
male Sprague-Dawley rats, and focal cerebral ischemia was
induced by reversible occlusion of the right middle cerebral
artery. Exposure of poststroke rats to a mixture of air and
hydrogen sulfide for 2 days resulted in deep and sustained
hypothermia (31.8 + 0.7°C). An improvement in the post-
stroke recovery of complex sensorimotor skills along with
a 50% reduction in infarct size was noted. There were no
obvious physiological side effects. Hypothermia resulted in
a reduction in the number of phagocytic cells as well as
decreased transcriptional activity of several genes related to
inflammation and apoptosis including caspase 12, NF-kappa
B, and grp78 in the peri-infarcted region [168].

Two further studies showed that indeed hydrogen-rich
saline can benefit the brain in a global cerebral ischemia/
reperfusion model (four-vessel occlusion model) and in a rat
model with permanent focal cerebral ischemia (permanent
middle cerebral artery occlusion), respectively [169, 170].
The results demonstrated that intraperitoneal injection of
hydrogen-rich saline offers strong neuroprotective effects by
reducing oxidative stress and inflammation. Thus, the level
of endogenous antioxidant enzymes (superoxide dismutase-
SOD and catalase-CAT) was increased, whereas the concen-
tration of oxidative products (8-iso-PGF2« and malondialde-
hyde) and inflammatory cytokines (ITNF-« and IL-6) was
decreased [169, 170].

8.2. Metals: Lithium. Healthy volunteers treated with lithium
for a period of 2-4 weeks showed decreased superoxide
dismutase levels and superoxide dismutase/catalase ratio
as well as diminished hydrogen peroxide concentrations.
Therefore, lithium has a potential role for neuroprotection
in bipolar disorders and even in neurodegenerative diseases.
Lithium seems to be the gold standard due to its ability to
prevent/or reverse DNA damage, lipid peroxidation, and free
radical formation [171]. In addition, lithium induces BDNF in
neuronal cultures [172].

8.3. ROS Scavengers. A mechanism that implicates the oxida-
tive stress in the appearance of depressive symptoms is the
metabolism of the nitric oxide (NO). NO is generated by
nitric oxide synthase (NOS) that catalyzes the metabolism
of L-arginine to L-citrulline and nitric oxide (¢NO) in the
presence of molecular oxygen and NADPH. NO is a gas that
acts as second messenger in a number of organs, including
the brain, and is also a free radical involved in the etiology
and progression of many diseases.

Neuronal NOS (nNOS) is a Ca2+-calmodulin-dependent
isoform of NOS that is constitutively expressed in neuronal
cells. A persistent expression of nNOS may result in an
increased production of reactive nitrogen species (RNS), such
as «NO and peroxynitrite (ONOO™) and thus may result in
neuronal death due to increased nitrative/nitrosative stress.
NOS can also generate superoxide when levels of the natural
substrates L-arginine and tetrahydrobiopterin decrease [173].

The “NO hypothesis” was tested in a small clinical study
done on 78 patients diagnosed with recurrent depressive
disorder and healthy controls. High levels of plasma NO were
tested along with the efficiency of visual-spatial and auditory-
verbal working memory and short-term declarative memory.
The concentration of plasma NO was found to be directly
proportional with the severity of depressive symptoms [174].

In a recent study, Yoshitomi and colleagues [175] have
reported the synthesis of pH-responsive nitroxide radical-
containing nanoparticles which act as highly efficient scav-
engers of ROS, thus bringing new hopes for antioxidant
therapies.

Recently it is has been suggested that not only antiox-
idants, but also the prooxidant system plays an important
role in neuropsychiatric disorders. Xanthine oxidase (XO) is
an enzyme of special interest in this context, since it acts as
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TaBLE 1: Drugs with anti-inflammatory and antioxidant effects currently under investigation for the treatment of several neuropsychiatric

diseases.

Drug Brain disease Mechanism Reference

w-3 PUFA ADHD Nonspecific antioxidant effect [151, 152]

Vitamin C Vascular dementia Free radical scavenger [153]

Hyperbaric O, Autism Anti-inflammatory and reduces oxidative stress [157]
Focal cerebral Inhibits oxidative phosphorylation,

H,S : . . : : . [159]
ischemia/reperfusion inflammation, and apoptosis

H,-rich saline Focal or global cer.ebral Reduces oxidative stress and inflammation (160, 161]
ischemia/reperfusion

Lithium Healthy volunteers Prever.lts/(.)r Feverses DNA.damage, hI.) id [164]

peroxidation, and free radical formation

Pifithrin-p Per?natal hypoxic-ischemic Inhlblt'lon of the ap.optf)tlc pathways and [166]
brain damage reduction of the oxidative stress

Telmisartan Vascular dementia Anti-inflammatory and antioxidant effects [174-176]

Nanodrugs ROS scavengers (177]

Triterpenoids Parkinson Antioxidants via Nrf2/ARE pathway [146]

PPARgamma Neurodegenerative diseases Anti-inflammatory [162-164]

agonists

a prooxidant, but its main product uric acid is a powerful
antioxidant. By examining the activity of XO in the occipital
cortex and thalamus of patients with psychosis, the authors
found a decreased activity of XO suggesting a downregulation
of cellular defence mechanisms in schizophrenia [176].

The available drugs currently in use either for research or
therapeutic purposes for several brain diseases are shown in
Table 1.

9. Conclusions

Here we reviewed many aspects of therapeutic strategies
aimed to improve the neuroprotection and the function of
the brain. Many preclinical models showed an increased
neuroprotection to stressors like hypoxia. Although many
promising drugs, in particular antioxidants, have been devel-
oped and shown to be beneficial to experimental animal
models, the results of recent clinical trials investigating these
promising drugs have been largely negative. As alluded
to previously, the oxidative stress is a key contributor to
neurodegeneration. Therefore, the antioxidant therapy is a
novel therapeutic strategy and neuroscientists are increas-
ingly interested in the participation of ROS towards the
pathology involved in neurodegenerative disorders. It is,
however, difficult to determine targets for treatment and to
distinguish between what may be harmful or beneficial for the
brain, without precise knowledge of the pathways involved in
the progression of neuronal diseases [178].

Modulation of prooxidant-antioxidant balance plays an
important role in mitochondrial dysfunction and provides
an additional therapeutic option which can be used to
improve neuroprotection and cognitive functions in response
to oxidative stress. Anti-ROS drugs could probe pathologi-
cal pathways associated with neurodegeneration psychiatric
disorders. However, there are only few well-established drugs
of such a kind and the risks and benefits are still not fully

clarified. Most likely, multiple distinct pathways should be
targeted for an efficient therapeutic purpose. Therefore it is
not surprisingly that many drugs exert their beneficial effects
on neurotransmission indirectly by modulating inflamma-
tion, oxidative stress, or apoptosis [179]. Meta-analyses have
suggested that antidepressants (fluvoxamine, reboxetine, or
imipramine) and antipsychotics (clozapine and risperidone)
reduce the levels of the proinflammatory cytokines IL-6
and NO and suppress the macrophage production [177] and
upregulate signaling pathway associated with neurotrophic
factors like BDNF [180, 181]. Likewise, fluoxetine may exert
its neuroprotective effects via downregulating the expression
of inhibiting key players involved in inflammation including
NFkappaB [182], IL-1f3, TNF-«, and COX-2 [183]. However,
the available drugs have pleiotropic actions and are not fully
characterized in the clinic.
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